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Abstract: Inland waterways, characterized by their complex, narrow paths, see significantly higher
traffic volumes compared to maritime routes, increasing the regulatory demands on traffic manage-
ment. Predictive modeling of ship traffic flows, utilizing real AIS historical data, enhances route
and docking planning for ships and port managers. This approach boosts transportation efficiency
and safety in inland waterway navigation. Nevertheless, AIS data are flawed, marred by noise,
disjointed paths, anomalies, and inconsistent timing between points. This study introduces a data
processing technique to refine AIS data, encompassing segmentation, outlier elimination, missing
point interpolation, and uniform interval resampling, aiming to enhance trajectory analysis reliability.
Utilizing this refined data processing approach on ship trajectory data yields independent, complete
motion profiles with uniform timing. Leveraging the Transformer model, denoted TRFM, this re-
search integrates processed AIS data from the Yangtze River to create a predictive dataset, validating
the efficacy of our prediction methodology. A comparative analysis with advanced models such as
LSTM and its variants demonstrates TRFM’s superior accuracy, showcasing lower errors in multiple
metrics. TRFM’s alignment with actual trajectories underscores its potential for enhancing naviga-
tional planning. This validation not only underscores the method’s precision in forecasting ship
movements but also its utility in risk management and decision-making, contributing significantly to
the advancement in maritime traffic safety and efficiency.

Keywords: maritime management; big data; traffic flow prediction; transformer

1. Introduction

Inland waterways are usually more winding and narrower than maritime routes.
Due to the limitations of the inland geographical environment, ships navigating in inland
waterways require higher technical standards and risk management capabilities, making
it more challenging than maritime navigation. Moreover, inland ships have limited nav-
igation routes, and inland waterways often connect important cities and ports, carrying
a large volume of cargo transport tasks. This leads to higher traffic density, more ships,
and more frequent transportation activities in inland shipping. Faced with the busyness
and complexity of inland navigation, traffic management departments need to bear greater
regulatory pressure and responsibility to ensure the safe passage of ships and prevent
accidents. Ship traffic flow prediction can analyze the navigation status of ships in future
periods. Based on this analysis, ship and port managers can better plan the navigation
routes of ships, select the optimal routes to reduce travel time and fuel consumption, and
improve the efficiency of ship transportation. Additionally, it can help managers predict
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port congestion and the availability of docking areas, thus allowing for more rational
arrangements of ship docking time and location. This reduces waiting times and alleviates
congestion, improving port throughput efficiency. Ship traffic flow prediction can also
identify potential collision risks, traffic congestion areas, and unsafe waterways in advance,
helping ship and port managers take appropriate measures to avoid accidents and enhance
the safety of ship transportation. The AIS system is a technology widely used for automatic
ship identification and tracking. Through AIS, real-time data such as the location, speed,
and course of ships can be collected and recorded. By statistically analyzing and data
mining AIS historical data, the characteristics and patterns of ship traffic flow in inland
waterways can be extracted, which can be used to establish models for predicting inland
ship traffic flow. Furthermore, analyzing and modeling ship traffic flow using AIS historical
data can continuously optimize prediction algorithms and models. With the collection of
more real-time data, the prediction models can be updated and improved continuously,
enhancing the accuracy and precision of predictions.

With the development of the maritime economy, intelligent ships have become one
of the key research directions in the field of maritime transportation. Intelligent ships
can enhance the safety, environmental friendliness, and cost-effectiveness of maritime
vessels, while also providing support for activities such as maritime rescue, waterway
monitoring, and maritime security [1]. The real-time perception, prediction, and analysis
of information related to ship positions, statuses, and behaviors are crucial foundations
for ensuring the safety of intelligent ship navigation. AIS data (Automatic Identification
System data) serve as a vital source of information in this context. It consists of messages
automatically sent and received by vessels through the Automatic Identification System,
encompassing static data, dynamic data, and navigation-related data. AIS data can reveal
essential details about a vessel’s identity, location, speed, direction, destination, and more,
playing a critical role in the monitoring and management of maritime traffic [1]. Therefore,
by employing mathematical models and algorithms, it is possible to predict the future
positions of vessels within a certain time frame based on historical and real-time AIS data.
This prediction can offer valuable references and support for intelligent navigation, collision
avoidance decisions, energy efficiency optimization, safety warnings, and other related
applications [2].

In response to the challenges in AIS data processing and the limitations of current ship
trajectory prediction models, this paper makes the following three main contributions:

Addressing the real-time requirements for trajectory prediction with AIS data, we
propose an AIS trajectory data preprocessing method. Our method includes trajectory
segmentation, removal of anomalous/redundant points, patching missing points, and
resampling at equal time intervals. It is capable of handling large volumes of AIS data,
generating equidistant and complete ship trajectories, meeting the input requirements of
trajectory prediction models.

To overcome the shortcomings of recurrent neural networks in ship trajectory predic-
tion, we introduce a ship trajectory prediction method based on the TRFM (Transformer)
model. Leveraging the multi-head attention mechanism of the TRFM model, it adapts to
focus on features throughout the sequence and assigns higher weights to crucial trajectory
points. By extracting global temporal feature information from the trajectory sequence
based on attention weights, it addresses the issue of traditional recurrent neural networks
primarily attending to the tail-end features of the sequence and overlooking global se-
quence characteristics. Additionally, the TRFM model performs parallel computation when
processing sequence features, enhancing the efficiency of trajectory prediction.

To ensure consistent trajectory prediction performance across different latitude and
longitude regions and enhance model generalization, we propose a trajectory prediction
data structure where the input and output sequences are based on the relative values of
latitude and longitude. Differential processing is applied to adjacent trajectory points’
latitude and longitude, utilizing the heading angle, velocity, relative longitude, and relative
latitude as input sequence information, and relative longitude and relative latitude as
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output sequences. The final latitude and longitude positions of the trajectory sequence are
recorded for regressing the absolute latitude and longitude values. This approach improves
model generalization.

The remaining sections of this paper are organized as follows: Section 2 focuses on
the detailed aspects of AIS data processing and the design of the TRFM model structure.
Section 3 presents experimental comparative analyses. Section 4 provides the conclusion
and Section 5 presents the limitations and future work.

2. Literature Review

Due to issues related to receiving equipment, transmitting devices, and network
transmission, raw AIS data often contain some level of noise, necessitating preprocessing
for effective utilization. Numerous efforts have been made by researchers in the field of
AIS data processing. Xue proposed a trajectory similarity measurement and clustering
method to divide scenes into semantic regions, aiming to mitigate the negative effects
caused by AIS [3]. Qiao conducted research on the automated processing of AIS data and
developed an automated processing platform [4]. This platform achieved functionality for
updating AIS data, vessel static information, route information, and voyage information.
Guo proposed an anomaly detection method based on AIS trajectories. They integrated the
kinematic information of vessels in AIS data and reduced trajectory anomalies through data
preprocessing, motion estimation, and error clustering [5]. Zhao introduced a preprocessing
model consisting of data cleaning, trajectory extraction, and trajectory compression stages.
This method effectively removes excess noise and reduces the size of trajectory data [6].
Liu proposed preprocessing methods such as navigation data extraction, abnormal data
handling, and missing data interpolation to address issues such as AIS data loss, inaccuracy,
and incomplete preservation of dynamic navigation features [7]. Bakht presented a two-step
AIS processing method involving trajectory interpolation and the application of trajectory
point detection methods to interpolated and observed AIS messages [8]. This approach en-
hances trajectory resolution effectively. Guo proposed an unsupervised knowledge mining
framework for generating maritime traffic networks [9]. This framework integrates AIS
data preprocessing algorithms, enabling the generation of high-quality, spatio-temporally
continuous maritime trajectory data from low-quality inputs.

