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Featured Application: The developed tool can be applied to motion recognition in individuals
to accurately identify the exercises they are performing. This application is particularly useful
in fields such as sports science, physical therapy, fitness tracking, and Virtual Reality, where
understanding and monitoring exercise routines and movement are crucial.

Abstract: Decision trees are a widely used machine learning technique due to their ease of interpreta-
tion and construction. This method allows domain experts to learn from raw data, but they cannot
include their prior knowledge in the analysis due to its automatic nature, which implies minimal
human intervention in its computation. Conversely, interactive visualization methods have proven
to be effective in gaining insights from data, as they incorporate the researcher’s criteria into the
analysis process. In an effort to combine both methodologies, we have developed a tool to manually
build decision trees according to subsequent visualizations of data mapping after applying linear
discriminant analysis in combination with Star Coordinates in order to analyze the importance of
each feature in the separation. The nodes’ information contains data about the features that can
be used to split and their cut-off values, in order to select them in a guided manner. In this way,
it is possible to produce simpler and more expertly driven decision trees than those obtained by
automatic methods. The resulting decision trees reduces the tree size compared to those generated by
automatic machine learning algorithms, obtaining a similar accuracy and therefore improving their
understanding. The tool developed and presented here to manually create decision trees in a guided
manner based on the subsequent visualizations of the data mapping facilitates the use of this method
in real-world applications. The usefulness of this tool is demonstrated through a case study with a
complex dataset used for motion recognition, where domain experts built their own decision trees
by applying their prior knowledge and the visualizations provided by the tool in node construction.
The resulting trees are more comprehensible and explainable, offering valuable insights into the data
and confirming the relevance of upper body features and hand movements for motion recognition.

Keywords: multivariate visualization; decision trees; visual data mining; linear discriminant analysis;
motion recognition

1. Introduction

In recent years, artificial intelligence (AI), and more specifically machine learning, has
made great progress and awakened interest in different application fields alongside the
increase in data recording [1]. Nevertheless, machine learning methods are sometimes
understood as black box processes. This lack of transparency can be a problem for their
application in some fields that involve high-stakes decisions [2], which pushes researchers
to find explainable models to apply in these situations. Explainable models have the
advantage of allowing domain experts to include their previous knowledge and their
criteria in the model’s construction.
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A way to include domain experts in the model-building process is through interactive
visualization. Interactive visualization has been proven an efficient way of improving the
knowledge obtained by the domain experts in data analysis processes. User interaction can
improve and modify the models obtained, increase researchers’ confidence in the model,
and give them a better understanding of the processes underlying the data.

Machine learning algorithms can be categorized as supervised learning and unsu-
pervised learning, according their target and data requirements. While clustering is an
unsupervised technique used to group samples by a similarity criterion, classification
tasks fall within supervised learning techniques, and their aim is to predict the categorical
value of unlabeled elements from a group of labeled elements [3]. A classifier is then a
machine learning model that, given a sample with different variables, predicts a label
from the samples learnt in the training process from a specific pre-labeled, training dataset.
One of the most well-known methods employed in classification tasks is decision trees.
Classification trees successively divide the dataset according to the fulfillment of different
criteria until they define the conditions that characterize the different classes present in the
training dataset [4].

Specifically, decision trees define the division criteria according to automatic algo-
rithms, which try to maximize the gaining of information on every subset construction or
the value of the Gini impurity measure. Nevertheless, this kind of algorithm does not allow
researchers to include their domain knowledge and makes it difficult for them to under-
stand the model’s inner workings [5,6]. Moreover, for complex datasets or some algorithms’
options, the tree might be too big or complex to grasp at a glance how the classification is
made [7]. In some contexts, this may limit real-world applications or completely hinder
them [8].

For this reason, we previously created a method to manually build decision trees based
on the Star Coordinates representation of the LDA mapping of clinicians’ data [9]. In this
paper, we present the development of an interactive visual tool, namely guided decision
tree (GDT), that meets all the requirements for interactive decision tree building for general
purposes. GDT enables domain experts to manually create decision trees in a simple,
guided, and visual manner. As a main contribution, this approach not only enhances the
interpretability of the decision trees but also integrates domain experts’ insights into the
model-building process. Specifically, in this case, we focus its usage on applications that
have proven to be highly challenging and very diverse contexts in the field of Artificial
Intelligence, including human pose estimation from videos [10,11]. In particular, we
concentrate on motion recognition as a case study of GDT, since it can be applied in various
fields, such as healthcare for rehabilitation and physical therapy [12], sports science for
improving performance and preventing injuries [13], and human–computer interaction for
developing intuitive interfaces for virtual reality and gaming [14].

The paper is structured as follows. Section 2 shows the state of the art of different
methods of building decision trees and human-supervised machine learning methods.
Section 4 details the software architecture of the tool. Section 5 shows a case study in which
the tool is used by domain experts to build a classifier from a motion recognition dataset.
Finally, Section 6 details the conclusions obtained and analyzes possible future works that
may continue the tool’s development.

2. Related Works

Visualization techniques allow users to intuitively extract data relationships based
on their domain knowledge and understand the derived model. Combined with other
non-visual techniques, they can increase the effectiveness of the knowledge extraction
process [5,15]. In a machine learning pipeline, there are three main stages: before, during,
and after model building [16]. Visualization plays a different role depending on which
of these it is applied to. Before model building, its main aim is to allow the researcher
to better understand the data for either preparation or feature extraction. During the
building, it may allow for a better understanding of the model’s inner workings and help
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diagnose and/or steer the model. Finally, after the model is built, visualization allows
final users to understand the results and promote trust in them [17]. In particular, there
are several methods that have been used to represent decision trees, such as outline views,
node link diagrams, and tree maps, among others [5]. Some tools have been developed
that combine several visualization techniques with decision trees at different points of the
model’s training and selection.

In the tool [18] described by Nguyen et al., several visualization algorithms are ap-
plied to node link diagrams—standard, tightly-coupled, fish-eye and their own 2.5D tree
visualization. Its main objective is to provide the user with a better way to inspect the
models in an iterative process to thus determine the best one. It also allows for visualization
during model development to select features to be used for branch pruning, although it
only provides information about the model structure and not about the data themselves.

Neville et al. propose a system [19] with node link and tree map views with modifi-
cations to convey more information visually, along with feature importance and different
possible models. This gives the analyst insight into the model and facilitates validation,
as it portrays the number of samples and class purity in a way that can be quickly seen at
a glance.

A first approach to the historical state of the art of interactive tree construction is the
review written by Liu and Salvendy [5], which analyzed the main programs used to build
and prune decision trees and make use of visualization techniques to improve knowledge
extraction. From the software reviewed in it, only Alice, EM and Weka allow for interactive
tree building. As a form of support for interactive building, Alice and EM supply the users
with a tabular view of the predictive power of input attributes as algorithmic assistance.
Data are displayed as support for domain experts in node construction. This representation
differs according to the application. Alice shows the data distribution of each attribute
corresponding to the decision node by class, EM shows the distribution of the selected split
attribute by class, and Weka shows bar charts for each input attribute and a 2D scatter plot
of two chosen split attributes. In [5] the development of decision tree tools, visualization
techniques have continued and new tools have emerged. Stiglic et al. state that simpler
trees generate greater understanding for domain experts in biologic science [20]. For this
purpose, they promote the use of a pruning and tuning method based on visualization
and branch replacement in order to simplify the tree. The premise of this form of tree
construction is to fit the top-down representation of the tree into a single screen to maximize
knowledge extraction from domain experts.

A thorough subsequent review on how visualization has been applied to rule-based
classifiers, conducted by Strebb et al. [21], analyzed 152 publications on task-focused
visualizations. This review presents many tools that enable interaction with visualizations
for model building and evaluation. However, none of the tools in this review provide a
direct application of the method in [9]. Below, we detail some interesting proposals for
interactive decision tree construction in the literature.

BaobabView’s proposal [22] guides the user in the non-binary tree construction
through coordinated views of data distribution, data distribution per feature, a tree
overview, and the representation of the confusion matrix on the training set. The user is
provided with the opportunity to grow, optimize, prune, and analyze the resulting tree
in every step with algorithmic support. The graphic structure of the tree is based on a
top-down structure, with the nodes linked by bezier lines to mark the class separation in
every step. It also has a specific mode in which to prune nodes where class separation is
hard. This tool can also be used for exploratory data analysis and allows the growth of
trees from defined nodes. Although we value aspects of this proposal, we consider that
extracting information through data distributions is more difficult than extracting it from
the visualization implemented in our tool.

PaintingClass [23] is a tool for interactive decision tree construction based on star
coordinate representations. From the top-down overview of the tree, the user can split the
records in subsets and define subsets from the drawn areas. The goal of this methodology is
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not to use the trees as classifiers, but to use the tool as part of the exploratory data analysis
process. This tool shares some similarities with our approach in its process, but it differs in
its objectives, since we apply a dimensionality reduction method in the process that can be
considered a linear classifier. These different goals imply that we require a labeled dataset
to construct the tree, as opposed to PaintingClass and their exploratory data analysis.

3. Proposal Basics

The main reason we developed this software is to provide researchers with a specific
tool to manually build decision trees from their own datasets. GDT relies on the visualiza-
tion of the linear discriminant analysis (LDA) [24] mapping, according to a Star Coordinates
system as support for decision tree construction.

Star Coordinates [25–27] (SC) is a multivariate visualization system based on radial
axis onto which data points are linearly projected. It is focused on graphic representation
more than numerical analysis. The system’s axes are created as follows. Initially, each
feature present in the dataset is assigned an axis of equal size and distribution that begins
at the origin. Then, the unit vectors are calculated by mapping the minimum value to
the origin and the maximum to the end of the corresponding axis. To represent a high-
dimensional data point in the new 2D system, the value of each feature is multiplied by
the corresponding unit vectors, and the sum of the resulting vectors returns the linear
projection in the mapping (see Figure 1). Users can then carry out single or multi-axis
rotation and scaling to find views that better suit their visualization needs.

Figure 1. Use of Star Coordinates to represent records. The first case shows how to apply it when all
the features have the same weight and arbitrary orientation. The second case shows the application
after use of the transformation matrix obtained from the LDA algorithm to define the feature weight
and orientation in the mapping.

This property can be used to represent an LDA algorithm, as shown in Figure 1, and
place the points according to this mapping. LDA tries to maximize the separation between
the elements belonging to different classes while minimizing intra-class dispersion. It can
be used as a linear classifier or as a method of dimensional reduction, where the maximum
number of dimensions to represent it is the minimum between the number of classes and
the number of features.

