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Abstract: This study analyzed land use and land cover (LULC) changes to identify the levels of
deforestation and forest degradation in two locations in the Amazon rainforest and their conservation
units. Using Sentinel-2 satellite imagery and object-based image classification, yearly LULC maps
were created from 2018 to 2023. Disturbances were then quantified by Primary Forest conversions.
This study revealed a gain of around 22,362 ha in Secondary Forest areas in Manaus and 29,088 ha in
Agriculture/Pastureland in Porto Velho within the study period. Differing yearly rates of deforesta-
tion and degradation were detected between the areas, with agriculture/pastureland expansion being
observed as the primary driver of forest loss. State and federal units showed the largest conversion
of primary to Secondary Forest, while state units experienced the most conversion to non-forest areas.
Sustainable use units and buffer zones were particularly impacted by these disturbances. These find-
ings suggest that factors beyond environmental policies contribute to these outcomes, highlighting
the importance of understanding local contexts. Comparing areas with varying degradation levels
provides insights into the effectiveness of restoration and conservation efforts.

Keywords: Amazon rainforest; land use and land cover (LULC); remote sensing; conservation units;
sustainable use; full protection

1. Introduction

Deforestation and forest degradation in tropical regions, particularly in the Amazon
rainforest, represent critical environmental challenges with far-reaching implications. The
Amazon, the world’s largest tropical rainforest, serves as a crucial carbon storage unit and
a hotspot for biodiversity, playing an essential role in regulating the planet’s climate and
providing habitat for numerous species [1]. However, this vital ecosystem faces unprecedented
threats driven by complex socio-economic factors and land use changes [2,3].

Over the past few decades, the Brazilian Amazon has experienced alarming rates
of forest loss [4]. This deforestation severely threatens the forest and is primarily driven
by agricultural expansion [5], cattle ranching [6], infrastructure development [7], and
illegal logging [8]. Forest degradation is equally serious because it frequently precedes
total deforestation. Degraded forests are much more susceptible to further deforestation,
with typical decreases in canopy height and aboveground biomass of up to 60% and 65%,
respectively, according to recent research conducted in tropical moist forests [9].

Understanding the dynamics of land use and land cover (LULC) changes is essential
for developing effective conservation strategies and sustainable land management practices.
The Brazilian Amazon has experienced varying rates of change across its vast expanse [4,10].
Thus, this heterogeneity presents both challenges and opportunities for researchers and
policymakers seeking to understand and mitigate the impacts of land use changes. The
advent of satellite imagery and advanced classification techniques has revolutionized our
ability to monitor and analyze LULC changes at various spatial and temporal scales [11].
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Remote sensing has emerged as a crucial tool for monitoring deforestation and forest
degradation in the Amazon. Satellite imagery provides consistent, large-scale observations
that enable researchers to track changes in forest cover over time [12]. The advent of
medium and high-resolution satellite imagery has revolutionized our ability to monitor
and analyze LULC changes at various spatial and temporal scales [13]. While lower
resolution imagery (e.g., 30 m Landsat, 250–1000 m MODIS) offers advantages in terms of
broader coverage and long-term historical records, it may overlook fine-scale disturbances.
Medium-resolution imagery, such as Sentinel-2 with its 10 m bands, shows a balance
between coverage and resolution, allowing for the detection of smaller-scale disturbances
that might be missed by coarser-resolution sensors [14]. These advancements in spatial
resolution allow for more accurate detection of subtle changes in forest structure and
composition, which is critical for understanding degradation processes [15].

To monitor LULC change and deforestation in the Amazon, pixel-based methods
have been traditionally the primary approach [16]. For instance, the Brazilian National
Institute for Space Research (INPE) uses a pixel-based approach in its PRODES (Monitoring
Deforestation in the Brazilian Amazon by Satellite Project) system, which has been the
official method for monitoring deforestation in the Brazilian Amazon since 1988 [17]. This
monitoring system utilizes Landsat satellite imagery to provide annual assessments of
deforestation, offering information with a minimum mapping unit of 6.25 ha. However,
recent advancements in remote sensing technology and analysis techniques have opened
new possibilities for more accurate and detailed monitoring. Object-based image analysis
(OBIA) has proven particularly advantageous for detecting LULC changes. Unlike pixel-
based methods, OBIA considers the spatial context of image objects, allowing for a more
nuanced classification of complex landscapes [18]. When combined with satellite imagery
from Sentinel-2 and machine learning algorithms like Random Forest, OBIA can achieve
high classification accuracies and provide more detailed information about forest structure
and composition.