While the aforementioned methods demonstrate good performance in processing
individual AIS data values for single vessels, they are time-consuming and lack real-time
capabilities when handling a large volume of ship data simultaneously. Moreover, they
often do not address the issue of uneven time intervals between trajectory points, making
them less suitable for the input requirements of trajectory prediction models.

Traditional trajectory prediction models can be primarily categorized into two classes:
statistical learning methods and machine learning methods. Deep learning, as a branch
of machine learning, has gained prominence in recent years, and deep learning-based
prediction methods have become the mainstream in trajectory prediction research. Wang
proposed a deep learning prediction model based on the Bi-GRU network, which outper-
formed LSTM and standard GRU network prediction models in terms of lower error and
higher accuracy [10]. Liu proposed an optimized Attention–LSTM neural network for
dynamic navigation prediction, and validated the accuracy and robustness of the model
through a simulation analysis [7]. The results demonstrate that this method achieves the
high-precision prediction of vessel longitude, latitude, heading, and speed. Capobianco
extended the deep learning framework for trajectory prediction tasks by exploring how
recurrent encoder–decoder neural networks can not only predict but also generate cor-
responding prediction uncertainty for both aleatoric and epistemic uncertainties using a
Bayesian model [11]. Zhang introduced a novel trajectory prediction model called PESO,
comprising parallel encoders, ship-oriented decoders, and Semantic Location Vectors
(SLVs) [12]. Parallel encoders aim to capture more information in feature representations,
while ship-oriented decoders use SLV to guide predictions and better represent the spatial
correlations of historical trajectory points. Gao presented a high-precision multi-step pre-
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diction method called MP-LSTM, which combines current trajectory data and historical
trajectory data [13]. It uses LSTM neural network models to predict trajectory support
points and then performs multi-step predictions using cubic spline interpolation for start,
support, and endpoint prediction. This approach achieves high-precision predictions for
both short and long distances while accurately predicting positions at each time step.
Liu proposed an improved Attention–LSTM model for dynamic navigation prediction,
incorporating an Attention module for differential weighting and feature extraction from
navigation sequences [7]. The LSTM module integrates information for final dynamic
predictions. Feng introduced the IS-STGCNN, a spatio-temporal graph convolutional
model for trajectory prediction [14]. This model accounts for vessel interactions’ impact
on trajectory prediction, uses social sampling to update node vector representations, and
employs MPC for prediction result correction. Liu introduced a Hybrid Driven Framework,
which fuses data-driven predictors with vessel motion constraints using a linear Kalman
filter [15]. It uses a learning-based LSTM network as a data-driven predictor and employs
the Kalman filter’s physical-driven module to estimate future vessel trajectories using the
data-driven predictor’s sequential output as continuous measurements. Liu proposed
an LSTM-based interactive ship trajectory prediction framework known as QSD-LSTM,
embedding Quaternion Ship Domain (QSD) [16]. QSD aids in avoiding unnecessary colli-
sions between adjacent vessels during the trajectory prediction process. Mehri proposed a
Context-aware Long Short-Term Memory (CLSTM) network [17]. Compared to the Long
Short-Term Memory (LSTM) network, this framework improves prediction accuracy by
15.31%. Han proposed a deep generative model based on the conditional variational au-
toencoder framework to learn ship motion and predict future trajectories [18]. Experimental
results indicate that this model outperforms baseline methods, including both kinematics-
based and data-driven approaches. Chen et al. [19] presented a trajectory prediction method
based on Bi-GRU and trajectory direction vectors (TDVs) with an attention mechanism.
They constructed a TDV, which correlates latitude and longitude with heading and speed,
and used an adaptive attention mechanism to eliminate the influence of unreasonable
predicted trajectory points in the trajectory. Wang proposed a Deep Attention-Aware
Spatio-Temporal Graph Convolutional Network (DAA-SGCN) based on AIS data to predict
future vessel trajectories [20]. It mainly consists of three modules: the vessel trajectory
motion information encoding, spatio-temporal feature extraction module, and trajectory
prediction module. Based on extensive experiments, compared to the optimal baseline
model, the predictive performance on ADE and FDE metrics improved by 74% and 69%,
respectively. Slaughter proposed a simple fusion-based RNN method for predicting vessel
trajectories [21]. This approach can easily integrate other temporal features. Experimental
results demonstrate that this method achieves state-of-the-art performance in three major
coastal regions of the United States. When predicting the next three hours, it outperforms
competing methods by 0.88 km.

Li et al. [22] extracted five machine learning methods and seven deep learning methods
from state-of-the-art literature reviews. These methods were employed to perform AIS data-
based trajectory predictions in three representative busy coastal waters and compare their
prediction performance in real-world scenarios. The performance of all twelve methods
was evaluated and analyzed, providing a detailed exploration of the characteristics and
effectiveness of these trajectory prediction methods. However, the paper did not conduct
an in-depth optimization of the twelve aforementioned models. This is uncommon in
practical applications. Jiang et al. [23] integrated the LSTM structure into the deep learning
Transformer algorithm framework to address the limitations of LSTM in capturing long-
distance sequence information, thereby achieving the complementary advantages of long-
range dependencies in temporal and spatial features.

In ship trajectory prediction tasks, most researchers have employed traditional recur-
rent neural networks as the model foundation. Although recurrent neural networks are
proficient at learning the temporal characteristics of ship trajectory sequences, their model
inference processes are typically sequential [24]. This means that calculating the feature
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points for the next sequence requires waiting for the completion of the computation of
the previous feature point. Additionally, recurrent neural networks are prone to losing
information from the beginning of long trajectory sequences. Therefore, in the proposed
method of this paper, we have also targeted to add a multi-head attention mechanism.
Compared to traditional recurrent neural networks (RNNs), where features are passed
sequentially at each time step, the multi-head attention mechanism allows the features
at each time step to perceive the global temporal features and their relationship with the
current node data. The advantage of multi-head attention is the ability to consider the
effect of global temporal features on the current node features from different dimensions.

3. Methodology

The main framework for ship trajectory prediction based on the TRFM model, as
proposed in this paper, is illustrated in Figure 1. The data preprocessing section involves
the extraction of ship trajectories, removal of anomalous and redundant points, imputation
of missing points, equidistant time interval resampling, and dataset construction, all
performed on the raw collected ship AIS data. Through this preprocessing procedure, the
original AIS data become more robust, effectively addressing issues such as data anomalies,
missing data, and discontinuous time intervals caused by network transmission, reception,
and transmission. The inference section utilizes the TRFM model to predict ship trajectories.
The TRFM model adopts an encoder–decoder structure, with its core component being
the multi-head attention mechanism. It is able to effectively extract global spatio-temporal
features of trajectories, thereby enhancing the accuracy of trajectory prediction. This
mechanism effectively enhances the feature correlations between sequence points and
enables parallel processing when handling temporal tasks, greatly improving the model’s
computational speed [25]. The model prediction uses the differential relative values of
latitude and longitude as inputs, and the predicted results are obtained by regressing the
absolute values of latitude and longitude to derive the final predicted trajectory. This
can make the model’s trajectory prediction more generalizable, rather than limited to
trajectory predictions within the region where the training data are located. By constructing
a trajectory prediction dataset and training and predicting the model on this dataset, the
performance of the model in trajectory prediction tasks is compared with other state-of-
the-art trajectory prediction models. Comprehensive evaluations of the model’s prediction
performance are conducted using metrics such as MAE, RMSE, MSE, FDE, and ADE.

