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Abstract: Accurate prediction of the remaining useful life (RUL) of bearings is crucial for maintaining
the reliability and efficiency of industrial systems. This study introduces a novel methodology
integrating advanced machine learning and optimization techniques to address this challenge. (1) A
transformer-attention model was developed to process segmented vibration signals, effectively
capturing complex patterns. The model showed better performance than traditional approaches, with
an RMSE of 0.989. (2) A Deep Neural Network (DNN) was designed to predict the extended RUL of
bearings after laser shock peening (LSP) remanufacturing. The fruit fly optimization (FFO) algorithm
was employed to optimize the remanufacturing parameters; a 29.33% improvement was achieved
in fitness compared to the baseline. (3) The DNN model predictions were validated against Finite
Element Analysis (FEA) simulations, with a low relative error of 2.5% to 5.8%; the model showed
good accuracy in capturing the effects of optimized LSP parameters on bearing life extension.

Keywords: bearing RUL prediction; laser shock peening; deep learning; remanufacturing; data
pre-processing

1. Introduction

Bearings are critical components in different types of industrial machinery, including
automotive, aerospace, and manufacturing systems. The performance and lifespan directly
influence the overall efficiency and reliability of mechanical systems [1]. Bearings facilitate
smooth motion and support loads to have the proper function essential for operational
success. Accurate prediction of the remaining useful life (RUL) of bearings is crucial for
effective maintenance planning, as it supports organizations to schedule timely interven-
tions and reduce the risk of unexpected failures [2]. Such failures can lead to significant
operational disruptions to and costly downtime for equipment [3]. Traditional RUL pre-
diction methods include statistical approaches and simple machine learning models, but
the traditional approaches struggle to capture the complex and nonlinear degradation
patterns inherent in bearing wear [4,5]. Therefore, it is essential to predict RUL to extend
the remaining life of the bearing system.

Based on the remaining life of the bearing system, it is essential to integrate remanu-
facturing approaches based on RUL prediction. The potential benefits of advanced remanu-
facturing techniques have not been fully explored in conjunction with RUL assessments [6].
Laser shock peening (LSP) is a surface enhancement technique that can improve the fatigue
life of bearings by inducing beneficial compressive residual stresses in the material [7,8].
This process enhances the mechanical properties of bearings, and it also reduces crack
initiation and propagation [9,10]. However, the connection between RUL predictions and

Appl. Sci. 2024, 14, 10493. https://doi.org/10.3390/app142210493 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app142210493
https://doi.org/10.3390/app142210493
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3600-1238
https://doi.org/10.3390/app142210493
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app142210493?type=check_update&version=2


Appl. Sci. 2024, 14, 10493 2 of 16

LSP remanufacturing techniques is still rarely researched, and the potential for innova-
tions in predictive maintenance and lifecycle management is limited. To fully utilize the
advantages of remanufacturing, it is essential to enhance the accuracy of RUL predictions
and optimize maintenance strategies. Deep learning is an effective tool for predicting the
RUL of equipment and machinery due to its powerful data processing capabilities. It is
capable of processing complex, multi-dimensional datasets during industrial processes. By
integrating advanced remanufacturing processes with predictive analytics, engineers can
achieve more effective utilization of remanufactured components for improved operational
efficiency and reduced costs during the machinery process. Figure 1 shows the bearing
remanufacturing research background.
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In order to address the limitations, this work introduces a novel RUL prediction
framework that utilizes a hybrid transformer-attention algorithm developed to support
LSP remanufacturing [11]. The transformer-attention algorithm was applied to vibration
data collected from bearings operating under various conditions. The model was trained
to predict RUL and support LSP remanufacturing process. The predicted RUL was sub-
sequently used to determine the optimal LSP parameters including laser power density,
overlapping rate, and spot diameter, and the remanufacturing process was optimized to
the specific degradation state of each bearing. This paper proposes a novel solution for
predictive maintenance and remanufacturing with the following innovations:

• Hybrid transformer-attention model for enhanced RUL prediction: The integration of
transformer and attention mechanisms is proposed to predict bearing RUL. The trans-
former extracts relevant historical data points with similar vibration characteristics by
comparing the features with standard samples. The attention mechanism focuses on
samples based on the significance of the degradation trend so that a more accurate
prediction of the bearing remaining life can be achieved;