The representation of the axis in Star Coordinates provides the researchers with
information about the importance of a feature in the linear transformation through their
length and orientation [28]. Therefore, the axes of the LDA mapping in Star Coordinates
can be used as guide by the researchers to choose the split feature when they are creating a
decision node in an iterative process. Figure 2 shows this process applied in every node.
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Figure 2. Schematic of user interaction for node building. The method proposes applying LDA in
every target node subset, represent it on Star Coordinates, and decide the partitioning feature from
that visualization.

4. Software Architecture

Domain experts and researchers defined the following requirements to interactively
analyze data and manually create decision trees:

• It has to allow domain experts to make a feature selection before starting the analysis.
• It has to split the dataset into training and testing sets according the percentage

supplied by the user.
• The tree viewer has to show at first sight the purity of the nodes, and it has to

automatically reorganize the layout to display the tree structure as a way to maintain
the decision tree in a comprehensive way in every step.

• The tree interaction has to enable the domain experts an to delete nodes, create decision
nodes, or define nodes as leaf nodes.

• The decision support visualization has to include the data and a representation for the
feature weight in the model, presenting the data details on demand.

• It must offer an appropriate way to represent the dimensionality reduction when there
are only two classes left in the interest node, due to LDA limitations.

• The tool has to automatically determine the cutoff values according the entropy values,
as described in the method.

• Lastly, the domain expert has to be able to compare with automatic trees and easily
export the results.

To fulfill these requirements, we have developed GDT, a pure python visualization
web tool. GDT is designed with a client–server architecture, as shown in Figure 3, and is
structured in three layers: presentation, service, and logic. It employs the Python Plotly
DashAPI to manage the presentation and the service layer. Plotly Dash is an open-source
product, integrated with Python and R, which facilitates the creation of reactive web
applications focused on data analysis and visualization. Dash applications have a Flask
web server whose interface is represented by the use of the JavaScript library React.js. It
is complemented with the Dash Bootstrap Components library to include Dash in the
bootstrap style. The use of Dash allows users to create responsive web applications without
needing knowledge of JavaScript programming. The web conception of these applications
makes them multi-platform and ready for use on mobile devices.

Calculations and data management are performed in the logic layer. For this, we use
pandas [29] for managing data in dataframe format, scikit-learn [30] for applying machine
learning algorithms, and modifications to the Python C4.5 [31] algorithm for building the
interactive tree. The use of the scikit-learn library is common when conducting machine
learning analysis in the Python environment. For the creation of automatic decision trees,
scikit-learn implements the Classification And Regression Trees (CARTs) algorithm using
the Gini impurity or entropy as a split criterion. It creates a classifier using the features
of the dataset and thresholds calculated by the algorithm and classifying criterion until
all leaves are pure or no more splits are possible, unless a maximum depth or minimum
number of samples is established. This approach could lead to overfitting [4], so it is
possible to pass a value to perform cost–complexity pruning. In classification problems,
it is common for the data to be imbalanced among classes. To address this issue, scikit-
learn provides the ability to adjust the weights assigned to each class [32], ensuring a
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more balanced and accurate classification. However, we must note that one of the biggest
challenges of decision trees applied to real-world problems is that automatically generated
trees may be too big and/or complex for users to understand [7].

The webtool code is composed of three modules; the first module deals with the user
interaction, the second takes care of tasks related to the visualizations and dimensional-
ity reduction, and the last is responsible for the tree construction and calculation of the
information gain in every split.

Figure 3. Software architecture diagram. GDT presents a client–server architecture, based on Python
libraries. Plotly Dash manages the presentation and service layers. The logic layer includes the
scikit-learn and pandas libraries and the modification of entropy algorithms.

The following subsections will detail how the tool enables the necessary interactions
to fulfill the requirements outlined at the beginning of this section.

4.1. Data Management and Node Structure

The tool employs pandas objects to manage the datasets throughout all the stages,
stored as tree-structured JSON objects. The original dataset remains unchanged across the
whole exploratory data analysis. Data are normalized to the 0–1 range in node represen-
tation, so that visualizations of data and features can be compared with each other. The
dataset is split into training and testing sets. In every node representation, the training
dataset is queried according the requirements of the node and the parent nodes in the path
to build the corresponding subset. These subsets are used to built the node visualizations.

For management of the node construction, the information of the tree is stored in a
JSON object. This dictionary includes an entry with the data used, the features presented in
the analysis and the RGB values for each class, an entry with a summary of click interactions
with the tree, and an entry to detail the nodes’ construction. In the JSON object, at the
‘node’ entry, each node in the tree has a subentry. These subentries collect the following
information about the node: the node ID, the father node ID, the path from the root node,
the values of purity in the node, the partitioning feature and the threshold value, the
size of the node subset regarding the training size, and if the node is considered a leaf,
decision, or root. This information is employed throughout the whole construction process
to build the active node subset in every interaction. It is also used to build the classifier to
evaluate performance.

4.2. Interface

We have developed the graphic user interface presented in Figure 4. This interface
allows domain experts to interact with the application and, through interaction, visually
extract knowledge. Users can modify the parameters of the analysis, manually build
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the tree, and select the automatic tree parameters. The interface presents four areas of
interaction: (i) upload and tree builder, (ii) tree viewer, (iii) classifier parameters, and
(iv) classifier performance summary.

Figure 4. GUI. The work space is divided into three areas: (1) management of the user interaction in
the data upload, feature selection, and the manual tree creation; (2) interactive tree and LDA mapping
viewer; (3) automatic decision trees and comparing performance settings.

4.2.1. Upload and Tree Builder

The upload and tree building area is divided into two tabs: data preparation and
decision tree control. We allow users to load .csv files and define the character used as a
separator in the data file through the data preparation tab (Figure 5a). Users can also define
the feature used as a label in the supervised learning and the dimensionality reduction
method; they can also define the features used in the analysis. The size of the training set
and the testing set is also defined in this area through a knob controller. Once all the fields
are set, data are split into the training and testing set. Then, we represent the root node as
the beginning of the tree’s construction and its corresponding initial SC representation of
the LDA mapping.

The decision tree control (see Figure 5b) allows users to choose the actions related to
the selected node in the viewer. Every interaction in this menu updates the representation
in the tree viewer, except the ‘jittering in two classes’ checklist, which only affects the
support decision visualization. From this tab, the user can define the node as a decision
node by choosing the feature to use as a splitting criterion in the input. Users can also
consider the node a leaf node, according to their perception in the visualization and the
ratio of cases in the node subset, and define it by clicking the button ‘Make Leaf’. This can
be undone later, in case that user decides to go deep into the tree by clicking the ‘Reset
Leaf’ button. Users can also delete all children nodes related to the currently selected node
in the tree viewer by clicking the ‘Delete Children’ button. In this tab, users also obtain
details of the node, such as the purity of classes, the partitioning feature used, and the
threshold value.
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(a) Data preparation. (b) Node construction.
Figure 5. Data interaction. From these menus, the user can (a) prepare the data for the analysis and
build the train and test sets; and (b) create nodes and extract information from the partition in the
node. In (a), analysts can define the separator used in the data file and the feature class for supervised
learning and select features for the analysis and the percentage of the training–testing set. In (b), they
can define the parameters for the node construction and deletion and define it as a leaf node.

4.2.2. Tree Viewer

This area shows the representation of the current state of the tree defined by the user
(see Figure 6). We employed the Cytoscape component included in the Dash library to
build this representation. We defined the following requirements for effectiveness. It has to
be reactive to modifications in the tree and adapt the layout to better fit in the space as the
tree expands. It also has to present information about node composition at first sight, the
partitioning feature, and the corresponding threshold value. To represent the composition,
each node is represented as a pie chart, showing the rate of each class. Using this Plotly
module allows us to best fit the tree in a top-down grid that fits in the space assigned in
the screen. When the node is considered a leaf node, the outline stroke for the pie chart is
colored in green, and when the branch has not defined a leaf node, the outline stroke is
colored in red. This also allows the user to obtain an overview of the tree or obtain details
by zooming in on the area of interest or by clicking on the interest node.

4.2.3. LDA Representations

The method includes the use of LDA as a dimensionality reduction method as a form
of support for the domain experts’ decision. The LDA mapping is represented in a Star
Coordinates representation system which includes axis vectors. The length and orientation
of these vectors are connected with a greater influence in the SC visualization [26,28]. The
representation is powered by a ScatterGl component present in the Plotly library. This
allows users to support their decisions about the partitioning feature in every node and
determine the most influential features in LDA mapping that have maximizing the class
separation as a main goal (see Figure 7).
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Figure 6. Users can extract knowledge about how the subset is split in every step of the classification.
In this case, we show the steps to creating a tree in the Iris dataset [33]. Each node is represented as a
pie chart with colors indicating the different categories, and the size representing their rate. If the
node is defined as a leaf node, the outline stoke is colored in green. If the last node on a branch has
not been defined as a leaf node, its outline stoke is colored in red.

Figure 7. Support decision visualization based on LDA and Star Coordinates for the Iris dataset [33].

When the algorithm has to split a subset that contains only two classes, note that
LDA can only reduce the dimensionality at a maximum of n − 1 dimensions, where n
is the number of classes in the subset. Thus, when a node contains only two classes,
users can choose between a Star Coordinates visualization with a principal component
analysis-based jittering (see Figure 8a) or they can opt for a coordinated representation of
the one-dimensional LDA mapping, the weight values of the features in the model, and a
histogram showing the distribution of cases along the LDA representation (see Figure 8b).

The color map used maintains coherence between the different nodes’ visualizations
and the representation of the trees. The viewer is designed following the guidelines in the
Visual Information-Seeking Mantra [34,35]. Among other things, this means that classes
can be silenced from the visualization by clicking on the legend, and the application also
enables users to retrieve details on demand from a HoverTool included in the viewer.
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(a) (b)
Figure 8. GDT allows the users to choose the representation for decision support in two classes
of nodes. (a) SC representation of LDA after applying a jittering based on PCA in the same node.
(b) Coordinated view of 1D LDA projection, distribution plot of samples, and values of features
in linear transformation matrix. In this instance, the focus is on how it distinguishes between the
versicolor (2, green) and virginica (3, red) classes within the iris dataset.

4.2.4. Classification Performance and Exporting Results

We have developed GDT to be able to compare between the built tree and an automat-
ically generated one. Once the tree is complete, the users can interact with the classification
controls. This area manages the parameters to build the trees implemented by the scikit-
learn library. Users can define the split criterion by choosing between entropy or Gini and
define the maximum depth from these automatically built trees.