Despite the potential advantages of OBIA combined with Sentinel-2 imagery and
Random Forest classification, relatively few studies have applied this combination for
monitoring deforestation and forest degradation in the Amazon. This approach offers
the potential for more accurate detection of changes in forest cover, which is particularly
important for monitoring forest degradation. For instance, Souza-Filho et al. used OBIA to
investigate the influence of mining projects on LULC changes in the southeastern area of
the Brazilian Amazon, resulting in overall accuracies of all the classified maps higher than
94% [19]. Bueno et al. demonstrated the effectiveness of Random Forest with OBIA for
land cover change detection in the Brazilian savanna (Cerrado) biome, achieving overall
accuracies of around 88% [20].

Regarding the forest areas, conservation units play a vital role in protecting the Ama-
zon’s biodiversity and ecosystem services. Established according to the Brazilian National
System of Nature Conservation Units (SNUCs), these areas are crucial for preserving the
forest’s integrity and helping mitigate climate change [21]. However, their effectiveness
can vary depending on management strategies and local contexts. Recent studies have
shown that while protected areas generally reduce deforestation rates, their impact can
differ significantly across regions and management types [22,23]. Understanding these
variations is essential for optimizing conservation strategies.

The heterogeneity of the Amazon presents both challenges and opportunities for
researchers and policymakers seeking to understand and mitigate the impacts of land
use changes [24]. This study focuses on two distinct areas within the Brazilian Amazon:
Manaus and Porto Velho. These areas represent different stages of development and
deforestation pressures, offering valuable insights into the diverse challenges faced across
the Amazon.

The objectives of this study are as follows: (1) to produce accurate LULC maps for Man-
aus and Porto Velho from 2018 to 2023 using Sentinel-2 imagery and OBIA with Random
Forest classification; (2) to analyze LULC distribution in the study areas; (3) to compare
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LULC changes and conservation effectiveness between Manaus and Porto Velho, con-
sidering their different deforestation and degradation yearly rates; and (4) to quantify
the total area of deforestation and forest degradation of conservation units with different
management strategies and their surrounding areas to evaluate their effectiveness.

By addressing these objectives, this study aims to contribute valuable insights to the
ongoing discourse on Amazon conservation and inform evidence-based policymaking
for sustainable forest management in the region. The use of advanced remote sensing
techniques and machine learning algorithms provides a detailed and accurate assessment
of LULC changes, while the comparison between different types of conservation units
offers crucial information for improving protected area management strategies.

2. Materials and Methods
2.1. Study Areas

The Brazilian Amazon rainforest (Figure 1b) is located in the northern region of Brazil
and covers the territory of 9 states (Figure 1a). It experiences a tropical climate (A-Zone
in the Köppen classification) with average temperature in the coldest month exceeding
20 ◦C in the center of the Amazon basin. Rainfall can reach over 3000 mm annually, and
in some areas, it may even exceed 8000 mm [25]. The forest is dominated by evergreen
broadleaved trees and forest structure is typically described as having multiple layers,
with structures that could reach heights of around 20–30 m. Dominant tree species include
Eschweilera coriacea, Euterpe precatoria, and Protium altissimum [26].
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This study incorporates two areas within the Brazilian Amazon region: Manaus City
and the district of Porto Velho (Figure 1).

Manaus is the capital city of Amazonas state (Figure 1c), and its area encompasses
the urban area and its surrounding forest, covering approximately 1,142,000 ha. Manaus
is situated in the heart of the Brazilian Amazon. It is a major urban center with a popu-
lation exceeding two million people. The area’s location at the confluence of the Negro
and Solimões rivers makes it a critical hub for transportation and commerce. Manaus
has experienced rapid urban expansion, leading to increased pressure on surrounding
forested areas [27].

The district of Porto Velho (Figure 1d), within the municipality of Porto Velho, capital
of Rondônia state, is located on the east bank of the Madeira River in the southwestern part
of the Brazilian Amazon. The area encompasses the urban area and its environs, spanning
approximately 923,000 ha. Unlike Manaus, Porto Velho is more rural, with a strong reliance
on agriculture and livestock farming. The construction of major infrastructure projects, such
as highways and hydroelectric dams, has contributed to deforestation in the region [27].