• LSP parameter optimization based on RUL: A deep neural network (DNN) was
used to predict the extended RUL of the bearing after LSP remanufacturing process,
and the predictions were utilized by an optimization algorithm to determine the
ideal LSP parameters, including laser power density, overlapping rate, and spot
diameter. The fruit fly optimization (FFO) algorithm was utilized to optimize the
remanufacturing performance;

• Experimental validation and case studies: Comprehensive experimental validation
and case studies were conducted to validate the effectiveness of the proposed models
and optimization strategies. Real-world bearing data and various LSP scenarios were
tested to verify the accuracy of the RUL predictions and the efficacy of the optimized
LSP parameters.
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2. Related Works
2.1. Bearing Remaining Useful Life Prediction

The prediction of the RUL of bearings has been extensively explored to improve the
reliability and maintenance of mechanical systems. Zhang et al. [12] proposed a weighted
time-embedding transformer network that enhances the extraction of time-correlation
features, and prediction error was significantly reduced in industrial applications. Lu
et al. [13] introduced a cross-domain RUL prediction model with dynamic hybrid domain
adaptation and attention contrastive learning to process domain shifts, and high accuracy
and generalization were achieved. Song et al. [14] developed a comprehensive framework
utilizing a fractional generalized Pareto degradation model; its performance was enhanced
in early fault detection and adaptive failure threshold determination.

Several studies have emphasized the integration of innovative machine learning tech-
niques with domain-specific adaptations. Cui et al. [15] presented a digital twin-driven
graph domain adaptation model in which a multi-layered graph neural network was uti-
lized for robust RUL prediction with limited data. Wang et al. [16] addressed the uncertainty
in RUL prediction using a multi-task learning mixture density network; model-driven and
data-driven strategies were effectively combined for improved prediction accuracy. Simi-
larly, Lu et al. [17] integrated physical principles into an LSTM-based network to align the
prediction results with physical laws, and consistency and accuracy were enhanced. Sun
and Wang [18] explored a novel approach by combining entropy-based feature extraction
with Elman neural networks; the proposed method showed good prediction accuracy over
traditional time-domain features. Pan et al. [19] developed a meta-weighted network that
quantifies uncertainty and mitigates negative transfer in limited data scenarios. Wei and
Wu [20] proposed an attention-aware graph convolutional network that simultaneously
handles temporal and feature correlations and is better than traditional models in predic-
tion accuracy. Kumar et al. [21] developed an intelligent framework combining dynamic
analysis-assisted wavelet filtering with graph convolution networks, providing a holistic
approach to degradation monitoring and RUL estimation.

Bearing RUL prediction from previous studies has been widely researched with good
results [15–17], but there is still a research gap in exploring bearing RUL prediction to
support LSP remanufacturing optimization. The current studies mainly focus on improving
RUL prediction accuracy [20,21], so there is a lack in the integration of RUL prediction
results into LSP process optimization, which is essential to enhancing remanufacturing
outcomes and extending component life in a more targeted manner.