3.1. Definitions and Problems
3.1.1. Definitions

Definition 1. Ship Trajectory. A ship trajectory consists of a series of timestamped trajectory
points, denoted as Traj = {Po1, · · · , Poi, · · · , PoL}, Traj ∈ RNL×ND , where NL represents
the number of trajectories, and ND represents the feature dimensions. Each trajectory point
Poi = {cogi, sogi, loni, lati, nsi, ti}, i = 1, · · · , L, Poi ∈ RND represents the ship’s attributes
at each timestamp. Here, cogi, sogi, loni, lati, nsi, and ti, respectively, represent the course over
ground, speed over ground, longitude, latitude, navigation states, and timestamp.

Definition 2. Ship Trajectory Dataset. Let TD =
{

D1, D2, D3, · · · , DK}, TD ∈ RNK×NC×ND ,
where NK represents the number of ship trajectory prediction combinations. Each trajectory pre-
diction combination is represented as Dj =

{
X j, Y j, Zj}, X j ∈ RNH×ND4 , Y j ∈ RNP×ND2 , Zj ∈

RND2 . Here, X j represents the input trajectory sequence, where NH represents the input sequence
length and ND4 represents the feature dimensions (4 in this case). Y j represents the output tra-
jectory sequence, where NP represents the output sequence length and ND2 represents the feature
dimensions (2 in this case). Zj represents the coordinates of the last trajectory point of the input
trajectory sequence.
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3.1.2. Problems

Origin of the Problems: In the evaluation of ship navigation safety, it is crucial not
only to obtain accurate ship trajectories but also to predict the future trajectory direction of
ships. This is of significant importance for assessing future ship risks and making proactive
decisions. The main problems studied and discussed in this paper are as follows:

Problem 1. How to accurately predict the ship’s trajectory for a certain period in the future?

To accurately predict the ship’s trajectory for a certain period in the future, the ship
trajectory data are first processed (φd) to obtain trajectory data suitable for the input
structure of the model. Then, this processed ship trajectory data are fed into the trajectory
prediction model ( fm) to obtain the ship’s predicted trajectory for the future. The formula
is shown in (1). The trajectory prediction is expressed as shown in Figure 2.

{Poj
n+1, Poj

n+2, · · · , Poj
m} = fm(φd({Poj

1, Poj
2, · · · , Poj

n}, π), θ) (1)

Problem 2. How to measure the effectiveness of ship trajectory prediction models?

To evaluate the ship trajectory prediction model ( fm), Mean Absolute Error (MAE) is
utilized for optimization, shown in Formula (2). Mean Squared Error (MSE), Root Mean
Square Error (RMSE), Average Displacement Error (ADE), and Final Displacement Error
(FDE) are used to assess the accuracy of the trajectory prediction model.

Optimal fm ← min(MAE) (2)

Eualuate fm ← mean{MSE, RMSE, ADE, FDE} (3)



Appl. Sci. 2024, 14, 10494 7 of 25

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 27 
 

To accurately predict the ship’s trajectory for a certain period in the future, the ship 
trajectory data are first processed (𝜑ௗ) to obtain trajectory data suitable for the input struc-
ture of the model. Then, this processed ship trajectory data are fed into the trajectory pre-
diction model (𝑓) to obtain the ship’s predicted trajectory for the future. The formula is 
shown in (1). The trajectory prediction is expressed as shown in Figure 2. 

 
Figure 2. A representation of the trajectory prediction problem. 

1 2 1 2{ , , , } ( ({ , , , }, ), )j j j j j j
n n m m d nPo Po Po f Po Po Poϕ π θ+ + =   (1)

Problem 2. How to measure the effectiveness of ship trajectory prediction models? 

To evaluate the ship trajectory prediction model (𝑓), Mean Absolute Error (MAE) is 
utilized for optimization, shown in Formula (2). Mean Squared Error (MSE), Root Mean 
Square Error (RMSE), Average Displacement Error (ADE), and Final Displacement Error 
(FDE) are used to assess the accuracy of the trajectory prediction model. 

Optimal min( )mf MAE←  (2)

Eualuate mean{ , , , }mf MSE RMSE ADE FDE←  (3)

3.2. Data Processing 
The data packets transmitted and received for ship AIS data contain information 

about the ship’s identity, position, speed, heading, and other details. AIS data can be cat-
egorized into two main types: dynamic information and static information. Dynamic in-
formation includes the ship position, course over ground, speed over ground, navigation 
status, timestamp, and more. It is automatically updated by the AIS transponder’s posi-
tion sensor, with the transmission interval adjusting automatically based on changes in 
ship speed and heading. Typically, dynamic information is transmitted every 3 to 5 s. 
Static information includes the IMO number, call sign, MMSI number, vessel name, ship 

Figure 2. A representation of the trajectory prediction problem.

3.2. Data Processing

The data packets transmitted and received for ship AIS data contain information about
the ship’s identity, position, speed, heading, and other details. AIS data can be categorized
into two main types: dynamic information and static information. Dynamic information
includes the ship position, course over ground, speed over ground, navigation status,
timestamp, and more. It is automatically updated by the AIS transponder’s position sensor,
with the transmission interval adjusting automatically based on changes in ship speed and
heading. Typically, dynamic information is transmitted every 3 to 5 s. Static information
includes the IMO number, call sign, MMSI number, vessel name, ship type, dimensions,
and other details. This information is manually input by users and is transmitted at a
longer interval, usually every 6 min.

For this research, we have chosen AIS data from the Yangtze River Basin on
17 March 2023 as our study object. This region is one of China’s most important in-
land waterway transportation areas, featuring an extensive network of waterways and
a high volume of vessel traffic. Moreover, the complex river channels, hydrology, and
navigation challenges in this area make it an ideal case for evaluating ship trajectory
prediction performance. Specific AIS data fields are shown in Table 1, listing only a
portion of the data fields for reference.

Table 1. Structure of Raw AIS Data.

MSGTIME MMSI LON LAT SOG COG NS

17 March 2023
17:51:10 413xxx567 114.2015 30.44428 0 354 1

17 March 2023
17:51:10 413xxx965 114.1501 30.59679 0 331 1

17 March 2023
17:51:10 413xxx381 114.0261 30.22972 5.2 311.9 0

17 March 2023
17:51:10 413xxx688 114.4845 30.67789 0 342 1

17 March 2023
17:51:10 413xxx182 114.4793 30.67895 2 251.3 0

17 March 2023
17:51:10 413xxx371 114.0638 30.09095 3.9 242.6 0
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The following will provide a detailed explanation of each part of the AIS trajectory
data processing method proposed in this paper.

3.2.1. Trajectory Segmentation

Based on the AIS data structure, AIS data are divided into several trajectory sets
according to the unique ship identification number, MMSI, represented as Trajmmsi. Since
AIS data for each ship consist of multiple segments of voyage data, it is necessary to
segment different voyages for the same ship. This paper performs trajectory segmentation
at two different levels of granularity based on ship status and ship speed from the AIS data.
Trajectory segmentation is expressed as shown in Figure 3.
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Firstly, the trajectories in the AIS data are divided into navigation states (NSs). In the
method proposed in this paper, NSs mainly include navigation and anchoring, represented
by 0 and 1, respectively. Based on these two states, the original set of navigation trajectories
can be divided into multiple navigation trajectory segments. Then, further divide the
trajectories based on the ship’s speed. When trajectory points with speed sogi = 0 and
nsi = 1 appear, mark them as stopping points (Postop) for new sailing segments. Then, cut
the trajectory based on Postop, and the cut trajectories {Traj1, · · · , Trajn} are added to the
navigation trajectory set, represented as Trajnav. This results in finer-grained trajectories.