The district area of Porto Velho was chosen for this study, rather than the entire
municipality, due to logistical and computational constraints. The district represents an
important region of the Madeira River basin (Médio Madeira). Additionally, it houses
the urban administrative hub of the municipality, and is comparable in size to Manaus,
allowing for a more balanced comparison. The district contains 13 conservation units
within its boundaries.

This study examines a total of 29 conservation units (Table 1) across different man-
agement levels—sustainable use and full protection—and administrative scales—local,
regional, and national—to assess their effectiveness in preventing deforestation and forest
degradation. According to the SNUC legislation [28], in full protection units, only indirect
use of natural resources is allowed, and the rules and regulations are restrictive. Sustainable
use units, on the other hand, reconcile nature conservation with the sustainable use of part
of natural resources.

Table 1. Number of conservation units in each category and their respective areas (ha).

Conservation Units Manaus Porto Velho

Spatial Level Management
Type N. of Units Area (ha) N. of Units Area (ha)

Federal
Full Protection 1 101,130 1 51,113

Sustainable Use 1 112 2 125,856

State
Full Protection 2 78,097 0 0

Sustainable Use 3 544,193 5 182,350

Local
Full Protection 3 166 3 417

Sustainable Use 6 1397 2 10

Total 16 725,096 (63%
of total area) 13 359,747 (39%

of total area)

Buffer zones around these conservation units were also included in the analysis, as
they play a crucial role in the management and protection of these areas [29]. According to
the SNUC, buffer zones are areas surrounding conservation units where human activities
are subject to specific rules and restrictions to minimize negative impacts on the protected
area. For this study, a three-kilometer buffer was considered based on the management
plans of most units. However, it is important to note that the SNUC excludes Environmental
Protection Areas (a subcategory of sustainable use units) from having buffer zones, as these
areas often cover large territories with diverse land uses, including private properties and
urban areas.
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2.2. Data
2.2.1. Sentinel 2 Imagery Acquisition

This study utilized Sentinel-2 multispectral imagery for the period 2018–2023, chosen
for its free availability, spatial resolution (10 m, 20 m, and 60 m depending on the band),
and frequent revisit time, making it ideal for monitoring LULC changes. The Sentinel-2
MSI: Multi-Spectral Instrument Level-2A collection [30] was accessed through the Google
Earth Engine (GEE) platform, using the Cloud Score+ dataset [31]. These products in-
clude radiometric and geometric corrections, providing highly accurate geolocated images
without the need for further preprocessing, such as atmospheric correction.

The Cloud Score+ dataset functions as a quality assessment (QA) processor for optical
satellite imagery, effectively removing clouds and cloud shadows while identifying rela-
tively clear pixels. It employs two quality bands, cs, and cs_cdf, which rate each pixel’s
usefulness about surface visibility on a continuous scale from 0 to 1, where 0 denotes “not
clear” observations and 1 denotes “clear” observations.

To mitigate the impact of extensive cloud cover typically observed in tropical regions,
median composite images were created from a group of images within a specific time
interval. Sentinel-2 images were filtered from the collection over 4 months, from the
beginning of May to the end of September, corresponding to the dry season in the Amazon
region. This temporal selection was made to minimize cloud cover interference and ensure
the highest quality data for analysis.

The resulting dataset consists of six annual median composites, corresponding to the
years 2018 to 2023. These composites provide a consistent and cloud-free representation of
the study area, enabling accurate detection and analysis of LULC changes over the study
period. The use of median composites helps reduce the influence of outliers and temporary
land cover changes, providing a more stable representation of the landscape for each year.

2.2.2. Training and Validation Samples

The study areas were classified into distinct land cover classes. Manaus was assigned
eight classes: (1) Terra-Firme Forest, (2) Floodplain Forest, (3) Secondary Forest, (4) Agricul-
ture/Pastureland, (5) Burned Areas, (6) Barren Land, (7) Development Areas, and (8) Water
Bodies. Porto Velho included all these classes with the addition of (9) Savanna areas, which
are found in small patches throughout the region. Detailed descriptions of these land use
and land cover classes can be found in Table 2.

Table 2. Land use and land cover classes and their description.

LULC Class Description

Terra-Firme Forest Upland forests not subject to seasonal flooding. This is the dominant
forest type in the Amazon, covering most of the non-flooded areas.

Floodplain Forest Forests that are seasonally flooded by river overflow. Also
known as várzea or igapó forests depending on the water type.

Secondary Forest Regrowth forest on previously deforested areas. Often
younger and less diverse than Primary Forests.