2.2. Laser Shock Peening and Remanufacturing

LSP is a surface modification technology that enhances the mechanical properties
and durability of metallic components. He et al. [22] validated the effectiveness of LSP in
improving the high-temperature oxidation resistance of Ti2AlNb alloys; microhardness
and compressive residual stress were significantly improved, which contributed to the
formation of protective Al-rich oxidation layers. Wen et al. [23] explored the impact of LSP
on the high cycle fatigue properties of laser-welded 2A60 aluminum alloy joints, and LSP
introduced compressive residual stresses and grain refinement, by which fatigue strength
and lifespan were enhanced. Deng et al. [24] provided a comprehensive review of LSP
applications in various metallic materials, emphasizing its potential to generate deep com-
pressive residual stress fields and refine microstructures, which are critical for improving
fatigue resistance in extreme environments. Ge et al. [25] combined LSP with laser cladding
to enhance the fatigue properties of remanufactured Ti-6Al-4V alloy, and there was a
2.64-fold increase in fatigue life due to the beneficial microstructural modifications and
removal of tensile residual stress. Huang et al. [26] studied the effects of femtosecond LSP
on the fretting wear resistance of Ti6Al4V, in which the optimal laser energy parameters
improved surface hardness and wear resistance. Chi et al. [27] attempted a combination
of direct energy deposition (DED) and LSP on titanium alloys, which resulted in refined
microstructures and a 12.46% increase in ultimate tensile strength. LSP was proven to be
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effective in repairing and enhancing the mechanical properties of DEDed components. Bae
et al. [28] explored LSP performance on silicon nitride ceramics with different sintering
additive ratios, and LSP improved both surface hardness and residual compressive stress.
Sheng et al. [29] introduced a laser non-uniform shock peening (LNUSP) technique for SUS
304 stainless steel welded joints; more uniform residual stress distribution and improved
fatigue performance were achieved compared to traditional LSP methods. Lu et al. [30]
investigated a hybrid approach combining laser-directed energy deposition with LSP for
remanufacturing Ti6Al4V alloy. Interlayer LSP significantly improved microstructural
features and mechanical properties, including tensile strength and hardness.

LSP has shown good effectiveness in improving the surface and mechanical properties
of different materials, but the application in bearing remanufacturing is still rarely re-
searched. There is a gap in extending the life of LSP remanufactured bearings; therefore, the
relationship between LSP parameters and remanufacturing needs to be further researched
so that optimization can be applied to find the optimal remanufacturing parameters.

3. Overview of the Research Framework

The proposed framework consists of three main stages. (i) Data acquisition and
preprocessing: Vibration signals are collected from bearings under different operational
conditions as the input data for the prediction model. The data are preprocessed through
steps such as noise reduction and feature extraction to extract relevant features for subse-
quent analysis. (ii) Transformer-attention based RUL prediction: The preprocessed data
are fed into the hybrid transformer-attention model. Transformer is employed to identify
historical data points with similar degradation patterns with the current bearing condition,
the attention mechanism assigns varying importance to these reference data points, and the
most essential features can be extracted for the bearing’s remaining useful life prediction.
The combined approach enables a more refined and accurate RUL prediction. (iii) LSP
parameter optimization: Based on the predicted RUL, the optimal laser shock peening
parameters are determined based on the specific wear characteristics of each bearing. The
selected parameters are applied to the bearing, which is also validated with FEA results.
Figure 2 shows the overview of research framework.
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4. Methodology
4.1. Data Collection and Preprocessing

Vibration signals were collected from bearings under different operational conditions
using high-precision sensors, and the data were collected from Zhejiang Nulun Bearing Co.,
Ltd., Xinchang, China and University of Shanghai for Science and Technology in July 2024.
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The setup includes accelerometers installed on the bearing housing to record the vibration
signals. The time-series raw data x(t) were preprocessed to remove noise and extract
relevant features. In order to minimize the influence of ambient noise and interference, a
band-pass filter was applied to the raw vibration signal [31]. The band-pass filter can be
represented as follows:

y(t) = x(t) ∗ h(t). (1)

where y(t) is the filtered signal, x(t) is the raw signal, and h(t) is the impulse response
of the band-pass filter. The filter parameters were chosen based on the typical frequency
range of bearing faults to retain only the most informative frequency components.

The filtered vibration signal y(t) can be partitioned into smaller windows to capture
local temporal features. Each segment is defined as yi(t) over a fixed time window Tw with
an overlap of ∆T to improve continuity and smooth transitions between segments:

yi(t) = y(t + i × ∆T), i = 0, 1, 2, . . . , N. (2)

where N is the total number of segments; t ranges from 0 to Tw. From each segmented
window yi(t), essential features are extracted to characterize the condition of bearing in
transformer-attention model.