Once the automatic tree has been executed, users can compare the classification
performance between the sci-kit learn tree and the manually built tree. To show the
performance of the trees, GDT includes the following indicators for each class present
in the dataset: Precision, Recall, F1-Score, and the number of records used to test each
class. The Precision value shows the number of correctly classified records of a class
among the total number of observations classified as such. The Recall value shows the
number of observations classified as one class among the total observations of that class.
Lastly, the F1-Score is a general metric used to evaluate the classifier performance in each
class, calculated as F1 = 2 × (Precision × Recall)/(Precision + Recall). These results are
presented in a table, as shown in Figure 9.

Figure 9. Performance obtained by the automatic and manually built trees in the Iris dataset [33].
Each class consists of 50 balanced records before training and testing sets with a 70:30 ratio.

Once the classifier is built and the user decides that the performance is good enough,
both the scikit-learn and the manually built tree can be exported in PDF format by clicking
the corresponding button on the interface. These representations employ the Graphviz
library [36] to export the PDF. The scikit-learn tree generates a DOT visualization auto-
matically. We color the leaf nodes according to the colormap used in all the visualizations.
The manually built tree is exported from a custom function, and we maintain the color
map associated with the classes for comparison with the automatically generated tree. The
exported trees (see Figure 10) provide detailed information about every split feature, the
cutoff value, entropy, the number of samples in relation to the initial trainjng, and the
purity values.
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petal_width <= 0.8
entropy = 1.581

samples = 100.0%
value = [0.3,0.35,0.36]

entropy = 0.0
samples = 29.8%

value = [1.0,0.0,0.0]
class = 1

True

petal_width <= 1.75
entropy = 1.0

samples = 70.2%
value = [0.0,0.49,0.51]

False

entropy = 0.544
samples = 38.5%

value = [0.0,0.88,0.12]
class = 2

entropy = 0.196
samples = 31.7%

value = [0.0,0.03,0.97]
class = 3

(a)

petal_length <= -0.827
entropy = 1.581

samples = 100.0%
value = [0.298, 0.346, 0.356]

entropy = 0.0
samples = 29.8%

value = [1.0, 0.0, 0.0]

True

petal_width <= 0.685
entropy = 1.0

samples = 70.2%
value = [0.0, 0.493, 0.507]

False

entropy = 0.544
samples = 38.5%

value = [0.0, 0.875, 0.125]

entropy = 0.196
samples = 31.7%

value = [0.0, 0.03, 0.97]

(b)
Figure 10. Example of exported trees both manually obtained and automatically generated by
means of scikit-learn from the Iris dataset [33]. The similar format allows domain experts to make a
comparison at first sight. (a) Guided interactively built tree and (b) scikit-learn tree.

5. Case Study

To demonstrate the effectiveness of using GDT on real data cases, we have provided
it to domain experts in biomechanics specializing in human movement. Based on their
prior knowledge and the visualizations provided by the tool, they built a classifier with
which to compare its performance to machine learning methods, both in performance
and complexity.

Note that sometimes the best decision tree is not the most efficient one, but the one
whose partial decisions cause the least rejection in the user. This is easily observable in
organic character animation issues, as the final positions of certain limbs (e.g., a hand, a
walk cycle) may involve intermediate positions unfamiliar to a user. These anatomically
correct but unusual positions provoke rejection in the users of graphic environments,
enhancing the uncanny valley so feared in visual perception in this discipline.

The anatomical knowledge of the modeler and the animation expert is essential for a
final result that is not only possible but also familiar. For this reason, we have tested our
tool with a dataset of avatar positions. This dataset includes various poses and movements
that are critical for creating realistic and acceptable animations. By incorporating expert
knowledge into the decision-making process, we aim to reduce the uncanny valley effect
and improve user acceptance of the final animated characters.

5.1. Data Description

The dataset utilized in this experiment originates from Dyna [37], which is derived
from 4D scans of human bodies converted into meshes with generic features to ensure
anonymity. Subsequent work generated produced skeletons from these meshes [38], and
this is the dataset employed in this experiment. The dataset used to test the tool consists
of 21,495 records obtained through skeleton extraction through SMPL models [39] of
individuals doing exercises obtained from video frames and 14 labeled movements. This
movements are as follows: 0—knee movement, 1—running on the spot, 2—chicken wings,
3—punching, 4—light stiff hopping, 5—shaking arms, 6—shaking hips, 7—bouncing
on toes, 8—light loose hopping, 9—jumping jacks, 10—one-legged jump, 11—shaking
shoulders, 12—moving hips, and 13—one-legged loose jump. The records in the dataset
are obtained through the capture of the skeleton position in an angle axis system obtained
from video frames.

For this analysis, we have created two scenarios from the original dataset. The original
dataset consisted of 72 features (3 features for every joint, axis x, y and z), and after feature
selection based on feature relevance, it was reduced to 15 features. This feature selection
was based on their importance when representing LDA in two dimensions within a Star
Coordinates system. Through this representation, a metric can be obtained for how relevant
a variable is in achieving class separation, based on the magnitude and direction of its
corresponding vector in the resulting linear transformation. Higher magnitudes are asso-
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ciated with greater importance, and features with similar directions in the representation
presumably imply a correlation [28]. This has been used to perform the initial feature
selection of the dataset, as well as to guide the construction of the decision trees. Finally,
the features included in the analysis are as follows: Left Foot 2, Spine 1, Left Hand 1, Left
Foot 3, Left Collar 3, Left Collar 2, Right Hip 1, Left Hand 3, Right Ankle 3, Left Knee 1,
Left Shoulder 3, Right Shoulder 3, Right Knee 1, Left Elbow 2 and Right Elbow 2. The
set of variables used in both scenarios are displayed in Figure 11. Note that the original
dataset showed a considerable imbalance between classes, so it was necessary to reduce
the number of records in both scenarios through undersampling balancing classes. In both
cases, the dataset scenarios were split into training and testing sets, with a 70:30 ratio.
Table 1 provides a comparative summary of the number of records, features, and poses
included in both scenarios.

Table 1. Comparison of datasets based on the number of records, features, and poses included.

Dataset No. Records No. Features No. Poses

Original dataset 21,495 72 14
First scenario 6324 15 6

Second scenario 12,390 15 14

(a) (b)

Figure 11. Representation of the variables in the original dataset (a) and in the two scenarios
used for decision tree construction (b). The set of variables has been reduced based on feature
importance metrics.

5.2. First Scenario

The goal in the first scenario is to build a classifier that can compete in performance
with automatically built trees, using GDT and applying their previous knowledge. In this
scenario, the dataset is reduced to six balanced classes, with 6324 records related with one
of the following movements: 0—knee movement, 5—shaking arms, 7—bouncing on toes,
8—light loose hopping, 11—shaking shoulders, and 12—moving hips.

From this starting point, the domain experts represented the LDA corresponding to
the training set and decided to create a node using the feature ‘59’ (Right Elbow 2) based
on their perception and their prior knowledge. They persisted in this process of node
construction until they considered the classifier to be built (see Figure 12a). Once the tree
was built, they executed the scikit-learn algorithm (see Figure 12b) with the same maximum
depth as the manual decision tree to compare their performance, (see Figure 13), observing
that it is similar in both trees.

From the decision tree construction process, the domain experts could extract some
insights from the raw data. The first insight found by the domain experts was that they
were able to discriminate, with high performance, for 27% of the samples in only two steps,
as shown in Figure 14. The second insight that they obtained from an exploratory data
analysis was the predominance of the characteristics corresponding to the upper body when
classifying movements. Specifically, they found upper body features to be the partitioning
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feature on 56 occasionis in the tree-building process. This corresponds to 69.13% of the total.
Also, in this building process, the domain experts used left-sided features more frequently.
They were used 53 times in this building process, compared to 28 for right-sided features
and 13 for spine- and hip-related features.

R_Elbow_2 <= 0.69
entropy = 2.585

samples = 100.0%
value = [0.16,0.17,0.17,0.17,0.17,0.17]

L_Knee_1 <= -0.05
entropy = 2.313

samples = 72.1%
value = [0.23,0.05,0.03,0.24,0.23,0.23]

True

L_Collar_2 <= -0.25
entropy = 1.067

samples = 27.9%
value = [0.0,0.47,0.52,0.0,0.01,0.0]

False

L_Hand_1 <= 0.2
entropy = 2.089

samples = 24.1%
value = [0.07,0.14,0.02,0.06,0.35,0.36]

L_Hand_3 <= 0.14
entropy = 2.084

samples = 48.0%
value = [0.31,0.0,0.04,0.33,0.16,0.17]

entropy = 0.323
samples = 12.8%

value = [0.0,0.95,0.03,0.0,0.02,0.0]
class = 5

entropy = 0.36
samples = 15.1%

value = [0.0,0.07,0.93,0.0,0.0,0.0]
class = 7

L_Hand_3 <= -0.29
entropy = 1.96

samples = 19.3%
value = [0.04,0.16,0.02,0.04,0.43,0.31]

L_Hand_3 <= 0.18
entropy = 1.844
samples = 4.8%

value = [0.19,0.04,0.02,0.15,0.04,0.56]

Spine1_1 <= 0.31
entropy = 2.138

samples = 38.8%
value = [0.21,0.0,0.04,0.34,0.2,0.2]

L_Collar_3 <= -0.44
entropy = 0.952
samples = 9.2%

value = [0.72,0.0,0.0,0.27,0.0,0.01]

L_Knee_1 <= 0.14
entropy = 1.942

samples = 26.9%
value = [0.14,0.0,0.06,0.48,0.08,0.24]

R_Hip_1 <= -0.68
entropy = 1.536

samples = 11.9%
value = [0.37,0.0,0.0,0.02,0.48,0.12]

entropy = 0.663
samples = 1.0%

value = [0.0,0.0,0.0,0.86,0.02,0.11]
class = 8

L_Elbow_2 <= -0.12
entropy = 0.715
samples = 8.2%

value = [0.8,0.0,0.0,0.2,0.0,0.0]

entropy = 0.0
samples = 4.6%

value = [1.0,0.0,0.0,0.0,0.0,0.0]
class = 0

L_Collar_3 <= -0.19
entropy = 0.99

samples = 3.7%
value = [0.56,0.0,0.0,0.44,0.0,0.0]

entropy = 0.755
samples = 2.1%

value = [0.22,0.0,0.0,0.78,0.0,0.0]
class = 8

entropy = 0.0
samples = 1.6%

value = [1.0,0.0,0.0,0.0,0.0,0.0]
class = 0

L_Hand_3 <= 0.07
entropy = 2.218

samples = 13.8%
value = [0.23,0.0,0.11,0.19,0.13,0.34]

L_Hand_1 <= 0.18
entropy = 1.046

samples = 13.1%
value = [0.04,0.0,0.01,0.8,0.03,0.13]

entropy = 0.0
samples = 3.7%

value = [1.0,0.0,0.0,0.0,0.0,0.0]
class = 0

L_Hand_1 <= 0.24
entropy = 1.275
samples = 8.2%

value = [0.09,0.0,0.0,0.03,0.7,0.18]