Agriculture/Pastureland Areas used for crops or livestock grazing.

Burned Areas Recently burned or fire-affected areas, which may be due to
natural causes or human activities like slash-and-burn agriculture.

Barren Land Areas with little or no vegetation cover, such as exposed soil or rock.
Development Areas Urban or built-up areas, including cities, towns, roads, and other infrastructure.

Water Bodies Rivers, lakes, and other permanent water features.

Savanna (only in
Porto Velho)

Open woodland ecosystems with grass understory, found in small patches
within the predominantly forested Amazon region. These are more common in

transitional zones between the Amazon and neighboring biomes.

Training and validation samples were collected through a combination of methods
to ensure accuracy and representativeness. The primary method involved the manual
visual assessment of high-resolution imagery from Google Earth Pro and Planet Labs,



Appl. Sci. 2024, 14, 10504 6 of 31

supplemented by spectral and vegetation indices analysis. This approach allowed for a
comprehensive evaluation of land cover types across the study areas. Additionally, to
enhance the ground-truth data, 23 sample points were collected in 2022 using a Garmin
GPS (Garmin Ltd., Olathe, KS, USA) instrument in both Manaus and Porto Velho.

To mitigate the impact of spatial autocorrelation while still capturing the gradient of
each land cover type, all samples were collected as points rather than polygons. Sample
locations were chosen arbitrarily, with the constraint that they be at least 10 m apart from
the nearest sample point. This strategy helps to ensure independence between samples and
improves the robustness of the classification model.

A total of approximately 3000 sample points were collected for each year of the study
period. This substantial dataset was then divided into two subsets: 70% of the samples
were used to train the classification model, while the remaining 30% were reserved for
validation and accuracy assessment.

2.3. Segmentation and Object-Based Image Classification

This study employed an object-based image analysis (OBIA) approach for LULC
classification using Google Earth Engine (GEE). OBIA was chosen for its ability to reduce
the “salt-and-pepper” effect common in pixel-based classifications and to incorporate
spatial context into the classification process [18,32]. The OBIA method consists of two
primary steps: image segmentation and object classification.

The segmentation process divides the entire image into multiple areas of varying sizes
based on distinct spectral and textural properties. These segments are then merged to
form larger objects corresponding to land cover classes. During this process, the geometric
properties, topology, and adjacency relationships of the objects are exploited, with the antic-
ipation that these objects will correspond more easily to land cover types than individual
pixels would.

For the segmentation step, this study utilized the Simple Non-Iterative Clustering
(SNIC) algorithm, which efficiently groups similar pixels and identifies potential indi-
vidual objects [33]. SNIC is initiated using a uniform grid of seeds, generated by the
“Image.Segmentation.seedGrid” function, which requires specifying a superpixel seed
location spacing in pixels to influence the size of the resulting clusters. The optimal spacing
value can be determined through experimentation. The algorithm then identifies objects
(clusters) based on input parameters and produces a multi-band raster output, which
includes the clusters themselves and additional layers containing average values of the
input features [34]. SNIC requires several key parameters for setting:

• Compactness factor: Influences cluster shape, with larger values producing more
compact clusters.

• Connectivity: Can be set to 4 or 8, determining whether to use Rook’s or Queen’s
contiguity for merging adjacent clusters.

• Neighborhood size: Helps avoid tile boundary artifacts.

After visual inspection of different combinations of parameter values and consid-
ering the characteristics of the LULC classes in the study areas, the following set of pa-
rameters was used in this study: compactness = 0, connectivity = 8, and neighborhood
size = 256. Following segmentation, the OBIA approach combines spectral and spatial
information with texture and contextual information from the image to perform the final
object classification [35].

2.4. Random Forest Algorithm

This study employed the Random Forest (RF) classifier, a robust and widely used
machine learning algorithm, for the classification of segmented image objects. The Random
Forest algorithm has been proven to be a reliable and accurate classification technique in nu-
merous remote sensing applications [36–40]. It was selected for this study due to its ability
to handle high-dimensional data effectively and its capacity to assess feature importance.
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Random Forest is an ensemble machine learning method designed to enhance the
performance of Classification and Regression Trees (CARTs). It operates by constructing
multiple decision trees and aggregating their outputs. In a classification analysis, each
tree casts a vote for the most probable class of the input data, with the final classification
determined by a majority vote. The RF algorithm employs two key techniques: bagging
and random subspace selection. The process begins with the creation of multiple binary
classification trees (ntrees) using bootstrap samples drawn with replacements from the
original dataset [41]. For this study, the ntrees parameter was set to 100 trees in classification
mode, balancing computational efficiency with classification accuracy.