4.2. Development of the Transformer-Attention RUL Prediction Model

The transformer-attention RUL prediction model was designed to directly utilize the
segmented vibration signals yi(t) as input, and the inherent intricate temporal dynamics can
be captured in the bearing’s operational conditions [32,33]. Each segment yi(t) represents
the filtered vibration data over a fixed time window Tw with an overlap of ∆T; the capture
of local temporal features is essential for accurate RUL estimation. Figure 3 shows the
structure of transformer-attention algorithm.
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The segmented signals {y1(t), y2(t), . . . , yN(t)} are fed into the transformer encoder,
which processes these raw time-series segments using multi-head self-attention mecha-
nisms and positional encodings. This approach enables the model to learn the temporal
dependencies and patterns directly from the vibration data, and the potential loss of in-
formation can be avoided. In the transformer encoder, each vibration segment yi(t) is
first embedded into a higher-dimensional space through a linear transformation, and the
addition of positional encodings is further used to preserve the order of the segments. The
embedded sequence is passed through multiple self-attention layers, the model learns to at-
tend to different parts of the sequence, and the key segments reflect significant degradation
patterns in the bearing.
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The self-attention mechanism calculates the attention scores αi for each segment, and
the importance relative to the current condition of the bearing is calculated [34]. The
attention score for each segment is calculated:

Toαi =
exp

(
Qi · K⊤

i /
√

dk
)

∑N
j=1 exp

(
Qj · K⊤

j /
√

dk

) (3)

where Qi and Ki are the query and key vectors derived from the segment yi(t), and dk is
the dimensionality of these vectors. αi is the attention score. Then, the transformer function
for each segment is represented as follows:

Z = softmax

(
QK⊤
√

dk

)
V. (4)

where Q, K, and V are the query, key, and value matrices derived from the vibration
segments yi(t). The function outputs a context-aware representation Z, which captures the
temporal interactions among all segments. In addition, the weighted sum of the segments
yweighted(t) is computed as follows:

yweighted(t) = ∑N
i=1αi · yi(t) (5)

This aggregated representation yweighted(t) captures the most informative aspects of
the bearing vibration data, and the temporal patterns are most indicative of its degradation
state. The results are fed into a regression layer to predict the RUL of the bearing. The
regression function is defined as follows:

RULpred = f
(

yweighted(t)
)

(6)

4.3. Model Training and Validation

The model parameters are optimized during training using the Mean Squared Error
(MSE) loss function:

MSE =
1
N ∑N

i=1

(
RULpred,i − RULtrue,i

)2
. (7)

where RULtrue,i is the actual remaining useful life of the i-th bearing in the training set.
The optimization is carried out using gradient descent techniques; the Adam optimizer
is utilized, and the Adam optimizer has the ability to adapt the learning rate during
training, so faster convergence and improved performance can be achieved. The Adam
optimizer updates the model parameters iteratively based on the computed gradients of
the loss function:

θt+1 = θt − η
m̂t√

v̂t + ϵ
. (8)

where θt represents the model parameters at iteration t, η is the learning rate, m̂t and v̂t
are the bias-corrected first and second moment estimates of the gradients, and ϵ is a small
constant to ensure numerical stability.

The final model is validated on an independent test set, which contains vibration data
that are not used during training. The training performance is evaluated using metrics such
as root mean squared error (RMSE). RMSE provides a measure of the predictive accuracy
by quantifying the difference between the predicted and actual RUL values:

RMSE =

√
1
N ∑N

i=1

(
RULpred,i − RULtrue,i

)2
. (9)
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4.4. Laser Shock Peening Parameter Optimization

The DNN for predicting the extended RUL after the LSP remanufacturing process
uses a set of input parameters that include laser power density P, overlapping rate O, spot
diameter D, and the current remaining life RULcurrent [35]. The output of the network is
the predicted remaining life after LSP remanufacturing RULextended.

The DNN can be represented by the following equation:

RULextended = fDNN(P, O, D, RULcurrent). (10)

where fDNN represents the DNN function mapping the inputs to the output. The network
consists of multiple hidden layers. For a given hidden layer l, the transformation is defined
as follows:

h(l) = σ
(

W(l)h(l−1) + b(l)
)

. (11)

where h(l) is the output of the l-th hidden layer, h(l−1) is the input to the l-th layer (or the
input features for l = 1, W(l) and b(l) are the weights and biases of the l-th layer, and σ
is the activation function (ReLU). The output layer of the DNN generates the predicted
extended RUL:

RULextended = W(L)h(L−1) + b(L). (12)

where L is the total number of layers in the DNN. The network is trained using a dataset
of different LSP parameter combinations and corresponding extended RUL values. The
training process minimizes the MSE between the predicted RULextended and the actual
RUL values.