L_Hand_3 <= 0.09
entropy = 1.587
samples = 5.4%

value = [0.13,0.0,0.0,0.05,0.55,0.27]

entropy = 0.118
samples = 2.8%

value = [0.0,0.0,0.0,0.0,0.98,0.02]
class = 11

R_Ankle_3 <= 0.45
entropy = 1.335
samples = 4.2%

value = [0.17,0.0,0.0,0.06,0.69,0.07]

entropy = 0.235
samples = 1.2%

value = [0.0,0.0,0.0,0.0,0.04,0.96]
class = 12

entropy = 0.672
samples = 3.3%

value = [0.03,0.0,0.0,0.04,0.89,0.03]
class = 11

L_Foot_3 <= 0.34
entropy = 1.287
samples = 0.9%

value = [0.64,0.0,0.0,0.14,0.0,0.21]

R_Elbow_2 <= 0.09
entropy = 1.248
samples = 0.4%

value = [0.06,0.0,0.0,0.38,0.0,0.56]

entropy = 0.0
samples = 0.6%

value = [1.0,0.0,0.0,0.0,0.0,0.0]
class = 0

entropy = 0.0
samples = 0.1%

value = [0.0,0.0,0.0,1.0,0.0,0.0]
class = 8

entropy = 0.469
samples = 0.2%

value = [0.1,0.0,0.0,0.0,0.0,0.9]
class = 12

L_Foot_3 <= 0.1
entropy = 2.281

samples = 10.4%
value = [0.29,0.0,0.15,0.18,0.17,0.21]

R_Ankle_3 <= 0.26
entropy = 1.076
samples = 3.4%

value = [0.05,0.01,0.0,0.21,0.0,0.73]

entropy = 0.453
samples = 8.9%

value = [0.02,0.0,0.0,0.93,0.04,0.01]
class = 8

L_Hand_3 <= 0.09
entropy = 1.531
samples = 4.2%

value = [0.09,0.0,0.04,0.5,0.0,0.37]

L_Elbow_2 <= -0.26
entropy = 1.2

samples = 1.2%
value = [0.16,0.0,0.15,0.69,0.0,0.0]

L_Shoulder_3 <= -0.76
entropy = 1.241
samples = 2.9%

value = [0.05,0.0,0.0,0.42,0.0,0.52]

entropy = 0.0
samples = 0.1%

value = [0.0,0.0,1.0,0.0,0.0,0.0]
class = 7

R_Ankle_3 <= 0.26
entropy = 1.046
samples = 1.1%

value = [0.18,0.0,0.08,0.75,0.0,0.0]

entropy = 0.912
samples = 1.5%

value = [0.11,0.0,0.0,0.8,0.0,0.09]
class = 8

entropy = 0.201
samples = 1.4%

value = [0.0,0.0,0.0,0.03,0.0,0.97]
class = 12

entropy = 0.544
samples = 0.7%

value = [0.0,0.0,0.12,0.88,0.0,0.0]
class = 8

R_Elbow_2 <= 0.08
entropy = 0.998
samples = 0.4%

value = [0.47,0.0,0.0,0.53,0.0,0.0]

entropy = 0.0
samples = 0.1%

value = [0.0,0.0,0.0,1.0,0.0,0.0]
class = 8

entropy = 0.89
samples = 0.3%

value = [0.69,0.0,0.0,0.31,0.0,0.0]
class = 0

R_Ankle_3 <= 0.2
entropy = 2.068
samples = 4.0%

value = [0.15,0.0,0.07,0.11,0.39,0.28]

L_Shoulder_3 <= -0.75
entropy = 2.079
samples = 6.4%

value = [0.37,0.0,0.2,0.23,0.03,0.17]

entropy = 0.369
samples = 2.6%

value = [0.03,0.01,0.0,0.02,0.0,0.95]
class = 12

L_Foot_2 <= 0.02
entropy = 0.758
samples = 0.8%

value = [0.14,0.0,0.0,0.83,0.0,0.03]

entropy = 0.0
samples = 0.7%

value = [0.0,0.0,0.0,1.0,0.0,0.0]
class = 8

entropy = 0.65
samples = 0.1%

value = [0.83,0.0,0.0,0.0,0.0,0.17]
class = 0

L_Collar_3 <= -0.4
entropy = 1.479
samples = 2.2%

value = [0.1,0.0,0.09,0.03,0.69,0.09]

L_Hand_3 <= -0.09
entropy = 1.619
samples = 1.7%

value = [0.22,0.0,0.04,0.21,0.0,0.53]

L_Elbow_2 <= -0.25
entropy = 1.797
samples = 4.2%

value = [0.39,0.0,0.05,0.36,0.01,0.19]

L_Hand_3 <= -0.05
entropy = 1.71

samples = 2.3%
value = [0.33,0.0,0.46,0.0,0.08,0.13]

L_Collar_2 <= -0.01
entropy = 1.163
samples = 0.5%

value = [0.0,0.0,0.35,0.61,0.04,0.0]

Spine1_1 <= 0.11
entropy = 1.613
samples = 3.6%

value = [0.45,0.0,0.01,0.32,0.01,0.22]

L_Foot_2 <= -0.27
entropy = 1.188
samples = 1.5%

value = [0.0,0.0,0.69,0.0,0.12,0.19]

entropy = 0.0
samples = 0.8%

value = [1.0,0.0,0.0,0.0,0.0,0.0]
class = 0

R_Knee_1 <= -0.01
entropy = 1.544
samples = 0.7%

value = [0.0,0.0,0.28,0.0,0.28,0.45]

entropy = 0.0
samples = 0.9%

value = [0.0,0.0,1.0,0.0,0.0,0.0]
class = 7

entropy = 0.0
samples = 0.3%

value = [0.0,0.0,0.0,0.0,0.0,1.0]
class = 12

Spine1_1 <= 0.24
entropy = 1.0

samples = 0.4%
value = [0.0,0.0,0.5,0.0,0.5,0.0]

entropy = 0.0
samples = 0.2%

value = [0.0,0.0,1.0,0.0,0.0,0.0]
class = 7

entropy = 0.0
samples = 0.2%

value = [0.0,0.0,0.0,0.0,1.0,0.0]
class = 11

L_Hand_3 <= -0.3
entropy = 0.918
samples = 0.3%

value = [0.0,0.0,0.67,0.33,0.0,0.0]

entropy = 0.439
samples = 0.2%

value = [0.0,0.0,0.0,0.91,0.09,0.0]
class = 8

L_Hand_3 <= -0.15
entropy = 1.124
samples = 1.7%

value = [0.62,0.0,0.01,0.01,0.0,0.36]

R_Hip_1 <= -0.15
entropy = 1.362
samples = 1.9%

value = [0.3,0.0,0.0,0.59,0.01,0.09]

entropy = 0.0
samples = 0.1%

value = [0.0,0.0,0.0,1.0,0.0,0.0]
class = 8

entropy = 0.0
samples = 0.2%

value = [0.0,0.0,1.0,0.0,0.0,0.0]
class = 7

entropy = 0.235
samples = 0.6%

value = [0.04,0.0,0.0,0.0,0.0,0.96]
class = 12

entropy = 0.522
samples = 1.1%

value = [0.92,0.0,0.02,0.02,0.0,0.04]
class = 0

entropy = 0.59
samples = 0.6%

value = [0.89,0.0,0.0,0.0,0.04,0.07]
class = 0

entropy = 0.603
samples = 1.3%

value = [0.02,0.0,0.0,0.88,0.0,0.1]
class = 8

entropy = 0.375
samples = 1.6%

value = [0.0,0.0,0.07,0.0,0.93,0.0]
class = 11

R_Elbow_2 <= 0.03
entropy = 2.176
samples = 0.7%

value = [0.32,0.0,0.13,0.1,0.16,0.29]

L_Hand_1 <= -0.15
entropy = 0.744
samples = 1.2%

value = [0.21,0.0,0.0,0.0,0.0,0.79]

L_Shoulder_3 <= -0.75
entropy = 1.273
samples = 0.6%

value = [0.24,0.0,0.12,0.64,0.0,0.0]

entropy = 0.0
samples = 0.2%

value = [1.0,0.0,0.0,0.0,0.0,0.0]
class = 0

entropy = 0.271
samples = 1.0%

value = [0.05,0.0,0.0,0.0,0.0,0.95]
class = 12

entropy = 0.0
samples = 0.4%

value = [0.0,0.0,0.0,1.0,0.0,0.0]
class = 8

L_Shoulder_3 <= -0.27
entropy = 0.918
samples = 0.2%

value = [0.67,0.0,0.33,0.0,0.0,0.0]

entropy = 0.0
samples = 0.1%

value = [1.0,0.0,0.0,0.0,0.0,0.0]
class = 0

entropy = 0.0
samples = 0.1%

value = [0.0,0.0,1.0,0.0,0.0,0.0]
class = 7

L_Elbow_2 <= 0.1
entropy = 1.42

samples = 0.4%
value = [0.56,0.0,0.25,0.19,0.0,0.0]

R_Elbow_2 <= 0.33
entropy = 1.231
samples = 0.3%

value = [0.07,0.0,0.0,0.0,0.33,0.6]

entropy = 0.0
samples = 0.2%

value = [1.0,0.0,0.0,0.0,0.0,0.0]
class = 0

L_Collar_3 <= -0.28
entropy = 0.985
samples = 0.2%

value = [0.0,0.0,0.57,0.43,0.0,0.0]

entropy = 0.469
samples = 0.2%

value = [0.1,0.0,0.0,0.0,0.0,0.9]
class = 12

entropy = 0.0
samples = 0.1%

value = [0.0,0.0,0.0,0.0,1.0,0.0]
class = 11

entropy = 0.0
samples = 0.1%

value = [0.0,0.0,1.0,0.0,0.0,0.0]
class = 7

entropy = 0.0
samples = 0.1%

value = [0.0,0.0,0.0,1.0,0.0,0.0]
class = 8

entropy = 0.65
samples = 3.5%

value = [0.0,0.08,0.0,0.01,0.88,0.03]
class = 11

L_Hand_1 <= -0.04
entropy = 2.06

samples = 15.8%
value = [0.05,0.18,0.03,0.05,0.33,0.37]

L_Foot_3 <= -0.25
entropy = 1.304
samples = 3.5%

value = [0.06,0.06,0.03,0.03,0.06,0.77]

L_Collar_3 <= -0.25
entropy = 1.104
samples = 1.3%

value = [0.53,0.0,0.02,0.46,0.0,0.0]

entropy = 0.412
samples = 2.8%

value = [0.0,0.03,0.03,0.0,0.0,0.93]
class = 12

R_Hip_1 <= -0.77
entropy = 2.241
samples = 0.7%

value = [0.28,0.16,0.0,0.16,0.28,0.12]