An important feature of the Random Forest algorithm is its use of out-of-bag (OOB)
samples. These are observations not included in a particular bootstrap sample during
the tree-building process. OOB samples serve a dual purpose in the RF model: they help
estimate the misclassification error, provide an internal validation mechanism, and assist in
assessing the importance of different variables in the model.

2.5. Auxiliary Features

To enhance classification accuracy and capture the complex landscape characteristics
of the study areas, a range of spatial features were derived from spectral bands or acquired
from various datasets. This study focused on the Blue, Green, Red, NIR, SWIR1, and SWIR2
bands of Sentinel-2 imagery, excluding other spectral channels to optimize computational
efficiency while maintaining relevant spectral information. Band 1 (Coastal Aerosol) was
omitted due to its primary application in studying coastal waters and atmospheric aerosol
properties, which were not pertinent to the objectives of this study.

Topographic features, including elevation and slope, were extracted from the Shuttle
Radar Topography Mission (SRTM) digital elevation dataset provided by NASA (Wash-
ington, DC, USA). These features contribute valuable information about the terrain char-
acteristics that can influence land cover patterns. Principal Component Analysis (PCA)
was applied to the spectral bands to reduce data dimensionality and enhance information
content. PCA is widely used in classification and change detection analyses, particularly
in unsupervised classification, as it eliminates redundant information and improves data
representation. The first three PC levels were utilized in this study, providing a compact
representation of the most significant spectral variations in the imagery.

Five spectral indices (Table 3) were derived from the Sentinel-2 multispectral bands
to enhance specific land cover characteristics [42]. These indices were chosen due to
their prominent use in LULC classification studies [43,44] and their ability to differentiate
between various land features, particularly forest classes, from other types of land covers.

Table 3. Spectral indices and related formulas used in this study.

Index Usage Formula Reference

Normalized Difference
Vegetation Index (NDVI)

Assessing vegetation
health and density. NDVI = (NIR−Red)

(NIR+Red)
Rouse et al. [45]

Normalized Difference
Water Index (NDWI)

Delineating open
water features. NDWI = (Green−NIR)

(Green+NIR)
McFeeters [46]

Normalized Difference
Built-up Index (NDBI) Mapping urban areas. NDBI = (SWIR1−NIR)

(SWIR1+NIR)
Zha et al. [47]

Normalized Difference
Moisture Index (NDMI

Assessing vegetation
moisture content. NDMI = (NIR−SWIR1)

(NIR+SWIR1)
Wilson et al. [48]

Soil-Adjusted
Vegetation Index (SAVI)

For improving
vegetation signal in areas with

sparse vegetation cover.
SAVI =

(
(NIR−Red)
(NIR+Red)

)
× (1 + 0.5) Huete [49]

Textural information was incorporated using the Gray-Level Co-occurrence Matrix
(GLCM), an effective method for extracting textural indices even from grayscale im-
ages [50]. The texture attributes used in this study included Homogeneity (‘idm’), Angular
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Second Moment (‘asm’), Sum Average (‘savg’), Entropy (‘ent’), Contrast (‘contrast’), and
Correlation (‘corr’).

Lastly, to account for seasonal variations in land cover, a multi-temporal seasonal
image collection from the wet season was also included. Maximum and median values
were extracted from this collection for each year, along with NDVI and NDWI values, to
capture seasonal dynamics that might influence land cover classification.

2.6. Accuracy Assessment

The accuracy of the Random Forest (RF) classification was evaluated using a confusion
matrix (CM), a widely used methodology in remote sensing for comparing classification
outputs with ground-truth data. The predicted classes produced by the RF algorithm were
compared to the labeled points in the testing dataset to assess the classification outcomes
comprehensively. From the confusion matrix, several specific accuracy measures were
derived [51,52]. Overall Accuracy (OA) represents the probability that a randomly chosen
point on the map will be correctly classified. It is expressed as a percentage value, providing
a general indication of the classification’s performance across all classes.

Producer’s Accuracy (PA), also known as “recall”, indicates the probability that a
specific type of land cover on the ground is accurately classified on the map. It is computed
by dividing the number of correctly identified pixels in each category by the total number
of pixels in that category, as determined from the reference data. User’s Accuracy (UA),
also known as “precision”, represents the probability that a pixel labeled as belonging to a
particular category on the map truly reflects that category on the ground. It is calculated by
dividing the number of correctly identified pixels within a category by the total number of
pixels classified in that category.