Based on the trained DNN, the fruit fly optimization (FFO) algorithm is employed to
optimize the LSP parameters for maximizing the extended RUL of bearing [36,37]. The FFO
algorithm begins with an initial population of fruit flies, where each individual represents
a candidate solution comprising a unique set of LSP parameters: laser power density,
overlapping rate, and spot diameter. The fitness function is calculated as follows:

Fitness = RULextended = fDNN(P, O, D, RULcurrent). (13)

where P, O, and D are the laser power density, overlapping rate, and spot diameter,
respectively. Each fruit fly computes its fitness value, representing the predicted improve-
ment in RUL based on its LSP parameter set. Figure 4 shows the structure of DNN and
optimization function.
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During the optimization process, the fruit flies adjust their positions in the search
space by moving towards the fruit fly with the highest fitness value; the swarm behavior is
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simulated in locating the optimal food source [38]. The new position (P, O, D)new for each
fruit fly is updated:

(P, O, D)new = (P, O, D)best + λ · random(0, 1). (14)

where (P, O, D)best is the position of the best-performing fruit fly, λ is a scaling factor, and
random(0, 1) is a random Gaussian noise to introduce variability in the search. The final
set of parameters is expected to maximize the bearing’s extended RUL.

4.5. Validation and Case Studies

The validation of the optimized LSP parameters and the predicted extended RUL
is conducted using Finite Element Analysis (FEA). The primary objective is to compare
the extended RUL obtained from the DNN model with the RUL calculated from FEA
simulations after LSP remanufacturing. The comparison validates the effectiveness of the
optimization process and the accuracy of the predictive models.

The FEA model simulates the bearing’s response under cyclic loading conditions with
the effects of the optimized LSP parameters on the residual stress distribution and fatigue
life. The methodology for calculating the extended remaining life using FEA involves the
following steps:

The residual stress profile σresidual(d) as a function of depth d is obtained from the sim-
ulation. The dynamic response of the material is governed by the following wave equation:

ρ
∂2u
∂t2 = ∇ · σ + FLSP. (15)

where ρ is the material density, u is the displacement vector, σ is the stress tensor, and FLSP
represents the LSP-induced force. The effective stress amplitude σeff experienced by the
material under cyclic loading is modified due to the presence of residual stresses:

σeff = σapplied − σresidual. (16)

where σapplied is the applied stress amplitude from service loading; σresidual is the compres-
sive residual stress at the critical location obtained from FEA. The extended remaining life
NFEA is calculated using the Basquin equation, which relates the effective stress amplitude
to the fatigue life:

NFEA =

(
σ′f
σeff

)1/b

(17)

where NFEA is the number of cycles to failure after LSP, σ′
f is the fatigue strength coefficient,

and b is the fatigue strength exponent. The DNN model predicts the extended remaining
life NDNN of the bearing after LSP remanufacturing based on the optimized LSP parameters
and the current remaining life Ncurrent:

NDNN = fDNN(P, O, D, Ncurrent) (18)

where fDNN represents the trained DNN function mapping inputs to the extended re-
maining life. The accuracy of the DNN model is validated by comparing NDNN with
the FEA-calculated extended life NFEA. A low relative error indicates strong agreement
between the DNN predictions and the FEA results.

The relative error is computed as follows:

Relative Error (%) =

(
|NDNN − NFEA|

NFEA

)
× 100%. (19)
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5. Results
5.1. Data Collection and Preprocessing

The collected raw vibration data from the bearings were preprocessed to reduce noise
using a band-pass filter. The filtering step minimized the impact of ambient noise and other
interferences. The filtered signal was divided into overlapping segments to capture local
temporal features. Each segment represents a specific time window with partial overlap.
This segmentation strategy can be used for detailed analysis of the vibration characteristics,
patterns, and anomalies that can be identified in the specific time frame. Essential features
were extracted from each segment for further use as inputs for the transformer-attention
model. Figure 5 shows the data collection and preprocessing example.
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5.2. Development of the Transformer-Attention RUL Prediction Model