R_Elbow_2 <= 0.11
entropy = 0.926
samples = 0.9%

value = [0.34,0.0,0.0,0.66,0.0,0.0]

entropy = 0.31
samples = 0.4%

value = [0.94,0.0,0.06,0.0,0.0,0.0]
class = 0

entropy = 0.0
samples = 0.6%

value = [0.0,0.0,0.0,1.0,0.0,0.0]
class = 8

entropy = 0.0
samples = 0.3%

value = [1.0,0.0,0.0,0.0,0.0,0.0]
class = 0

entropy = 0.0
samples = 0.2%

value = [1.0,0.0,0.0,0.0,0.0,0.0]
class = 0

R_Knee_1 <= -0.05
entropy = 2.095
samples = 0.5%

value = [0.04,0.21,0.0,0.21,0.38,0.17]

L_Collar_3 <= -0.26
entropy = 1.577
samples = 0.3%

value = [0.0,0.38,0.0,0.31,0.0,0.31]

entropy = 0.866
samples = 0.2%

value = [0.09,0.0,0.0,0.09,0.82,0.0]
class = 11

L_Collar_3 <= -0.38
entropy = 0.991
samples = 0.2%

value = [0.0,0.56,0.0,0.0,0.0,0.44]

entropy = 0.0
samples = 0.1%

value = [0.0,0.0,0.0,1.0,0.0,0.0]
class = 8

entropy = 0.0
samples = 0.1%

value = [0.0,0.0,0.0,0.0,0.0,1.0]
class = 12

entropy = 0.0
samples = 0.1%

value = [0.0,1.0,0.0,0.0,0.0,0.0]
class = 5

L_Elbow_2 <= -0.1
entropy = 1.482
samples = 3.9%

value = [0.06,0.05,0.0,0.0,0.52,0.37]

L_Hand_1 <= 0.03
entropy = 2.136

samples = 11.9%
value = [0.05,0.23,0.03,0.06,0.27,0.37]

L_Collar_2 <= -0.29
entropy = 1.248
samples = 2.6%

value = [0.0,0.06,0.0,0.0,0.39,0.55]

R_Shoulder_3 <= 1.04
entropy = 0.838
samples = 1.3%

value = [0.2,0.02,0.0,0.0,0.79,0.0]

L_Foot_2 <= -0.11
entropy = 1.79

samples = 3.3%
value = [0.0,0.49,0.0,0.18,0.11,0.22]

L_Foot_2 <= -0.03
entropy = 1.967
samples = 8.6%

value = [0.06,0.13,0.05,0.01,0.33,0.43]

L_Collar_2 <= -0.41
entropy = 1.457
samples = 1.3%

value = [0.0,0.19,0.0,0.0,0.29,0.53]

L_Collar_2 <= -0.02
entropy = 0.968
samples = 2.0%

value = [0.0,0.69,0.0,0.3,0.0,0.01]

R_Shoulder_3 <= 0.67
entropy = 1.751
samples = 6.5%

value = [0.06,0.12,0.01,0.01,0.27,0.53]

L_Knee_1 <= -0.12
entropy = 2.022
samples = 2.1%

value = [0.08,0.15,0.16,0.01,0.5,0.1]

L_Foot_3 <= 0.26
entropy = 1.586
samples = 1.8%

value = [0.11,0.43,0.04,0.0,0.0,0.42]

R_Ankle_3 <= 0.03
entropy = 1.279
samples = 4.8%

value = [0.04,0.0,0.0,0.02,0.37,0.57]

R_Shoulder_3 <= 0.88
entropy = 1.649
samples = 0.8%

value = [0.0,0.41,0.38,0.03,0.0,0.18]

R_Shoulder_3 <= 0.69
entropy = 1.022
samples = 1.3%

value = [0.12,0.0,0.03,0.0,0.79,0.05]

R_Shoulder_3 <= 0.81
entropy = 1.186
samples = 0.6%

value = [0.0,0.5,0.46,0.04,0.0,0.0]

entropy = 0.0
samples = 0.1%

value = [0.0,0.0,0.0,0.0,0.0,1.0]
class = 12

L_Hand_1 <= 0.17
entropy = 0.811
samples = 0.2%

value = [0.75,0.0,0.25,0.0,0.0,0.0]

entropy = 0.467
samples = 1.1%

value = [0.02,0.0,0.0,0.0,0.92,0.06]
class = 11

entropy = 0.0
samples = 0.1%

value = [1.0,0.0,0.0,0.0,0.0,0.0]
class = 0

entropy = 0.0
samples = 0.0%

value = [0.0,0.0,1.0,0.0,0.0,0.0]
class = 7

R_Shoulder_3 <= 0.16
entropy = 0.934
samples = 0.4%

value = [0.0,0.35,0.65,0.0,0.0,0.0]

Spine1_1 <= 0.13
entropy = 0.544
samples = 0.2%

value = [0.0,0.88,0.0,0.12,0.0,0.0]

entropy = 0.0
samples = 0.1%

value = [0.0,1.0,0.0,0.0,0.0,0.0]
class = 5

R_Hip_1 <= -0.01
entropy = 0.787
samples = 0.4%

value = [0.0,0.24,0.76,0.0,0.0,0.0]

entropy = 0.0
samples = 0.0%

value = [0.0,0.0,0.0,1.0,0.0,0.0]
class = 8

entropy = 0.0
samples = 0.2%

value = [0.0,1.0,0.0,0.0,0.0,0.0]
class = 5

entropy = 0.0
samples = 0.1%

value = [0.0,1.0,0.0,0.0,0.0,0.0]
class = 5

entropy = 0.0
samples = 0.3%

value = [0.0,0.0,1.0,0.0,0.0,0.0]
class = 7

L_Hand_3 <= -0.02
entropy = 1.554
samples = 1.1%

value = [0.18,0.16,0.06,0.0,0.0,0.6]

entropy = 0.48
samples = 0.7%

value = [0.0,0.9,0.0,0.0,0.0,0.1]
class = 5

entropy = 0.0
samples = 0.7%

value = [0.0,0.0,0.0,0.0,1.0,0.0]
class = 11

R_Elbow_2 <= 0.23
entropy = 1.217
samples = 4.1%

value = [0.04,0.0,0.0,0.02,0.27,0.67]

entropy = 0.611
samples = 3.1%

value = [0.05,0.0,0.0,0.0,0.06,0.89]
class = 12

entropy = 0.583
samples = 1.0%

value = [0.02,0.0,0.0,0.09,0.89,0.0]
class = 11

L_Foot_2 <= -0.09
entropy = 0.776
samples = 0.8%

value = [0.0,0.23,0.0,0.0,0.0,0.77]

entropy = 1.371
samples = 0.3%

value = [0.6,0.0,0.2,0.0,0.0,0.2]
class = 0

L_Hand_3 <= -0.15
entropy = 0.918
samples = 0.5%

value = [0.0,0.33,0.0,0.0,0.0,0.67]

entropy = 0.0
samples = 0.2%

value = [0.0,0.0,0.0,0.0,0.0,1.0]
class = 12

entropy = 0.0
samples = 0.2%

value = [0.0,1.0,0.0,0.0,0.0,0.0]
class = 5

entropy = 0.323
samples = 0.4%

value = [0.0,0.06,0.0,0.0,0.0,0.94]
class = 12

entropy = 0.469
samples = 0.2%

value = [0.0,0.9,0.0,0.0,0.1,0.0]
class = 5

R_Shoulder_3 <= 1.04
entropy = 1.133
samples = 1.1%

value = [0.0,0.04,0.0,0.0,0.33,0.63]

entropy = 0.0
samples = 1.4%

value = [0.0,1.0,0.0,0.0,0.0,0.0]
class = 5

entropy = 0.222
samples = 0.6%

value = [0.0,0.0,0.0,0.96,0.0,0.04]
class = 8

L_Collar_2 <= -0.23
entropy = 0.735
samples = 0.6%

value = [0.0,0.07,0.0,0.0,0.07,0.86]

R_Knee_1 <= -0.08
entropy = 0.918
samples = 0.5%

value = [0.0,0.0,0.0,0.0,0.67,0.33]

R_Ankle_3 <= 0.31
entropy = 0.918
samples = 0.1%

value = [0.0,0.33,0.0,0.0,0.67,0.0]

entropy = 0.242
samples = 0.6%

value = [0.0,0.04,0.0,0.0,0.0,0.96]
class = 12

entropy = 0.0
samples = 0.2%

value = [0.0,0.0,0.0,0.0,0.0,1.0]
class = 12

entropy = 0.0
samples = 0.3%

value = [0.0,0.0,0.0,0.0,1.0,0.0]
class = 11

entropy = 0.0
samples = 0.0%

value = [0.0,1.0,0.0,0.0,0.0,0.0]
class = 5

entropy = 0.0
samples = 0.0%

value = [0.0,0.0,0.0,0.0,1.0,0.0]
class = 11

R_Shoulder_3 <= 0.38
entropy = 0.551
samples = 1.1%

value = [0.0,0.13,0.0,0.0,0.87,0.0]

entropy = 0.427
samples = 1.6%

value = [0.0,0.01,0.0,0.0,0.06,0.93]
class = 12

entropy = 0.773
samples = 0.3%

value = [0.85,0.08,0.0,0.0,0.08,0.0]
class = 0

entropy = 0.0
samples = 1.0%

value = [0.0,0.0,0.0,0.0,1.0,0.0]
class = 11

entropy = 0.0
samples = 0.1%

value = [0.0,1.0,0.0,0.0,0.0,0.0]
class = 5

entropy = 0.0
samples = 0.9%

value = [0.0,0.0,0.0,0.0,1.0,0.0]
class = 11

(a)
R_Elbow_2 <= 0.343

entropy = 2.585
samples = 100.0%

value = [0.164, 0.166, 0.167, 0.172, 0.167, 0.165]

R_Knee_1 <= -0.423
entropy = 2.313

samples = 72.1%
value = [0.227, 0.047, 0.031, 0.239, 0.227, 0.229]

True

L_Collar_2 <= -0.535
entropy = 1.067

samples = 27.9%
value = [0.0, 0.473, 0.517, 0.0, 0.01, 0.0]

False

L_Elbow_2 <= 0.295
entropy = 2.058

samples = 29.8%
value = [0.064, 0.113, 0.026, 0.073, 0.282, 0.442]

Spine1_1 <= 0.56
entropy = 1.973

samples = 42.4%
value = [0.342, 0.0, 0.034, 0.355, 0.189, 0.08]