The Kappa coefficient of agreement is a statistic that measures the agreement between
classification and ground-truth values, taking into account the agreement that occurs by
chance. It provides a more robust measure of classification accuracy, especially when
comparing different classification results. These accuracy measures collectively provide a
comprehensive assessment of classification performance, allowing for the evaluation of
both overall classification accuracy and class-specific accuracies.

2.7. Change Detection Analysis

This study employed post-classification comparison, a widely used change detection
method, implemented through QGIS 3.36 and ArcGIS Pro 2.8.0 post-processing tools.
This approach has been shown to accurately represent land use changes in previous
studies [53,54]. Change detection was carried out within the two areas, their consecutive
conservation units, and buffer areas.

The analysis involved cross-tabulating classification results for consecutive years
(2018–2019, 2019–2020, 2020–2021, 2021–2022, 2022–2023) and the overall study period
(2018–2023). This process identified how each land cover class changed between con-
secutive years and between the initial and final dates of the study period. Transition maps
were then generated to visualize these changes, providing a spatial representation of land
cover dynamics. To calculate changes inside conservation units, polygons representing the
boundaries of the units were used to extract LULC change information and summarize
deforestation and forest degradation.

To assess the frequency of change, all six LULC maps were combined into a single
raster in ArcGIS 2.8.0 Pro using the Combine tool. Each unique combination of LULC classes
across all maps was assigned a unique value, with class pixel value information remaining
for each year, which was organized in columns, or “fields”, in the raster’s attribute table.
Using Field Calculation, new columns were created and changes were calculated between
consecutive years. Pixels that underwent changes were assigned a value of 1, while
pixels with no changes were assigned a value of 0. Subsequently, this information was
aggregated, and a new raster was created using the Frequency tool to summarize the
change frequency across the study areas. The tool sums all changes that occurred over the
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years, assigning each pixel a value between 0 (no changes) and 5 (changed every year),
providing a comprehensive view of landscape dynamics throughout the study period.

2.8. Deforestation and Forest Degradation Detection

To detect deforestation and forest degradation in the study sites and conservation units,
land cover classes were reclassified into broader categories: Primary Forest (Terra-Firme
Forest and Floodplain Forest), Secondary Forest, and Non-Forest (Agriculture/Pastureland,
Development Areas, Barren Land, and Burned Areas). Water Bodies and Savanna classes
were excluded from the analysis to focus on forest dynamics. Using the change detection
analysis, deforestation was then calculated from the conversion of Primary Forest classes to
Non-Forest classes, while degradation was quantified as the transition from Primary Forest
classes to the Secondary Forest class. Annual rates of deforestation and forest degradation
were calculated for the whole study area. Total areas of deforestation and forest degradation
within 5 years, using the initial and final land cover maps, were calculated for conservation
units and buffer zones.

3. Results
3.1. Classification Performance

The Random Forest model demonstrated strong overall performance for both study
areas across all years, with overall accuracy consistently exceeding 95%. Producer’s
and User’s Accuracies were robust, with values surpassing 60% for both regions. The
model’s effectiveness was further validated by Kappa coefficients and out-of-bag error
rates (Tables 4 and 5).

Table 4. Accuracy assessment results for the LULC maps of Manaus (PA—Producer’s Accuracy, and
UA—User’s Accuracy).

Manaus 2018 2019 2020 2021 2022 2023
LULC PA% UA% PA% UA% PA% UA% PA% UA% PA% UA% PA% UA%

Terra-Firme Forest 99.7 98.4 98.0 95.0 99.0 96.3 96.8 96.2 97.7 97.4 97.6 97.0
Floodplain Forest 94.2 98.3 95.4 98.4 97.6 98.4 98.4 97.7 99.3 97.1 97.6 99.1
Secondary Forest 97.0 95.1 94.3 96.8 95.8 98.1 94.5 96.3 95.7 97.1 98.3 94.0

Agriculture/Pastureland 93.8 96.6 97.7 95.0 98.0 99.2 97.2 98.4 97.6 96.0 96.2 96.9
Burned Areas 87.5 94.6 64.7 84.6 96.8 93.8 100.0 85.0 80.8 95.5 90.6 93.5