Postop = {Poi|sogi = 0, nsi = 1} (4)

Since trajectories with a smaller number of points have less significance, trajectories in
the new trajectory set with point counts less than the specified threshold length lmin are
removed; we obtain Trajnav as Formula (5). The final set of ship trajectories serves as the
foundation for the subsequent processing, analysis, and dataset construction.{

Trajj
∣∣len(Trajj) ≥ lmin

}

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 27 
 

Firstly, the trajectories in the AIS data are divided into navigation states (NSs). In the 
method proposed in this paper, NSs mainly include navigation and anchoring, repre-
sented by 0 and 1, respectively. Based on these two states, the original set of navigation 
trajectories can be divided into multiple navigation trajectory segments. Then, further di-
vide the trajectories based on the ship’s speed. When trajectory points with speed 𝑠𝑜𝑔 =0 and 𝑛𝑠 = 1 appear, mark them as stopping points (𝑃𝑜௦௧) for new sailing segments. 
Then, cut the trajectory based on 𝑃𝑜௦௧ , and the cut trajectories {𝑇𝑟𝑎𝑗ଵ, ⋯ , 𝑇𝑟𝑎𝑗}  are 
added to the navigation trajectory set, represented as 𝑇𝑟𝑎𝑗௩ . This results in finer-
grained trajectories. 

{ | 0, 1}stop i i iPo Po sog ns= = =  (4)

Since trajectories with a smaller number of points have less significance, trajectories 
in the new trajectory set with point counts less than the specified threshold length 𝑙 
are removed; we obtain 𝑇𝑟𝑎𝑗௩ as Formula (5). The final set of ship trajectories serves as 
the foundation for the subsequent processing, analysis, and dataset construction. 

{ | ( ) } , 1, ,nav
j j minTraj len Traj l Traj j n≥ ⊄ =   (5)

3.2.2. Removal of Anomalies/Redundant Points 
Biases, errors, and duplicate data may occur during the collection, transmission, and 

network latency of AIS data, and there is the fact that adjacent data points in AIS data do 
not have equal time intervals, which is not conducive to the prediction and analysis of 
subsequent models. Therefore, in addition to removing abnormal data, this paper also 
removes some redundant points with relatively small changes in navigation states and 
points with significant changes in navigation states, collectively referred to as removal 
points (𝑃𝑜ௗ). 

This paper calculates the change rate of course over ground (CRC) and change rate 
of speed over ground (CRS) between adjacent points. Minimum and maximum thresholds 
for CRC and CRS are set. Points with values less than the minimum threshold indicate 
insignificant changes in navigation states and are removed. Points with values greater 
than the maximum threshold indicate abnormal trajectory points and are also removed. 
The calculation of 𝑐𝑟𝑐 and 𝑐𝑟𝑠 for each trajectory point is shown in Formula (6). 

1 1
1

1

[ ]i i i
i i

i i i

crc cog cog
t t

crs sog sog
+ −

+
+

−   
= −   −   

 (6)

We calculate the values of 𝑐𝑟𝑐 and 𝑐𝑟𝑠 for each trajectory point and perform math-
ematical statistics on them. We use a Gaussian distribution denoted as ‘𝑎’ to fit the distri-
bution of global CRC and CRS. A simplified representation is as follows: 

1

1 n
a a

i
i

x x
n =

=   (7)

2 2

1

1( ) ( )
1

n
a a a

i
i
x x

n
σ

=

= −
−   (8)

Trajnav, j = 1, · · · , n (5)

3.2.2. Removal of Anomalies/Redundant Points

Biases, errors, and duplicate data may occur during the collection, transmission, and
network latency of AIS data, and there is the fact that adjacent data points in AIS data
do not have equal time intervals, which is not conducive to the prediction and analysis
of subsequent models. Therefore, in addition to removing abnormal data, this paper also
removes some redundant points with relatively small changes in navigation states and
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points with significant changes in navigation states, collectively referred to as removal
points (Podrop).

This paper calculates the change rate of course over ground (CRC) and change rate of
speed over ground (CRS) between adjacent points. Minimum and maximum thresholds
for CRC and CRS are set. Points with values less than the minimum threshold indicate
insignificant changes in navigation states and are removed. Points with values greater than
the maximum threshold indicate abnormal trajectory points and are also removed. The
calculation of crci and crsi for each trajectory point is shown in Formula (6).[

crci
crsi

]
=

[
cogi+1 − cogi
sogi+1 − sogi

]
[ti+1 − ti]

−1 (6)

We calculate the values of crci and crsi for each trajectory point and perform mathemat-
ical statistics on them. We use a Gaussian distribution denoted as ‘a’ to fit the distribution
of global CRC and CRS. A simplified representation is as follows:

xa =
1
n

n

∑
i=1

xa
i (7)

(σa)2 =
1

n− 1

n

∑
i=1

(xa
i − xa)2 (8)

where xa ∈ R2 represents the mean of the samples, n ∈ R is the total sample count,
a = {CRC, CRS}, and (σa)2 ∈ R2 represents the variance of the samples. Based on the
distribution statistics, we use the value of 3σ as the threshold boundary for CRC and CRS,
and their respective mathematical expressions are given by (9). bcrc

min and bcrc
max represent

the minimum and maximum values of the CRC threshold boundary, while bcrs
min and bcrs

max
represent the minimum and maximum values of the CRS threshold boundary.[

bcrc
min bcrc

max
bcrs

min bcrs
max

]
=

[
xa

1
xa

2

][
1 1

]
+ 3

[
(σa

1 )
2

(σa
2 )

2

][
−1 1

]
(9)

For each trajectory in the navigation trajectory set (Trajnav), we traverse and remove
discovered anomaly points and redundant points. For each trajectory point in the set, the
points to be removed are denoted as Podrop = {Poer, Poco, Pode, Pore}.

➢ Error Points (Poer): Trajectory points with cogi, sogi, loni, and lati values outside
reasonable ranges, mathematically defined in Formula (10).

➢ Coincident Points (Poco): Points in the trajectory where sogi is greater than 0, but the
coordinates (loni, lati) are the same. Mathematically defined in Formula (11).

➢ Deviation Points (Pode): Current trajectory points that have a significant offset from
adjacent trajectory points, mathematically defined in Formula (12).

➢ Redundant Points (Pore): Current trajectory points where crci and crsi with the previ-
ous trajectory point are less than the minimum threshold or greater than the maximum
threshold, mathematically defined in Formula (13).

Poer ̸= {Poi|0 ≤ cogi ≤ 360, 0 ≤ sogi ≤ 25, 0 ≤ loni ≤ 180, 0 ≤ lati ≤ 90} (10)

Poco =
{

Poi
∣∣sogi > 0, loni = lonj, lati = latj, i ̸= j

}
(11)

Pode = {Poi|
dist(Poi+1, Poi)

ti+1 − ti
≥ Vmax} (12)

Pore ̸= {Poi|bcrc
min ≤ crci ≤ bcrc

max, bcrs
min ≤ crsi ≤ bcrs

max} (13)

After the removal of anomalous and redundant values, the trajectory data in the
collection have been significantly compressed, while ensuring that the original trajectory
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remains undistorted, as many unnecessary trajectory points as possible have been removed.
This greatly preserves valid trajectory points that represent the vessel’s motion state.