The proposed transformer-attention model demonstrated good performance in pre-
dicting the RUL of bearings compared to other benchmark models. It achieved the lowest
RMSE of 0.989 and a corresponding loss function value of 0.173; it showed the highest ac-
curacy in capturing the complex temporal dependencies and degradation patterns present
in the vibration signals. The CNN-LSTM model showed a higher RMSE of 1.356 and a loss
value of 0.276, which was less accurate in extraction capabilities. The transformer model
without the attention mechanism yielded an RMSE of 2.111; the importance of attention
mechanisms is validated in the proposed approach. TCN and MLP showed higher RMSE
values of 1.477 and 1.283, respectively, and the transformer-attention model was the most
accurate in predicting bearing RUL. Figure 6 and Table 1 show the training accuracy of
different models.

Table 1. Comparison of different models.

Model RMSE Loss Function

Transformer-Attention 0.989 0.173
CNN-LSTM 1.356 0.276
Transformer 2.111 0.268

TCN 1.477 0.481
2 layer MLP 1.283 0.399
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5.3. Model Training and Validation

The transformer-attention model was optimized during training using the Mean
Squared Error (MSE) loss function, with the Adam optimizer effectively adjusting model
parameters. The performance was evaluated using RMSE, validation accuracy, and training
accuracy metrics on the collected dataset. Across different parameter settings, the RMSE
values ranged from 0.989 to 1.213; the model is thus sensitive to variations in attention heads
and learning rates. Validation accuracy varied between 0.912 and 0.963, while training
accuracy changed from 0.944 to 0.982.

Configurations with a higher number of attention heads generally have improved per-
formance, with RMSE values falling consistently below 1.2 and validation accuracy above
0.92. For instance, settings with 8 to 16 attention heads and lower learning rates exhibit
better predictive accuracy, with RMSE values ranging from 0.989 to 1.109. Configurations
with fewer attention heads or higher learning rates tend to show slightly higher RMSE
values and lower accuracy metrics.

The learning rate is essential for model performance. Lower learning rates tend to
have better results by providing more stable parameter updates, which lead to lower
RMSE and higher accuracy. The best result was achieved with eight attention heads and a
learning rate of 0.002, with an RMSE of 0.989, validation accuracy of 0.963, and training
accuracy of 0.982. Therefore, a moderate number of attention heads combined with a well-
tuned lower learning rate is crucial for optimal model performance. Conversely, higher
learning rates (e.g., 0.01 or above) tend to have slightly increased RMSE and decreased
accuracy, which indicates instability in training. Figure 7 shows the testing results under
different parameters and Table 2 shows the training and validation accuracy under different
parameter settings.
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Table 2. The training and validation accuracy under different parameter settings.

Index Parameters Settings RMSE Validation
Accuracy

Training
Accuracy

1 heads = 2, lr = 0.001 1.213 0.912 0.944
2 heads = 4, lr = 0.001 1.152 0.921 0.954
3 heads = 8, lr = 0.001 1.134 0.925 0.957
4 heads = 16, lr = 0.001 1.112 0.935 0.962
5 heads = 4, lr = 0.01 1.135 0.928 0.955
6 heads = 4, lr = 0.05 1.124 0.929 0.958
7 heads = 8, lr = 0.0008 1.109 0.937 0.963
8 heads = 8, lr = 0.005 1.204 0.916 0.947
9 heads = 8, lr = 0.01 1.098 0.946 0.968

10 heads = 16, lr = 0.005 1.073 0.956 0.974
11 heads = 8, lr = 0.002 0.989 0.963 0.982
12 heads = 4, lr = 0.0008 1.105 0.932 0.961
13 heads = 4, lr = 0.005 1.198 0.919 0.948
14 heads = 2, lr = 0.002 1.125 0.925 0.955

5.4. Laser Shock Peening Parameter Optimization

The DNN model was trained to predict the extended RUL of bearings after LSP
remanufacturing, using input parameters such as laser power density, overlapping rate,
spot diameter, and the current RUL. The model provided accurate predictions of extended
RUL, which were utilized as the fitness function in various optimization algorithms to find
the optimal LSP parameters that maximize bearing life. Table 3 shows the effectiveness of
different optimization algorithms for determining the optimal LSP parameters. The fruit fly
optimization (FFO) algorithm performed better than other methods; a fitness value of 0.97
with a convergence in 23 iterations was achieved, and there was a 29.33% improvement in
fitness over the fitness without optimization. FFO algorithm showed efficient optimization
performance for maximizing extended RUL of remanufactured bearing.