Spine1_1 <= 0.147
entropy = 1.183
samples = 5.1%

value = [0.0, 0.262, 0.039, 0.004, 0.681, 0.013]

R_Elbow_2 <= -0.874
entropy = 1.962

samples = 24.6%
value = [0.078, 0.082, 0.023, 0.088, 0.198, 0.532]

R_Shoulder_3 <= 0.091
entropy = 1.456
samples = 2.1%

value = [0.0, 0.632, 0.095, 0.011, 0.232, 0.032]

entropy = 0.0
samples = 3.0%

value = [0.0, 0.0, 0.0, 0.0, 1.0, 0.0]

R_Shoulder_3 <= -1.626
entropy = 0.642
samples = 1.5%

value = [0.0, 0.881, 0.075, 0.0, 0.0, 0.045]

L_Foot_2 <= 0.279
entropy = 1.018
samples = 0.6%

value = [0.0, 0.036, 0.143, 0.036, 0.786, 0.0]

entropy = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]

L_Knee_1 <= -0.336
entropy = 0.28

samples = 1.4%
value = [0.0, 0.952, 0.0, 0.0, 0.0, 0.048]

entropy = 0.0
samples = 1.3%

value = [0.0, 1.0, 0.0, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 0.1%

value = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]

R_Hip_1 <= 0.681
entropy = 0.64

samples = 0.6%
value = [0.0, 0.0, 0.08, 0.04, 0.88, 0.0]

L_Foot_3 <= -1.032
entropy = 0.918
samples = 0.1%

value = [0.0, 0.333, 0.667, 0.0, 0.0, 0.0]

L_Hand_3 <= -2.976
entropy = 0.258
samples = 0.5%

value = [0.0, 0.0, 0.0, 0.043, 0.957, 0.0]

entropy = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0, 0.0, 0.0]

entropy = 0.0
samples = 0.5%

value = [0.0, 0.0, 0.0, 0.0, 1.0, 0.0]

entropy = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0, 0.0, 0.0]

L_Collar_2 <= 0.764
entropy = 1.422
samples = 2.0%

value = [0.247, 0.011, 0.146, 0.596, 0.0, 0.0]

L_Foot_3 <= -1.011
entropy = 1.765

samples = 22.6%
value = [0.063, 0.088, 0.012, 0.043, 0.216, 0.579]

Spine1_1 <= -1.33
entropy = 0.262
samples = 1.2%

value = [0.018, 0.0, 0.018, 0.964, 0.0, 0.0]

R_Hip_1 <= 0.587
entropy = 1.109
samples = 0.8%

value = [0.618, 0.029, 0.353, 0.0, 0.0, 0.0]

L_Elbow_2 <= 1.087
entropy = 1.0

samples = 0.0%
value = [0.5, 0.0, 0.5, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 1.2%

value = [0.0, 0.0, 0.0, 1.0, 0.0, 0.0]

entropy = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]

L_Hand_3 <= -0.493
entropy = 0.267
samples = 0.5%

value = [0.955, 0.045, 0.0, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 0.3%

value = [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 0.5%

value = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]

R_Elbow_2 <= -0.481
entropy = 0.046
samples = 4.5%

value = [0.005, 0.0, 0.0, 0.0, 0.0, 0.995]

L_Foot_2 <= -0.065
entropy = 1.97

samples = 18.1%
value = [0.077, 0.11, 0.015, 0.053, 0.269, 0.476]

entropy = 0.0
samples = 4.4%

value = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]

entropy = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]

R_Knee_1 <= -0.568
entropy = 1.55

samples = 10.5%
value = [0.009, 0.03, 0.013, 0.092, 0.254, 0.603]

L_Hand_1 <= -0.881
entropy = 2.059
samples = 7.6%

value = [0.171, 0.221, 0.018, 0.0, 0.289, 0.301]

L_Hand_1 <= -2.125
entropy = 1.014
samples = 7.5%

value = [0.0, 0.003, 0.0, 0.009, 0.332, 0.656]

L_Shoulder_3 <= -0.591
entropy = 1.954
samples = 3.0%

value = [0.03, 0.097, 0.045, 0.299, 0.06, 0.47]

entropy = 0.0
samples = 1.2%

value = [0.0, 0.0, 0.0, 0.0, 1.0, 0.0]

L_Collar_2 <= 0.308
entropy = 0.839
samples = 6.3%

value = [0.0, 0.004, 0.0, 0.011, 0.201, 0.785]

entropy = 0.0
samples = 2.9%

value = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]

R_Ankle_3 <= 0.441
entropy = 1.129
samples = 3.4%

value = [0.0, 0.007, 0.0, 0.02, 0.368, 0.605]

L_Foot_3 <= 0.129
entropy = 0.908
samples = 2.7%

value = [0.0, 0.008, 0.0, 0.008, 0.23, 0.754]

L_Hand_3 <= 0.08
entropy = 0.353
samples = 0.7%

value = [0.0, 0.0, 0.0, 0.067, 0.933, 0.0]

R_Ankle_3 <= -0.893
entropy = 1.068
samples = 1.0%

value = [0.0, 0.023, 0.0, 0.0, 0.636, 0.341]

R_Elbow_2 <= -0.231
entropy = 0.099
samples = 1.8%

value = [0.0, 0.0, 0.0, 0.013, 0.0, 0.987]

R_Elbow_2 <= -0.839
entropy = 0.222
samples = 0.6%

value = [0.0, 0.036, 0.0, 0.0, 0.964, 0.0]

R_Knee_1 <= -0.626
entropy = 0.337
samples = 0.4%

value = [0.0, 0.0, 0.0, 0.0, 0.062, 0.938]

entropy = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 0.6%

value = [0.0, 0.0, 0.0, 0.0, 1.0, 0.0]

entropy = 0.0
samples = 0.3%

value = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]

entropy = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 0.0, 1.0, 0.0]

entropy = 0.0
samples = 1.7%

value = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]

entropy = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0, 0.0, 0.0]

entropy = 0.0
samples = 0.6%

value = [0.0, 0.0, 0.0, 0.0, 1.0, 0.0]

entropy = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0, 0.0, 0.0]

L_Collar_3 <= -0.552
entropy = 1.246
samples = 1.4%

value = [0.0, 0.0, 0.032, 0.645, 0.032, 0.29]

R_Ankle_3 <= -0.661
entropy = 1.632
samples = 1.6%

value = [0.056, 0.181, 0.056, 0.0, 0.083, 0.625]

L_Knee_1 <= -0.587
entropy = 0.429
samples = 1.0%

value = [0.0, 0.0, 0.047, 0.93, 0.023, 0.0]

L_Hand_3 <= -0.845
entropy = 0.297
samples = 0.4%

value = [0.0, 0.0, 0.0, 0.0, 0.053, 0.947]

L_Foot_2 <= -0.793
entropy = 1.5

samples = 0.1%
value = [0.0, 0.0, 0.5, 0.25, 0.25, 0.0]

entropy = 0.0
samples = 0.9%

value = [0.0, 0.0, 0.0, 1.0, 0.0, 0.0]

L_Shoulder_3 <= -0.61
entropy = 1.0

samples = 0.0%
value = [0.0, 0.0, 0.0, 0.5, 0.5, 0.0]

entropy = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 0.0, 1.0, 0.0]

entropy = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0, 0.0, 0.0]

entropy = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 0.0, 1.0, 0.0]

entropy = 0.0
samples = 0.4%

value = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]

entropy = 0.0
samples = 0.9%

value = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]

L_Knee_1 <= -0.654
entropy = 2.128
samples = 0.7%

value = [0.129, 0.419, 0.129, 0.0, 0.194, 0.129]

entropy = 0.0
samples = 0.3%

value = [0.0, 1.0, 0.0, 0.0, 0.0, 0.0]

L_Knee_1 <= -0.301
entropy = 1.975
samples = 0.4%

value = [0.222, 0.0, 0.222, 0.0, 0.333, 0.222]

R_Hip_1 <= 0.34
entropy = 0.971
samples = 0.2%

value = [0.0, 0.0, 0.4, 0.0, 0.6, 0.0]

L_Shoulder_3 <= 0.063
entropy = 1.0

samples = 0.2%
value = [0.5, 0.0, 0.0, 0.0, 0.0, 0.5]

entropy = 0.0
samples = 0.1%

value = [0.0, 0.0, 0.0, 0.0, 1.0, 0.0]

entropy = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 0.1%

value = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]

entropy = 0.0
samples = 0.1%

value = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]

R_Ankle_3 <= 0.327
entropy = 1.09

samples = 1.9%
value = [0.119, 0.738, 0.0, 0.0, 0.0, 0.143]

L_Hand_3 <= 1.343
entropy = 1.86

samples = 5.7%
value = [0.188, 0.051, 0.024, 0.0, 0.384, 0.353]

L_Foot_3 <= 0.843
entropy = 0.232
samples = 1.4%

value = [0.016, 0.969, 0.0, 0.0, 0.0, 0.016]

L_Hand_3 <= -0.811
entropy = 0.993
samples = 0.4%

value = [0.45, 0.0, 0.0, 0.0, 0.0, 0.55]

entropy = 0.0
samples = 1.4%

value = [0.0, 1.0, 0.0, 0.0, 0.0, 0.0]

L_Foot_3 <= 1.015
entropy = 1.0

samples = 0.0%
value = [0.5, 0.0, 0.0, 0.0, 0.0, 0.5]

entropy = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]

entropy = 0.0
samples = 0.2%

value = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]

entropy = 0.0
samples = 0.2%

value = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]

L_Knee_1 <= -1.066
entropy = 1.636
samples = 4.9%

value = [0.046, 0.06, 0.028, 0.0, 0.452, 0.415]

entropy = 0.0
samples = 0.9%

value = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]

R_Shoulder_3 <= 0.589
entropy = 1.413
samples = 0.9%

value = [0.0, 0.317, 0.146, 0.0, 0.0, 0.537]

L_Foot_2 <= 0.508
entropy = 1.236
samples = 4.0%

value = [0.057, 0.0, 0.0, 0.0, 0.557, 0.386]

L_Collar_3 <= -0.325
entropy = 0.9

samples = 0.4%
value = [0.0, 0.684, 0.316, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 0.5%

value = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]

entropy = 0.0
samples = 0.3%

value = [0.0, 1.0, 0.0, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]

L_Collar_3 <= -1.21
entropy = 1.132
samples = 3.0%

value = [0.023, 0.0, 0.0, 0.0, 0.466, 0.511]

Spine1_1 <= -0.366
entropy = 0.641
samples = 1.0%

value = [0.163, 0.0, 0.0, 0.0, 0.837, 0.0]

entropy = 0.0
samples = 0.7%

value = [0.0, 0.0, 0.0, 0.0, 1.0, 0.0]