3.2.3. Patching Missing Points

After the removal of anomalies/redundant points from the trajectory collection, there
will be a significant number of missing trajectory points. In order to make the trajectory
complete, we need to patch in these missing trajectory points. Since the previous processing
steps retained enough trajectory points representing the vessel’s motion state, the missing
trajectory points that need to be inserted are mostly associated with relatively stable uniform
motion states. Therefore, a simple linear interpolation method is used to fill in the missing
trajectory points with evenly spaced intervals in time. When the time interval between two
adjacent trajectory points, Poi and Poj, is greater than the specified time interval threshold
Tinterp ∈ R, the linear interpolation method is used to interpolate five state variables of the
missing trajectory points between Poi and Poj. These variables include the heading angle
(cogi), speed over ground (sogi), longitude (loni), latitude (lati), and timestamp (ti). The
number of inserted points is denoted as n ∈ N.

n =

⌊
tj − ti

Tinterp

⌋
(14)

We use linear interpolation to patch in the missing points for the five state variables of
the missing trajectory points. The insertion formula is as follows:

cogi+k
sogi+k
loni+k
lati+k
ti+k

 =


cogi
sogi
loni
lati
ti

+ kTinterp[ti+k − ti]
−1


cogj − cogi
sogj − sogi
lonj − loni
latj − lati

tj − ti

, k = 1, 2, 3 . . . N (15)

After the imputation of missing points, the time interval between trajectory points
with minimal changes in navigation state in the trajectory collection is Tinterp. Only a
small portion of segments with drastic changes in vessel state still maintain non-uniform
time intervals.

3.2.4. Resampling at Equal Time Intervals

After the missing point imputation, the obtained trajectory data are relatively complete,
and the time intervals of inserted points are all equal. However, trajectory points with
frequent state changes still do not have equidistant sampling intervals. These data are
not conducive for subsequent model training and prediction. Therefore, it is necessary
to perform equidistant resampling on the trajectory data, setting the sampling interval as
Tsamp. In order to prevent excessive loss of original information in the equidistant trajectory
data, this paper uses both small time interval Ts and linear interpolation, as well as a large
time interval Tl and method to obtain equidistant trajectory data. The definitions of small
and large time intervals are as follows:[

Ts
Tl

]
=

[
1
p
1

]
Tsamp, p ∈ N (16)

where ‘p’ represents the scaling factor for large and small time intervals. First, the
trajectories in the trajectory collection are traversed. When a trajectory point with a
time interval less than Ts compared to the previous trajectory point is encountered, no
processing is performed, and the traversal continues. If a point with a time interval
greater than or equal to Tl is encountered, linear interpolation is used to interpolate
cogi , sogi , loni , and lati onto equidistant trajectory points. Finally, a large time interval
resampling is performed on the trajectory collection. As a result, the time interval
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between each trajectory point in the trajectory collection is Tsamp, ensuring uniformity
and stability of the trajectory points, ensuring consistency between the data, and making
a trajectory prediction analysis easier.

3.2.5. Dataset Construction

After the above data processing, the time intervals between each trajectory point
are equal. When constructing the dataset, it is necessary to compute the relative values
{loni, lati} of the longitude and latitude of each trajectory point with respect to the previous
trajectory point {∆loni, ∆lati}. The differential values of longitude and latitude, along with
the current true heading and ground speed, constitute the features of the current trajectory
point. In the trajectory prediction model of this paper, since the time intervals between the
points in the trajectory sequence are equal, the input sequence omits the time dimension.
The input data have 4 dimensions, namely the true heading angle, ground speed, relative
longitude, and relative latitude. The output sequence data have 2 dimensions, namely
relative longitude and relative latitude. There is the input sequence point xj

i ∈ RND4 , as
shown in mathematical expression (17).

xj
i =

{
cogj

i , sogj
i , ∆lonj

i , ∆latj
i

}
(17)

The predicted trajectory sequence consists of differential values of longitude and latitude,
with the output sequence point yj

i ∈ RND2 , as shown in mathematical expression (18).

yj
i =

{
∆lonj

i , ∆latj
i

}
(18)

At the same time, it is necessary to record the reference point used for absolute value
calculation, which is the longitude and latitude coordinates of the last point in the input
sequence, as shown in Formula (19), and n presents the final position of history trajectory.

Zj =
{

lonj
n, latj

n

}
(19)

Combining X j, Y j, and Zj forms one input–output sequence pair Dj, as shown in
Formulas (20)–(22).

X j =
{

xj
1, xj

2, xj
3 . . . xj

n

}
(20)

Y j =
{

yj
1, yj

2, yj
3 . . . yj

m

}
(21)

Dj =
{

X j, Y j, Zj
}

(22)

The above is the specific method for processing ship trajectories, which includes the
data processing flow and algorithm pseudo-code as shown in Algorithm 1. The purpose
of this trajectory prediction data processing algorithm is to preprocess the original AIS
ship data and construct a dataset, as well as to form an input structure suitable for ship
trajectory prediction models.
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Algorithm 1: Data processing algorithms

Input: init_ais: Represents the original input AIS data. lmin: Represents the min length of
trajectory. Tinterp: Represents the interpolation time interval. Tsamp: Represents the resample
time interval. H: Represents the input sequence length. P: Represents the output
sequence length.
Output: Trajectory prediction dataset TD.
Initialization: MMSI_Traj: Used to store the trajectory of each unique MMSI. All_Traj: Used to
store ship trajectories during the processing.
Function: Repair(·): Used to store ship trajectories during the processing. Resample(·): Used to
store ship trajectories during the processing.
Process:

//Step 1 Trajectory segmentation, removal of outliers and redundant points, patching of
missing points, and equidistant time interval resampling.
1 : For aisi in init_ais do
2: Find the MMSI trajectory that aisi belongs to in MMSITraj
3: Pom ← {cogi, sogi, loni, lati, nsi, ti} from aisi
4 : Add Pom to Trajmmsi

j
5: End For
6 : For Trajj in MMSI_Traj do
7 : Tmp_Traj← Create an empty set
8 : For Poi in Trajj do
9 : Add Poi to Tmp_Traj
10 : If current Poi is stop point do
11 : If the length of Tmp_Traj ≥ lmin do
12 : Add Tmp_Traj to ALL_Traj
13 : Clear the set Tmp_Traj
14: End For
15: End For
16 : For Trajj in All_Traj do
17 : For Poi in Trajj do
18 : If Poi is removal points do
19 : remove Poi from Trajj
20: End For
21 : Trajj ← Repair

(
Trajj, Tinterp

)
22 : Trajj ← Resample

(
Trajj, Tsample

)
23: End For
// Step 2 Differential processing and create dataset.
24 : For Trajj in ALL_Traj do
27 : Tmp_Di f f ← Create an empty set
28 : For Poi in Trajj do
29 : ∆loni, ∆lati← Calculate the latitude and longitude differences between Poi and Poi−1
30 : cogi, sogi← the heading angle and speed in Poi
31 : Add [cogi, sogi, ∆loni, ∆lati] to Tmp_Di f f
32: End For
33: For m = 1 to M do
34 : X← Tmp_Di f f [m:m + H]
35 : Y← Tmp_Di f f [m + H:m + H + P]
36 : Z←Trajj[m]
37 : Add [X, Y, Z] to TD
38: End For
39: End For

3.3. TRFM Trajectory Prediction Model

The TRFM trajectory prediction model consists of two parts: the encoding layer and
the decoding layer. The structure of the model is shown in Figure 1, where both the encoder
and decoder cores are composed of TRFM units. Each TRFM unit comprises two sub-layers:
Self-Attention and Feed Forward. Self-Attention calculates the dependency between each
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position in the sequence and all other positions, while Feed Forward further enhances
feature representation while maintaining consistent output dimensions with the input. In
this paper, we use differential values for longitude and latitude instead of directly using
them as the model’s input and output. The output’s differential values are calculated
through the absolute regression of latitude and longitude, yielding the true predicted
trajectory coordinates.