Table 3. Comparison of different optimization algorithms for LSP parameters.

Algorithm Fitness
(0–1)

Convergence
Iterations Improvement in Fitness (%)

Without Optimization 0.75 - -
FFO Algorithm 0.97 23 29.33

ACO Optimization 0.92 25 22.67
MOPSO Optimization 0.95 26 26.67
QPSO Optimization 0.90 31 20.00

SA Optimization 0.91 18 21.33
WOA Optimization 0.96 21 28.00
GWO Optimization 0.94 32 25.33

NSGA-II Optimization 0.89 27 18.67
GA Optimization 0.93 30 24.00

Ant colony optimization (ACO), multi-objective particle swarm optimization (MOPSO),
quantum particle swarm optimization (QPSO), simulated annealing (SA), whale optimiza-
tion algorithm (WOA), grey wolf optimizer (GWO), nondominated sorting genetic algo-
rithm II (NSGA-II), and genetic algorithm (GA) also showed improvements in fitness
values ranging from 0.89 to 0.96; the improvements were between 18.67% and 28.00%.
However, the algorithms converged at a slightly slower pace or achieved lower fitness
values compared to FFO. Therefore, the FFO algorithm was deemed most suitable for
balancing convergence speed and maximizing the improvement in bearing life through
optimal LSP parameter selection (See Figure 8).
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5.5. Validation and Case Studies

The validation results showed a strong correlation between the extended remaining
life predicted by the DNN model and the life calculated through FEA simulations. For
various LSP parameter settings, the relative error between the DNN-predicted extended
RUL NDNN and the FEA-calculated extended RUL NFEA remained consistently low, ranging
from 2.5% to 5.8%. This indicates that the DNN model accurately captured the effects of
different LSP parameters on the bearing’s fatigue life. When the optimized LSP parameters
were applied, the FEA results showed an increase in the bearing RUL; there was an increase
in NFEA of 30.31%. The DNN predictions closely matched these results; The NDNN value
was increased by 29.33% compared to the DNN outcomes. Figures 9 and 10 show the FEA
simulation under different LSP parameters.
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6. Discussion
6.1. Data Collection and Preprocessing

The preprocessing of the raw vibration data using a band-pass filter effectively reduces
ambient noise and external interferences, and a cleaner signal can show the relevant
frequency components associated with bearing faults. The segmentation of this filtered
signal into overlapping windows captures local temporal features, and a detailed analysis
of the vibration characteristics over time can be implemented. This approach enables
the identification of specific patterns and anomalies within defined time frames, and a
comprehensive dataset can be provided to keep essential features for model training.

6.2. Development of the Transformer-Attention RUL Prediction Model

The performance of the transformer-attention model in predicting the RUL of bearings
is primarily due to its ability to capture complex patterns within the vibration signals.
The multi-head self-attention mechanism enables the model to focus on the most relevant
segments of the data. This focused attention achieved more precise feature extraction and
improved learning from the sequential data, lower RMSE, and better prediction accuracy.
Other models without this mechanism could have higher errors and less reliable predictions.
The advantage of the vanilla method is its simplicity and ease of implementation, as it
is efficient and less prone to overfitting. It can be quickly deployed with a clear baseline
for performance comparison, which can further simplify the model when iterating on
improvements in future applications [39].