R_Hip_1 <= 0.386
entropy = 1.062
samples = 2.3%

value = [0.029, 0.0, 0.0, 0.0, 0.304, 0.667]

L_Shoulder_3 <= -0.413
entropy = 0.893
samples = 0.9%

value = [0.0, 0.0, 0.0, 0.0, 0.69, 0.31]

R_Elbow_2 <= -0.497
entropy = 0.495
samples = 1.3%

value = [0.05, 0.0, 0.0, 0.0, 0.033, 0.917]

entropy = 0.362
samples = 0.7%

value = [0.0, 0.0, 0.0, 0.0, 0.931, 0.069]

entropy = 0.619
samples = 0.3%

value = [0.0, 0.0, 0.0, 0.0, 0.154, 0.846]

entropy = 0.129
samples = 1.3%

value = [0.018, 0.0, 0.0, 0.0, 0.0, 0.982]

entropy = 1.0
samples = 0.1%

value = [0.5, 0.0, 0.0, 0.0, 0.5, 0.0]

entropy = 0.0
samples = 0.2%

value = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 0.8%

value = [0.0, 0.0, 0.0, 0.0, 1.0, 0.0]

L_Knee_1 <= 0.219
entropy = 1.734

samples = 27.7%
value = [0.292, 0.0, 0.053, 0.525, 0.044, 0.087]

R_Hip_1 <= -1.484
entropy = 1.459

samples = 14.6%
value = [0.436, 0.0, 0.0, 0.032, 0.464, 0.068]

R_Knee_1 <= 0.004
entropy = 1.808

samples = 11.5%
value = [0.568, 0.0, 0.109, 0.174, 0.072, 0.076]

R_Elbow_2 <= -0.661
entropy = 1.137

samples = 16.2%
value = [0.096, 0.0, 0.012, 0.774, 0.024, 0.094]

R_Shoulder_3 <= 0.388
entropy = 2.242
samples = 6.5%

value = [0.238, 0.0, 0.193, 0.307, 0.128, 0.134]

entropy = 0.0
samples = 5.0%

value = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]

L_Collar_2 <= 0.387
entropy = 1.589
samples = 2.7%

value = [0.458, 0.0, 0.398, 0.11, 0.025, 0.008]

L_Elbow_2 <= 0.568
entropy = 1.994
samples = 3.9%

value = [0.087, 0.0, 0.052, 0.442, 0.198, 0.221]

L_Foot_3 <= 0.329
entropy = 0.353
samples = 1.0%

value = [0.0, 0.0, 0.933, 0.0, 0.067, 0.0]

L_Collar_2 <= 0.745
entropy = 1.115
samples = 1.6%

value = [0.74, 0.0, 0.068, 0.178, 0.0, 0.014]

entropy = 0.0
samples = 0.1%

value = [0.0, 0.0, 0.0, 0.0, 1.0, 0.0]

entropy = 0.0
samples = 0.9%

value = [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]

L_Foot_2 <= -0.228
entropy = 1.648
samples = 0.6%

value = [0.269, 0.0, 0.192, 0.5, 0.0, 0.038]

entropy = 0.0
samples = 1.1%

value = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]

L_Foot_3 <= -0.419
entropy = 0.414
samples = 0.3%

value = [0.0, 0.0, 0.0, 0.917, 0.0, 0.083]

L_Shoulder_3 <= -0.403
entropy = 1.432
samples = 0.3%

value = [0.5, 0.0, 0.357, 0.143, 0.0, 0.0]

entropy = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]

entropy = 0.0
samples = 0.2%

value = [0.0, 0.0, 0.0, 1.0, 0.0, 0.0]

entropy = 0.0
samples = 0.2%

value = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]

L_Collar_2 <= 0.581
entropy = 0.863
samples = 0.2%

value = [0.0, 0.0, 0.714, 0.286, 0.0, 0.0]

entropy = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0, 0.0, 0.0]

entropy = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]

R_Ankle_3 <= 0.002
entropy = 1.672
samples = 1.8%

value = [0.038, 0.0, 0.115, 0.397, 0.436, 0.013]

R_Hip_1 <= 0.62
entropy = 1.417
samples = 2.1%

value = [0.128, 0.0, 0.0, 0.479, 0.0, 0.394]

R_Ankle_3 <= -1.617
entropy = 1.304
samples = 1.0%

value = [0.065, 0.0, 0.109, 0.065, 0.739, 0.022]

Spine1_1 <= 0.17
entropy = 0.544
samples = 0.7%

value = [0.0, 0.0, 0.125, 0.875, 0.0, 0.0]

L_Elbow_2 <= 0.415
entropy = 1.449
samples = 0.2%

value = [0.429, 0.0, 0.429, 0.0, 0.0, 0.143]

L_Foot_3 <= 0.676
entropy = 0.677
samples = 0.9%

value = [0.0, 0.0, 0.051, 0.077, 0.872, 0.0]

entropy = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]

L_Collar_3 <= -0.959
entropy = 0.811
samples = 0.1%

value = [0.75, 0.0, 0.0, 0.0, 0.0, 0.25]

entropy = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]

entropy = 0.0
samples = 0.1%

value = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]

L_Hand_3 <= 0.815
entropy = 0.187
samples = 0.8%

value = [0.0, 0.0, 0.0, 0.029, 0.971, 0.0]

R_Elbow_2 <= -0.376
entropy = 1.0

samples = 0.1%
value = [0.0, 0.0, 0.5, 0.5, 0.0, 0.0]

entropy = 0.0
samples = 0.8%

value = [0.0, 0.0, 0.0, 0.0, 1.0, 0.0]

entropy = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0, 0.0, 0.0]

entropy = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0, 0.0, 0.0]

entropy = 0.0
samples = 0.6%

value = [0.0, 0.0, 0.0, 1.0, 0.0, 0.0]

entropy = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]

L_Shoulder_3 <= -0.674
entropy = 0.991
samples = 1.3%

value = [0.103, 0.0, 0.0, 0.776, 0.0, 0.121]

L_Elbow_2 <= 0.878
entropy = 0.65

samples = 0.8%
value = [0.167, 0.0, 0.0, 0.0, 0.0, 0.833]

Spine1_1 <= -0.002
entropy = 1.581
samples = 0.4%

value = [0.3, 0.0, 0.0, 0.35, 0.0, 0.35]

entropy = 0.0
samples = 0.9%

value = [0.0, 0.0, 0.0, 1.0, 0.0, 0.0]

Spine1_1 <= -0.593
entropy = 0.98

samples = 0.3%
value = [0.417, 0.0, 0.0, 0.583, 0.0, 0.0]

L_Foot_3 <= 0.965
entropy = 0.544
samples = 0.2%

value = [0.125, 0.0, 0.0, 0.0, 0.0, 0.875]

entropy = 0.0
samples = 0.1%

value = [0.0, 0.0, 0.0, 1.0, 0.0, 0.0]

L_Hand_1 <= 0.628
entropy = 0.863
samples = 0.2%

value = [0.714, 0.0, 0.0, 0.286, 0.0, 0.0]

entropy = 0.0
samples = 0.1%

value = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0, 0.0, 0.0]

entropy = 0.0
samples = 0.2%

value = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]

entropy = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 0.7%

value = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]

entropy = 0.0
samples = 0.1%

value = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]

L_Collar_3 <= 0.206
entropy = 0.468

samples = 10.5%
value = [0.075, 0.0, 0.011, 0.914, 0.0, 0.0]

R_Elbow_2 <= -0.344
entropy = 1.742
samples = 5.7%

value = [0.133, 0.0, 0.016, 0.518, 0.067, 0.267]

R_Shoulder_3 <= -0.264
entropy = 0.093
samples = 9.4%

value = [0.0, 0.0, 0.012, 0.988, 0.0, 0.0]

L_Hand_3 <= 0.477
entropy = 0.82

samples = 1.1%
value = [0.745, 0.0, 0.0, 0.255, 0.0, 0.0]

L_Foot_3 <= -0.096
entropy = 0.755
samples = 0.5%

value = [0.0, 0.0, 0.217, 0.783, 0.0, 0.0]

entropy = 0.0
samples = 8.9%

value = [0.0, 0.0, 0.0, 1.0, 0.0, 0.0]

entropy = 0.0
samples = 0.4%

value = [0.0, 0.0, 0.0, 1.0, 0.0, 0.0]

entropy = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 0.3%

value = [0.0, 0.0, 0.0, 1.0, 0.0, 0.0]

entropy = 0.0
samples = 0.8%

value = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]

L_Hand_3 <= 0.791
entropy = 1.299
samples = 4.9%

value = [0.069, 0.0, 0.005, 0.608, 0.005, 0.313]

L_Hand_1 <= 0.602
entropy = 1.315
samples = 0.9%

value = [0.5, 0.0, 0.079, 0.0, 0.421, 0.0]

L_Collar_3 <= -0.642
entropy = 1.001
samples = 2.3%

value = [0.125, 0.0, 0.01, 0.798, 0.01, 0.058]

L_Shoulder_3 <= -0.527
entropy = 1.101
samples = 2.5%

value = [0.018, 0.0, 0.0, 0.434, 0.0, 0.549]

L_Elbow_2 <= 0.828
entropy = 0.101
samples = 1.7%

value = [0.0, 0.0, 0.0, 0.987, 0.013, 0.0]

L_Foot_2 <= 0.026
entropy = 1.678
samples = 0.6%

value = [0.464, 0.0, 0.036, 0.286, 0.0, 0.214]

entropy = 0.0
samples = 1.7%

value = [0.0, 0.0, 0.0, 1.0, 0.0, 0.0]

entropy = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 0.0, 1.0, 0.0]

L_Foot_2 <= -0.447
entropy = 1.314
samples = 0.3%

value = [0.0, 0.0, 0.077, 0.462, 0.0, 0.462]

L_Knee_1 <= 1.321
entropy = 0.567
samples = 0.3%

value = [0.867, 0.0, 0.0, 0.133, 0.0, 0.0]

L_Knee_1 <= 2.276
entropy = 0.592
samples = 0.2%

value = [0.0, 0.0, 0.143, 0.857, 0.0, 0.0]

entropy = 0.0
samples = 0.1%

value = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]

entropy = 0.0
samples = 0.1%

value = [0.0, 0.0, 0.0, 1.0, 0.0, 0.0]

entropy = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 0.3%

value = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0, 0.0, 0.0]

entropy = 0.0
samples = 1.1%

value = [0.0, 0.0, 0.0, 1.0, 0.0, 0.0]

Spine1_1 <= -0.47
entropy = 0.201
samples = 1.4%

value = [0.031, 0.0, 0.0, 0.0, 0.0, 0.969]

entropy = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 1.4%

value = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]