3.3.1. TRFM Unit

The core of the Self-Attention mechanism involves calculating the weighted relation-
ships between the current sequence point and all other sequence points using three vectors:
Q (query), K (key), and V (value). The Self-Attention calculation structure is shown in
Figure 4. The dot product of Q and K vectors represents the degree of correlation be-
tween features of two temporal points. The resulting attention weights, obtained through
a so f tmax layer, are used to weight and sum the features of the current temporal point
with those of other temporal points. In each TRFM unit, the Q, K, and V vectors of each
temporal feature point can be combined into their respective Q, K, and V matrices. This
allows for parallel computation when calculating attention weights, thereby improving
model efficiency. The attention calculation formula is shown in Equation (23).

Sel f − Attention(Q, K, V) = So f tmax
(

QKT
√

dk

)
V (23)
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Additionally, this TRFM model employs multi-head attention, which involves splitting
the original temporal point features into multiple heads. Each head corresponds to a specific
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feature portion and undergoes a Self-Attention mechanism, shown in Equation (24). This
calculates the attention weights for each head, which are then used to fuse the features
of the current temporal point with those of other temporal points corresponding to that
head. The multiple heads are then merged, as shown in Equation (25), and fed into the
Feed Forward layer; the structure of the multi-head attention layer is shown in Figure 5.
The Feed Forward layer essentially functions as a fully connected layer, further enhancing
non-linearity and high-dimensional feature representation.

headi = Sel f − Attention(Qi, Ki, Vi), i = 1, 2, 3 . . . n (24)

MultHead(Q, K, V) = Concact(head1, . . . , headn) (25)
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Residual networks are introduced outside the multi-head attention layer and Feed
Forward layer to prevent the occurrence of gradient explosions when stacking deep net-
works. The outputs of both the multi-head attention and Feed Forward layers are subject
to layer normalization, ensuring that the learned feature values are distributed within a
certain range.

3.3.2. Encoder

The encoder primarily encodes the input temporal features. The input temporal
features first pass through an encoding layer, where the value encoding of temporal point
features is performed (as per Equation (26)). This is then combined with the encoding of
temporal positions to form the input features of the encoder (as per Equations (27) and (28)).
At this point, the input temporal point features contain both their own high-dimensional
information and temporal position information.

VE = Relu(XW + B) (26)

Here, VE represents value encoding, X represents the input temporal sequence, W
represents the encoding weight matrix, and B represents the bias matrix. The encoding
results are activated using the Relu function, introducing non-linearity.

PE(pos,2i) = sin
( pos

100002i/d

)
(27)

PE(pos,2i+1) = cos
( pos

100002i/d

)
(28)
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PE represents position encoding, where pos denotes the position of the current tempo-
ral point in the input sequence. 2i and 2i + 1, respectively, represent the positions of odd
and even features, and d represents the feature dimension of the sequence points.

The encoder is composed of multiple stacked TRFM units. The input features of the
encoder are replicated three times and multiplied by the corresponding trainable weight
matrices WQ, WK, and WV to generate the Q, K, and V matrices, which are then fed into
the TRFM unit layer. The output dimensions of the temporal features from the multi-layer
TRFM units remain consistent with those of the input. The output of the encoder is the
temporal features.

3.3.3. Decoder

Similar to the encoder, the core structure of the decoder is the TRFM unit. To better
generate the predicted sequence, a portion of the input sequence is used as prior information
to guide the decoding. That is, the input sequence of the decoder consists of the latter part
of the model’s input sequence and a portion of the initialized normal distribution input
sequence. This is then combined with the encoding of temporal positions to form the input
of the decoder. The overall length of the input sequence of the decoder is consistent with
the output sequence length of the encoder.

Notably, the TRFM unit in the decoder uses a cross-multi-head attention mechanism.
The features of the output sequence from the encoder are replicated twice to form the K and
V matrices. The input of the decoder is only used to compute the Q matrix. As a result, the
output of the TRFM layer in the decoder also yields a sequence feature of the same length
as the input. By repetitively stacking the TRFM layers of the encoder, the output undergoes
a fully connected layer, and the resulting output is the final prediction of the model.

The output of the trajectory prediction model is a sequence of differential latitude
and longitude values. To obtain the true predicted trajectory coordinates, they need to
be calculated using the absolute regression of latitude and longitude values. Thus, the
pseudo-code for the trajectory prediction process in this paper is provided in Algorithm 2.

3.3.4. Normalization

In this paper, Min–Max Normalization is used for various dimensions of the model
input data. This normalization method is applied to normalize four trajectory point features:
the course over ground (cogi), speed over ground (sogi), relative longitude (∆loni), and
relative latitude (∆lati). The specific formula is as follows:

X∗ =
X−min

max−min
(29)

Here, max represents the maximum value in the sample data, min represents the
minimum value in the sample data, X is the original data, and X* is the normalized data.

3.3.5. Loss Function

In this paper, RMSE (Root Mean Square Error) is used as the loss function in the
prediction model. RMSE measures the similarity between predicted points and target
points. The loss function is defined as follows:

MAE =
1
N

N

∑
i=1

∣∣∣Y j − Ŷ j
∣∣∣ (30)

Since the model’s predictions are relative values, the output y is scaled up by a factor
of 104 to aid convergence.
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Algorithm 2: Ship Trajectory Prediction Algorithm

Input: Traj: Represents input trajectory data. lmin: Represents the min length of trajectory.
Tinterp: Represents the interpolation time interval. Tsamp: Represents the resample time interval.
Output: Predicted trajectory : Prediction_Traj.
Initialization: Nav_Traj: Used to store the trajectory of ship navigation.
Function: Repair(·): Used to store ship trajectories during the processing.

Resample(·): Used to store ship trajectories during the processing.
Process:

// Step 1 Trajectory Data Preprocessing
1 : Tmp_Traj← Create an empty set
2 : For Poi in Traj do
3 : Add Poi to Tmp_Traj
4 : If current Poi is stop point then
5 : If the length of Tmp_Traj ≥ lmin do
6 : Add Tmp_Traj to Nav_Traj
7 : Clear the Tmp_Traj
8: End For
9 : Input_Traj← Select the last trajectory from Nav_Traj
10 : For Poi in Input_Traj do
11 : If Poi is removal points do
12 : remove Poi from Input_Traj
13: End For
14 : Input_Traj← Repair

(
Input_Traj, Tinterp

)
15 : Input_Traj← Resample

(
Input_Traj, Tsample

)
16 : For Poi in Input_Traj do
17 : ∆loni, ∆lati ← Calculate the longitude and latitude differences between Poi and Poi−1
18 : cogi, sogi ← Extract the course over ground and speed over ground from Poi
19 : Add [cogi, sogi, ∆loni, ∆lati] to X
20: End For
21 : Z← Select the longitude and latitude coordinates [lonend, latend] of the last point of InputTraj
// Step 2 Trajectory Prediction
22 : Y← Prediction_Model(X)
23 : Current_Position← Z
24 : For yi in Y do
25 : Current_Position← Current_Position− yi
26 : Add Current_Position to Prediction_Traj
27: End For

3.4. Evaluation Metrics

In the trajectory prediction task of this paper, trajectory similarity is used to evaluate
the results of data preprocessing. The evaluation metrics used include MSE (Mean Squared
Error), RMSE, Average Displacement Error (ADE), and Final Displacement Error (FDE).