6.3. Model Training and Validation

The optimization of the transformer-attention model using the MSE loss function and
the Adam optimizer demonstrated significant sensitivity to variations in attention heads
and learning rates. Configurations with 8 to 16 attention heads and lower learning rates
achieved the best performance, with RMSE values consistently below 1.2 and validation
accuracy above 0.92; the model benefits from a higher number of attention heads, which
enhances its ability to capture detailed patterns in the data. Configurations with fewer
attention heads or higher learning rates showed slightly higher RMSE values and reduced
accuracy, and these settings may not provide sufficient granularity or may lead to unstable
training. In order to improve the training performance further, incorporating advanced
generative deep learning methods (including manifold learning flows and diffusion models)
can provide a more advanced approach to predicting the RUL by capturing more complex
degradation patterns and nonlinear dynamics in bearing systems [40,41].

6.4. Laser Shock Peening Parameter Optimization

The DNN model predicts the extended RUL of bearings after LSP remanufacturing,
and the key input parameters were analyzed. This accurate prediction capability is crucial
for using the output as a fitness function in optimization algorithms to determine the
optimal LSP parameters. Among the tested methods, the FFO algorithm showed the best
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performance: A fitness value of 0.97 and a 29.33% improvement over the baseline without
optimization were achieved, and convergence was achieved in 23 iterations. The FFO
algorithm is effective in rapidly exploring the parameter space and identifying optimal
solutions. Other algorithms have relatively slower convergence and slightly lower perfor-
mance, with improvements ranging from 21.33% to 28.00%. Therefore, the FFO was found
most suitable for applications to achieve bearing life extension.

6.5. Validation and Case Studies

The low relative error ranging from 2.5% to 5.8% between the DNN-predicted extended
RUL and the FEA-calculated values indicates that the DNN model reflects the effects of
different LSP parameters on bearing fatigue life. It shows that the proposed deep learning-
based remanufacturing approach is validated. Additionally, there were similar increases
in RUL observed in both DNN predictions and FEA simulations (29.33% and 30.31%).
Therefore, the DNN model is reliable in predicting LSP remanufacturing performance.

7. Conclusions

This study addressed the critical need for accurate prediction of bearing RUL and
optimization of LSP parameters for enhanced bearing performance. Predictive maintenance
is essential for reducing downtime and maintenance costs in industrial applications, and
the existing methods often lack the capability to effectively capture complex degradation
patterns in bearing data. To overcome these challenges, the present research integrates ad-
vanced machine learning models with optimization techniques, providing a comprehensive
and reliable solution. (1) The study developed a transformer-attention model to effectively
capture complex patterns in vibration data, and the prediction accuracy RMSE was 0.989.
This accuracy is better than that of CNN-LSTM and standard transformer models. (2) A
DNN was implemented to predict the extended RUL after LSP remanufacturing, using key
parameters such as laser power density, overlapping rate, spot diameter and current RUL.
The FFO algorithm was employed to optimize these parameters, and there was a 29.33%
improvement in RUL, which is better than other optimization methods. (3) The model’s
accuracy was validated through FEA, showing a low relative error ranging from 2.5% to
5.8% between predicted and simulated extended RUL.

This study shows the key advantages of the proposed approach compared to tradi-
tional methods in predicting bearing RUL and optimizing LSP parameters. The transformer-
attention model captures complex degradation patterns in vibration data more effectively
than conventional models, which enhances prediction accuracy and reliability. Addition-
ally, the DNN-based RUL prediction (optimized with the FFO algorithm) adjusts LSP
parameters, including laser power density and overlap rate, to improve bearing life, which
achieves more effective parameter tuning than standard strategies. Validation through FEA
further supported the model’s precision, showing good alignment between the predicted
and simulated RUL values.

This study has certain limitations for future exploration. (1) The transformer-attention
model achieved a high prediction accuracy (RMSE 0.989). However, its effectiveness may be
constrained by the current dataset’s limited diversity. Broader testing across varied bearing
types and degradation patterns in real-world settings could improve its generalizability
and robustness. Future research should focus on data diversification and robustness testing
to strengthen model adaptability to diverse industrial environments. (2) The DNN model
for extended RUL prediction relies heavily on precise input parameters, such as laser power
density and overlap rate, which are often challenging to maintain consistently in industrial
applications. Variations in these parameters could impact prediction reliability. Future work
could address this limitation by incorporating uncertainty modeling to manage parameter
variability, which enhances prediction accuracy under fluctuating conditions.
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