Barren Land 100.0 94.2 98.6 98.6 98.3 98.3 96.2 96.2 97.7 95.5 95.4 96.2
Development Areas 98.4 99.2 97.9 99.3 98.4 98.4 98.2 96.6 93.9 99.1 97.3 95.5

Water Bodies 100.0 99.1 100.0 100.0 100.0 100.0 99.0 100.0 100.0 98.6 100.0 100.0

Overall Accuracy (%) 97.2 96.9 98.0 96.9 97.1 96.7
Kappa coefficient 0.97 0.96 0.98 0.96 0.97 0.96

O-O-B error 0.03 0.03 0.03 0.03 0.03 0.03

Despite the generally high performance, certain land cover classes presented challenges.
In Porto Velho (Table 5), Floodplain Forests showed the lowest accuracy (78.6% in 2022),
while in Manaus (Table 4), Burned areas were the most problematic (64.7% in 2019). These
lower accuracies can be attributed to spectral confusion between these specific classes and
others. The confusion matrix revealed that in these particular years, Burned Areas were often
misclassified as Agriculture/Pastureland, while some Floodplain Forest areas were incorrectly
identified as Terra-Firme Forest.

Analysis of feature importance revealed interesting patterns across the two study areas.
In Manaus, the three principal component (PC) features consistently ranked among the
most crucial for classification (Figure A1). Conversely, in Porto Velho, ‘Elevation’ emerged
as a key feature, appearing among the most important variables for classification across all
years (Figure A2). These findings highlight the distinct characteristics of each region and
the adaptability of the Random Forest model in leveraging the most relevant features for
accurate classification.
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Table 5. Accuracy assessment results for the LULC maps of Porto Velho (PA—Producer’s Accuracy,
and UA—User’s Accuracy).

Porto Velho 2018 2019 2020 2021 2022 2023
Land Cover PA% UA% PA% UA% PA% UA% PA% UA% PA% UA% PA% UA%

Terra-Firme Forest 99.7 95.9 95.5 94.9 98.3 93.3 97.1 94.9 97.8 95.7 96.6 95.5
Floodplain Forest 81.8 100.0 85.7 90.6 84.6 96.5 89.7 88.1 78.6 91.7 83.3 100.0

Secondary Forest 92.9 96.3 91.0 90.4 90.6 94.8 93.7 97.0 93.7 93.1 93.9 92.5
Agriculture/Pastureland 97.9 95.0 98.6 94.1 98.6 97.5 98.6 97.3 98.1 96.3 97.3 97.3

Burned Areas 91.7 95.7 86.2 96.2 93.3 96.6 100.0 100.0 89.7 92.9 100.0 89.5
Barren Land 98.3 96.7 97.8 98.5 96.7 95.9 96.9 96.9 98.3 99.2 99.2 98.4

Development Areas 98.4 98.4 97.6 97.6 95.5 97.3 97.3 97.3 99.2 99.2 99.2 100.0
Water Bodies 100.0 100.0 100.0 100.0 99.1 98.2 100.0 100.0 97.6 100.0 97.8 99.3

Savanna 81.5 93.6 81.2 94.9 92.9 95.1 87.3 96.5 93.5 93.5 96.6 91.8

Overall Accuracy (%) 96.5 95.0 95.8 96.5 96.2 96.4
Kappa coefficient 0.96 0.94 0.95 0.96 0.95 0.96

O-O-B error 0.05 0.04 0.03 0.04 0.04 0.05

3.2. Land Use and Land Cover Distribution
3.2.1. Study Sites

The land use and land cover (LULC) distribution in Table 6 reveals distinct patterns
and changes across the two study sites, Manaus (Figure A3) and Porto Velho (Figure A4),
over the six years from 2018 to 2023. Terra-Firme Forest dominated both areas, covering
67.8% (774,477 ha) of Manaus and 48.9% (451,876 ha) of Porto Velho by 2023. The sec-
ond most prevalent land cover differed between sites, with Water Bodies accounting for
13.3% (151,598 ha) in Manaus and Agriculture/Pastureland comprising 31.0% (286,038 ha)
in Porto Velho. Burned Areas were the least common in both locations, occupying only
0.1% (1582 ha) in Manaus and 0.4% (3787 ha) in Porto Velho by the final year.

Table 6. LULC area distribution (in hectares and %) and total area changed in the study sites in
all years.