MSE is calculated as follows:

MSE =
1
N

N

∑
i=1

(Y j − Ŷ j)
2

(31)

RMSE is calculated as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(Y j − Ŷ j)
2 (32)

MSE and RMSE are global measures of prediction accuracy, where Ŷ j represents the
predicted relative values and Y j represents the true relative values.
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ADE is calculated as follows:

ADE =
1

MN

M

∑
j=1

N

∑
i=1

∣∣∣Poj
i − P̂oj

i

∣∣∣ (33)

FDE is calculated as follows:

FDE =
1
M

M

∑
j=1

∣∣∣Poj
last − P̂oj

last

∣∣∣ (34)

In the calculation formulas for ADE and FDE, M represents the total number of
predictions, and N is the output step.

4. Experiments and Results

In this section, the performance of the proposed ship trajectory prediction method is
validated through experiments on real AIS trajectory data. Several different evaluation
metrics are applied to assess the model performance, and comparisons are made with other
state-of-the-art research methods.

4.1. Trajectory Process

Details of the data preprocessing methods are explained in Section 3.2 Data Processing.
The data primarily consist of one day’s AIS data from the Yangtze River Basin.

This waterway experiences high ship traffic, complex river bends, and diverse ship
types, making it suitable for validating ship trajectory prediction models. The collected
data are stored in a database, and AIS data information is extracted, including MMSI, SOG,
COG, LON, LAT, NS, and timestamps, which serve as the initial input information for data
preprocessing. During data preprocessing, trajectories are segmented based on different
MMSI and navigation statuses. Trajectory sequences shorter than 60 are excluded to ensure
an adequate sequence length for the model input. Segmented trajectories undergo removal
of outliers and redundant points, filling missing data points, and finally, uniform time
interval resampling, with a set interval of 30 s. The data processing results for each step are
shown in Figure 6 below.
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After segmenting the trajectories, a complete navigation trajectory is obtained. After
removing outliers and redundant points, the trajectory is compressed, retaining trajectory
points containing changes in motion states. Missing data points are interpolated to enhance
trajectory resolution. Finally, uniform time interval resampling is performed to maintain
equal time intervals between trajectory points. The processed trajectories fit well with the
original trajectories.

The AIS data used in this study consist of a total of 6,057,648 AIS records, with
1578 valid ship trajectories. Relative data are used as model input, using 61 historical
trajectory points to predict the latitude and longitude positions of future trajectory points.
After differencing to obtain relative values, the input sequence length is set to an integer of
60. In the constructed dataset, there are 40,556 training datasets, 10,140 validation datasets,
and 12,674 test datasets.

4.2. Trajectory Prediction

To validate the effectiveness of the proposed TRFM model for trajectory prediction,
experiments are conducted on the constructed AIS ship trajectory prediction dataset in this
study. The model’s performance is compared with state-of-the-art trajectory prediction
models, including the LSTM model [26], ATT-LSTM model [7], CNN-LSTM model [27], and
Bi-LSTM model [28]. Additionally, to validate the advantage of TRFM’s encoder–decoder
(ENC-DEC) structure, a comparison is made with a model using only the decoder (DEC)
structure, denoted as TRFM(DEC).

The experimental environment parameters are shown in Table 2, and the model
parameters for TRFM(ENC-DEC) are presented in Table 3. In the TRFM model parameters,
“head” indicates the number of attention heads, “d_model” denotes the sequence feature
dimensionality in the Transformer, “enc_layer” and “dec_layer” indicate the number of
stacked Transformer units in the encoder and decoder, respectively, “dff” represents the
feature dimensionality in the Feed Forward layer, and “label_len” is the length of prior
trajectory input to the decoder.

Table 2. Experimental Environment Parameters.

Environment Configuration

Operating System Ubuntu 20.0
RAM 32 G

Python 3.8
Tensorflow 2.15

GPU RTX3080 (12 G RAM)
Cpu i7-11700k

Table 3. TRFM (ENC-DEC) Model Parameters.

Parameter Value

head 8
d_model 512
enc_layer 2
dec_layer 2

dff 2048
label_len 15

MAE is used as the training loss during the training process. Due to the use of latitude
and longitude relative values for prediction, the output prediction values are scaled up by
a factor of 10,000 to enhance model convergence. The initial learning rate is set to 0.0001,
and optimization is performed using the Adam stochastic gradient descent algorithm. The
training process consists of 100 epochs, with a batch size of 128, totaling 40,000 training
steps. Figure 7 shows the training loss curves for different models. From the figure, it can
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be observed that the TRFM model converges faster and achieves a lower loss compared to
other models. Within the TRFM model, the ENC-DEC structure exhibits a lower loss than
using the DEC structure alone, indicating superior performance.
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To measure the error between the model’s predictions and the actual values, MSE and
RMSE are used. MSE represents the error as the squared difference between predicted
and actual values. A smaller MSE indicates better predictive performance. RMSE, on the
other hand, also measures the error between predictions and actual values but on a smaller
scale, making it more sensitive to outliers in the data. Figure 8 displays box plots showing
the statistical distribution of prediction errors for different models using MSE and RMSE.
From the figure, it is evident that the ENC-DEC-structured TRFM model has the smallest
trajectory prediction errors compared to other models, indicating its superior accuracy and
stability in trajectory prediction.
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To measure the distance error between predicted and actual trajectories, ADE and
FDE are used to evaluate the average distance error and the endpoint distance error,
respectively. ADE represents the global average distance error between predicted and
actual trajectories, with a smaller value indicating closer alignment between predicted
and actual trajectories. FDE represents the average error between the final predicted
point and the final actual point of the trajectories, with a smaller value indicating a
closer alignment of the predicted endpoint with the actual endpoint. Figure 9 presents
experimental results for different models using ADE and FDE values for a prediction
sequence length of 30, which corresponds to a predicted trajectory duration of 15 min.
From the bar chart, it is evident that the ENC-DEC-structured TRFM model has the
lowest ADE and FDE values, indicating that the TRFM model’s predicted trajectories
closely match the actual trajectories.
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In real trajectory prediction scenarios, we compared the trajectory prediction method
based on the TRFM model proposed in this paper with other trajectory prediction models
and created comparison plots of predicted and actual trajectories. Figure 10 shows the
comparison of predicted and actual trajectories for different models. It is clear from
the figure that the ENC-DEC-structured TRFM model provides the best fit to the actual
predicted trajectories, with the smallest deviations between predicted and actual trajectory
points. This demonstrates that the trajectory prediction model based on the TRFM model
proposed in this paper has superior predictive performance.
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To further illustrate the predictive accuracy of the TRFM trajectory prediction
model proposed in this paper, Table 4 presents the evaluation of average errors in
longitude, latitude, and distance for different prediction sequence lengths with a time
interval of 30 s. Here, ‘N’ represents the prediction sequence length, ‘LON’ represents
longitude error, ‘LAT’ represents latitude error, and ‘FDE’ represents distance error. The
experimental results show that the ENC-DEC-structured TRFM model has the lowest
errors across different prediction sequence lengths. For a 15 min trajectory prediction,
the ENC-DEC-structured TRFM model achieves an endpoint error of 0.423 km, which is
a 23.51% improvement compared to using only the DEC-structured TRFM and a 47.05%
improvement compared to other state-of-the-art trajectory prediction models. These
results indicate that the TRFM ship trajectory prediction method proposed in this paper
performs exceptionally well.
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Table 4. Experimental results for different models under various prediction sequence lengths.