L_Shoulder_3 <= 0.134
entropy = 0.629
samples = 0.4%

value = [0.0, 0.0, 0.158, 0.0, 0.842, 0.0]

entropy = 0.0
samples = 0.4%

value = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 0.4%

value = [0.0, 0.0, 0.0, 0.0, 1.0, 0.0]

entropy = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 5.6%

value = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]

R_Knee_1 <= 0.479
entropy = 1.183
samples = 9.0%

value = [0.085, 0.0, 0.0, 0.052, 0.753, 0.11]

R_Hip_1 <= 0.339
entropy = 0.406
samples = 7.3%

value = [0.006, 0.0, 0.0, 0.003, 0.932, 0.059]

L_Hand_3 <= 0.819
entropy = 1.559
samples = 1.7%

value = [0.416, 0.0, 0.0, 0.26, 0.0, 0.325]

R_Ankle_3 <= 0.784
entropy = 0.187
samples = 6.9%

value = [0.006, 0.0, 0.0, 0.003, 0.977, 0.013]

entropy = 0.0
samples = 0.3%

value = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]

Spine1_1 <= 0.856
entropy = 0.101
samples = 6.9%

value = [0.0, 0.0, 0.0, 0.0, 0.987, 0.013]

R_Shoulder_3 <= 0.867
entropy = 0.918
samples = 0.1%

value = [0.667, 0.0, 0.0, 0.333, 0.0, 0.0]

L_Collar_3 <= -0.181
entropy = 0.485
samples = 0.9%

value = [0.0, 0.0, 0.0, 0.0, 0.895, 0.105]

entropy = 0.0
samples = 6.0%

value = [0.0, 0.0, 0.0, 0.0, 1.0, 0.0]

entropy = 0.0
samples = 0.8%

value = [0.0, 0.0, 0.0, 0.0, 1.0, 0.0]

entropy = 0.0
samples = 0.1%

value = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]

entropy = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0, 0.0, 0.0]

entropy = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]

L_Collar_2 <= 0.369
entropy = 0.961
samples = 1.2%

value = [0.615, 0.0, 0.0, 0.385, 0.0, 0.0]

entropy = 0.0
samples = 0.6%

value = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]

entropy = 0.0
samples = 0.7%

value = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 0.4%

value = [0.0, 0.0, 0.0, 1.0, 0.0, 0.0]

L_Collar_3 <= -0.609
entropy = 0.323

samples = 12.8%
value = [0.0, 0.952, 0.026, 0.0, 0.021, 0.0]

R_Knee_1 <= -0.47
entropy = 0.36

samples = 15.1%
value = [0.0, 0.068, 0.932, 0.0, 0.0, 0.0]

L_Shoulder_3 <= -0.245
entropy = 0.993
samples = 0.4%

value = [0.0, 0.0, 0.55, 0.0, 0.45, 0.0]

R_Knee_1 <= -0.293
entropy = 0.111

samples = 12.3%
value = [0.0, 0.987, 0.007, 0.0, 0.005, 0.0]

entropy = 0.0
samples = 0.2%

value = [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 0.2%

value = [0.0, 0.0, 0.0, 0.0, 1.0, 0.0]

entropy = 0.0
samples = 12.2%

value = [0.0, 1.0, 0.0, 0.0, 0.0, 0.0]

L_Shoulder_3 <= 0.54
entropy = 0.985
samples = 0.2%

value = [0.0, 0.0, 0.571, 0.0, 0.429, 0.0]

entropy = 0.0
samples = 0.1%

value = [0.0, 0.0, 0.0, 0.0, 1.0, 0.0]

entropy = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]

L_Foot_2 <= 0.304
entropy = 0.989
samples = 1.8%

value = [0.0, 0.561, 0.439, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 13.3%

value = [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]

L_Hand_1 <= 0.703
entropy = 0.201
samples = 0.7%

value = [0.0, 0.031, 0.969, 0.0, 0.0, 0.0]

L_Collar_3 <= 1.069
entropy = 0.469
samples = 1.1%

value = [0.0, 0.9, 0.1, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 0.7%

value = [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 1.0%

value = [0.0, 1.0, 0.0, 0.0, 0.0, 0.0]

entropy = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]

(b)

Figure 12. Resulting decision trees. (a) Decision tree built by domain experts by using GDT. (b) Deci-
sion tree built by using scikit-learn. The manually built tree (a) is simpler and easier to follow than
the tree created by the algorithm (b).

Figure 13. Performance comparison between the tree built by scikit-learn and manually, with
six classes in the dataset. Each class starts balanced, with 1024 samples, and training and testing
sets are created with a 70:30 ratio. The results of the manual tree are similar to those obtained with
the automatic algorithm, but with a simpler tree built by a process that allows domain experts to
participate in the process.

Figure 14. Detail from the decision tree built by the domain experts. Highlighted in a red box are the
first two steps where leaf nodes (pink and green) are defined for more than 27% of the total samples.
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5.3. Second Scenario

The goal in this second scenario is the same as seen in the first scenario, but the
problem to tackle is more complex due to the higher number of samples (12,390) and
labels (14 balanced) in the classification problem. Adding samples and classes makes
visualizations more difficult for domain experts to follow and makes it more difficult for
experts to apply their previous knowledge.

The domain experts, by using the same process as in the previous scenario, built a
decision tree to compare it with the decision tree automatically generated by scikit-learn.
The resulting trees are available in Figure 15 in low resolution due to format restrictions. For
more details, check https://github.com/mohedano-munoz/decision_tree_builder/tree/
main/decision_trees_movements (accessed on 8 November 2024) to access the complete
trees in high resolution. The higher complexity of the automatic tree can be observed in the
figure due to the different sizes of the trees and different numbers of nodes. In this case, the
performance of the automatic tree is superior, as shown in Figure 16, although only slightly.

(a)

(b)

Figure 15. Resulting decision trees for the whole dataset with 14 classes. (a) Guided Decision tree.
(b) Scikit-learn decision tree.

Figure 16. Performance comparison between the tree built by scikit-learn and manually, with
14 classes in the dataset. Each class starts balanced, with 885 samples, and training and testing sets
are created with a 70:30 ratio. The results of the manual tree are slightly worse in this case, but the
result is a simpler decision tree wherein the domain experts could apply their knowledge.

The difference in complexity between these trees is evident; the interactively con-
structed tree has 217 decision nodes, while the tree generated by scikit-learn has 504 nodes.
In the initial stages of constructing the guided tree, the emphasis is placed on variables
associated with the lower body’s position, such as the knees, and from these nodes, the
tree is further developed. A key distinction is its emphasis on the hip, with the variable
‘R_Hip_1’ being decisive in 20 of nodes in the guided tree. This variable appears both
in the early stages of the tree and in the nodes close to the leaf nodes (see Figure 17).
Shoulder rotation is also significant, with ‘L_Shoulder_3’ and ‘R_Shoulder_3’ contributing
to 35 decision nodes. Furthermore, hand movements play a crucial role in defining motion,
as indicated by the variables used in the tree. A detailed count of the most frequently
appearing variables in the decision nodes for classifying movements for both trees, for
comparison purposes, is provided in Table 2.

https://github.com/mohedano-munoz/decision_tree_builder/tree/main/decision_trees_movements
https://github.com/mohedano-munoz/decision_tree_builder/tree/main/decision_trees_movements
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Figure 17. Zoomedin view of Figure 15a, focusing on the early stages, where it can be seen, for
instance in the nodes highlighted with the red boxes, that the variable ‘R_Hip_1’ is a decisive node.

Table 2. Top #15 variable occurrences in the decision nodes.

Scikit-Learn Tree Guided Decision Tree

Feature Nodes Feature Nodes

R_Shoulder_3 47 R_Hip_1 20
R_Elbow_2 42 L_Hand_1 20

Spine1_1 40 L_Shoulder_3 19
L_Hand_3 40 L_Hand_3 19
L_Elbow_2 38 L_Collar_2 16
L_Foot_3 34 R_Shoulder_3 16

L_Collar_2 32 R_Knee_1 14
R_Hip_1 32 Spine1_1 14
L_Knee_1 32 L_Knee_1 13
R_Knee_1 32 L_Elbow_2 13
R_Ankle_3 29 L_Collar_3 13
L_Hand_1 29 R_Elbow_2 11
L_Collar_3 28 L_Foot_3 10

L_Shoulder_3 26 R_Ankle_3 10
L_Foot_2 23 L_Foot_2 9

6. Conclusions

The main objectives of this study were to highlight the substantial benefits of combin-
ing domain expertise with decision tree construction and to offer domain experts a practical
tool for creating visually guided decision trees. We have developed an interactive webtool,
named GDT, for data handling; visualization (using SC and LDA); guided decision tree
creation; and finally, comparison of the main parameters of the classification accuracy
with the DecisionTreeClassifier within the scikit-learn library of Python. From GDT, the
users can split the dataset into training and testing sets, create nodes, and split the training
set according to [9]. The specific tasks that the tool performs to meet the needs of the
method are as follows: (i) splitting the dataset in train and test set, (ii) allowing the user
to select features, (iii) creating and managing the subsets belonging to different nodes,
and (iv) visualizing, managing, and editing the decision tree in a proper way. We have
published GDT and its source code (in Python, using Dash, Plotly, scikit-learn, pandas, and
other packages) online (https://github.com/mohedano-munoz/decision_tree_builder,
accessed on 8 November 2024) so that analysts can use it and visualization experts can
extend and adopt it to their needs.

To demonstrate the utility of the tool, we presented a case study on motion recognition.
In this case study, the manually constructed decision trees achieved slightly lower accu-
racy than those generated by sci-kit learn, but they were simpler and more interpretable.
The manual construction process enabled domain experts to build more straightforward
decision trees, gain valuable insights from the data, and apply their prior knowledge in

https://github.com/mohedano-munoz/decision_tree_builder
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the classifier construction. Our findings underscore the importance of a collaborative
approach in machine learning, where human insight and computational efficiency work
hand-in-hand to achieve better results. In this case, thanks to the GDT tool, domain experts
confirmed that upper body features, particularly hip and shoulder rotation, along with
hand movements, play a crucial role in defining motion and are more relevant within
motion recognition.

In future work, we plan to use GDT in different areas that require a selection of the
most important variables in explainable models or that benefit from understanding the
underlying processes. Fields such as health, social welfare, and meta-human utilization
require decision trees that are more understandable and closer to the end user to validate
their versatility and effectiveness. Additionally, there is potential for further development
of both the tool and the method. For instance, implementing the C5.0 algorithm could
provide an alternative for automatic tree construction. Another valuable enhancement
could be the inclusion of various metrics for node splitting based on the dataset, allowing
analysts the flexibility to choose the most appropriate metric for their specific needs.
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