LSTM ATT-LSTM CNN-LSTM Bi-LSTM TRFM (DEC) TRFM
(ENC-DEC)

N = 10
(5 min)

LON 0.00443 0.00455 0.00372 0.00282 0.00171 0.00135
LAT 0.00410 0.00418 0.00335 0.00254 0.00153 0.00129

FDE (km) 0.696 0.713 0.574 0.436 0.262 0.215

N = 20
(10 min)

LON 0.00725 0.00681 0.00576 0.00410 0.00275 0.00205
LAT 0.00663 0.00616 0.00510 0.00373 0.00244 0.00201

FDE (km) 1.126 1.053 0.881 0.634 0.420 0.331

N = 30
(15 min)

LON 0.00931 0.00816 0.00725 0.00518 0.00361 0.00265
LAT 0.00829 0.00761 0.00652 0.00470 0.00322 0.00254

FDE (km) 1.420 1.278 1.116 0.799 0.553 0.423

5. Conclusions

This research advances ship trajectory prediction by leveraging the comprehensive
navigational data available from AIS and applying deep learning techniques. A novel
preprocessing method for AIS data is introduced, aimed at reducing noise from equip-
ment or network transmission, thus optimizing the data for a further analysis. This study
centers on the implementation of the Transformer model (TRFM), which incorporates
an encoder–decoder architecture and an adaptive multi-head attention mechanism. This
design is proficient in extracting significant trajectory features, enhancing model inference
speed, and addressing the limitations of traditional recurrent neural networks, specifi-
cally their computational inefficiency and inadequate global feature extraction capabilities.
Consequently, this approach significantly improves the accuracy of trajectory predictions.

The methodology employs differential latitude and longitude values as both model
inputs and outputs, facilitating the derivation of predicted trajectories through latitude
and longitude regression. This technique ensures greater prediction generalization
and accuracy. Experimental comparisons with leading-edge methods reveal that the
proposed approach yields superior precision and reduced errors, generating predictions
that closely mirror actual ship trajectories. These findings affirm the feasibility and
effectiveness of the proposed algorithm, suggesting its potential to provide more accurate
reference data for the navigation of future smart vessels, thereby enhancing maritime
safety and operational efficiency.

Despite its innovative contributions, the trajectory prediction model based on TRFM
presents certain limitations. The analysis is confined to historical AIS data, omitting
external variables such as water currents and weather conditions. Predictions are limited
to the geographical positions (latitude and longitude) of ships, without considering
other navigational details. Moreover, the model’s applicability is constrained by the
requirement for a lengthy historical data series, limiting its use for datasets with shorter
time series lengths.

Future research could enhance the model’s comprehensiveness and accuracy by incor-
porating external environmental factors and extending predictions to include additional
navigational parameters. Such advancements would refine the model’s applicability and
precision for maritime navigation forecasting.
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Nomenclature
AIS Automatic Identification System
Attention–LSTM Attention–Long Short-Term Memory
ADE Average Displacement Error
Bi-GRU Bi-directional Gate Recurrent Unit
COG Course Over Ground
CRC Change Rate of Course Over Ground
CRS Change Rate of Speed Over Ground
FDE Final Displacement Error
GRU Gate Recurrent Unit
IMO International Maritime Organization
IS-STGCNN Improved Social Spatial–Temporal Graph Convolutional Neural Network
LSTM Long Short-Term Memory
LON Longitude
LAT Latitude
MPC Model Predictive Control
MP-LSTM Multi-step Prediction Long Short-Term Memory
MMSI Maritime Mobile Service Identify
MSGTIME Message Time
MAE Mean Absolute Error
MSE Mean Square Error
NS Navigational State
PESO Parallel Encoders and a Ship-Oriented Decoder
QSD-LSTM Quaternion Ship Domain Long Short-Term Memory
QSD Quaternion Ship Domain
RMSE Root Mean Square Error
SLV Semantic Location Vector
SOG Speed Over Ground
TDV Trajectory Direction Vector
TRFM Transformer
TRFM (DEC) Transformer with Decoder
TRFM (ENC-DEC) Transformer with Encoder and Decoder
Traj, Trajj The j-th Trajectory of Ship

Poi, Poj
i The i-th Position in j-th Trajectory

R Real Number Field
N Positive Integer Field
cogi The Course Over Ground of i-th Position in Trajectory
sogi The Speed Over Ground of i-th Position in Trajectory
loni, lonj

i The Longitude of i-th Position in j-th Trajectory
lati, latj

i The Latitude of i-th Position in j-th Trajectory
nsi The Navigation States of i-th Position in Trajectory
ti The Timestamp of i-th Position in Trajectory
X j Input Trajectory Sequence
Y j The Test Output Trajectory Sequence
Zj The Coordinates of the Last Trajectory Point of the Input Trajectory Sequence
NK The Number of Ship Trajectory Prediction Combinations
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NP The Output Prediction Sequence Length
NH The Input History Sequence Length
φ(·) Data Processing Functions
fm(·) Trajectory Prediction Function
π Trajectory Prediction Model Parameters
θ Trajectory Processing Function Parameters
Trajmmsi MMSI Trajectory Sets
Trajnav Navigation Trajectory Set
lmin The Trajectory Length Threshold
Postop Stopping Points
crci The Change Rate of Course Over Ground for i-th Position
crsi The Change Rate of Speed Over Ground for i-th Position
a A Gaussian Distribution
bcrs

min, bcrs
max The Minimum and Maximum Values of the CRS Threshold Boundary

bcrc
min, bcrc

max The Minimum and Maximum Values of the CRC Threshold Boundary
xa, xa

1, xa
2 The Mean of the Samples

σa, σa
1 , σa

2 The Variance of the Samples
Podrop Removal Points
Poer Error Points
Poco Coincident Points
Pode Deviation Points
Pore Redundant Points
dist(·) Distance Calculation Function
Vmax Maximum Deviation Speed Threshold
Tinterp Specified Time Interval Threshold
Tsamp Sampling Interval
Ts, Tl Small Time Interval, Large Time Interval
∆loni, ∆lonj

i The Differential Values of Longitude
∆lati, ∆latj

i The Differential Values of Latitude
xj

i The Input Sequence Point
yj

i The Output Sequence Point
Q, K, V The Query, Key, and Value Input
dk The Feature Dimension of the k-th Head.
headi The i-th Feature Head
VE Value Encoding
X The TRFM Unit Input Temporal Sequence
W The Encoding Weight Matrix
B The Bias Matrix
pos The Position of the Current Temporal Point in the Input Sequence
d The Feature Dimension of the Sequence Points
WQ, WK , WV The Query, Key, and Value Weight Metric
Ŷ j The Prediction Sequence

ˆ
Poj

i The i-th Position in j-th Prediction Trajectory
Poj

last The Last Position in j-th Trajectory
ˆ

Poj
last The Last Position in j-th Prediction Trajectory
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