Manaus 2018 2019 2020 2021 2022 2023 Change

LULC class ha % ha % ha % ha % ha % ha % ha

Terra-Firme Forest 791,830 69.3 790,320 69.2 785,773 68.8 774,476 67.8 797,444 69.8 774,477 67.8 −17,354
Floodplain Forest 76,104 6.7 70,398 6.2 75,813 6.6 76,369 6.7 59,723 5.2 70,873 6.2 −5231
Secondary Forest 50,992 4.5 69,364 6.1 63,300 5.5 70,255 6.2 59,788 5.2 73,355 6.4 +22,362

Agriculture/Pastureland 45,170 4.0 37,533 3.3 41,619 3.6 40,800 3.6 46,229 4.0 44,983 3.9 −187
Burned Areas 995 0.1 470 0.0 1096 0.1 974 0.1 824 0.1 1582 0.1 +587

Barren Land 7300 0.6 3042 0.3 4900 0.4 6739 0.6 5686 0.5 6811 0.6 −489
Development Areas 16,922 1.5 17,789 1.6 17,259 1.5 17,056 1.5 17,575 1.5 18,527 1.6 +1605

Water Bodies 152,891 13.4 153,289 13.4 152,446 13.3 155,536 13.6 154,937 13.6 151,598 13.3 −1293

Porto Velho 2018 2019 2020 2021 2022 2023 Change

LULC class ha % ha % ha % ha % ha % ha % ha

Terra-Firme Forest 475,664 51.5 474,948 51.4 485,278 52.6 466,465 50.5 455,205 49.3 451,876 48.9 −23,788
Floodplain Forest 42,071 4.6 30,209 3.3 25,310 2.7 28,840 3.1 40,302 4.4 33,230 3.6 −8841
Secondary Forest 76,203 8.3 83,906 9.1 74,260 8.0 78,123 8.5 79,118 8.6 82,327 8.9 +6123

Agriculture/Pastureland 256,949 27.8 259,923 28.1 262,154 28.4 278,745 30.2 281,053 30.4 286,038 31.0 +29,088
Burned Areas 3968 0.4 5204 0.6 6458 0.7 7209 0.8 4021 0.4 3787 0.4 −181

Barren Land 19,783 2.1 22,242 2.4 22,059 2.4 14,205 1.5 13,390 1.5 16,276 1.8 −3506
Development Areas 9314 1.0 8595 0.9 7283 0.8 9456 1.0 7737 0.8 7865 0.9 −1448

Water Bodies 32,074 3.5 31,965 3.5 32,594 3.5 32,226 3.5 32,729 3.5 31,952 3.5 −122
Savanna 7398 0.8 6433 0.7 8029 0.9 8155 0.9 9864 1.1 10,074 1.1 +2675

Changes in the total class area between 2018 and 2023 highlighted significant losses in
Terra-Firme Forest for both sites (−17,354 ha in Manaus and −23,788 ha in Porto Velho),
followed by Floodplain Forests (−5231 ha in Manaus and −8841 ha in Porto Velho). Con-
versely, Secondary Forest showed the largest gain in Manaus (22,362 ha), while Agricul-
ture/Pastureland expanded most significantly in Porto Velho (29,080 ha). Development
Areas in Manaus and Secondary Forests in Porto Velho also exhibited notable increases.
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The frequency of change analysis (Table 7) provided insights into the dynamic nature
of LULC in both areas by quantifying the trajectories of the land cover changes within
the study period. In Manaus, 60,268 ha experienced at least one change in LULC, with
4129 ha changing every year throughout the study period. Porto Velho demonstrated even
greater dynamism, with approximately 119,616 ha changing at least twice and 6138 ha
changing annually.

Table 7. Frequency of yearly LULC changes in the study areas by hectares (ha).

Number of Changes Total Area Manaus (ha) Total Area Porto Velho (ha)

0 change 927,019 622,061
1 change 60,268 87,886

2 changes 89,438 119,617
3 changes 41,245 59,940
4 changes 20,105 27,782
5 changes 4129 6138

3.2.2. Conservation Units

The land cover distribution within conservation units (Tables A1–A6) largely mirrored
that of the total study areas, with nearly half of most conservation units in both Manaus and
Porto Velho covered by various forest classes. However, notable exceptions were observed
in both regions, highlighting the diverse management approaches and challenges faced by
different types of protected areas.

In Porto Velho, two categories of conservation units deviated from this pattern. State
sustainable use conservation units (Table A5) were predominantly covered by Agricul-
ture/Pastureland, accounting for 59.7% (108,842 ha) of their total area by the final year of
the study. Similarly, Local sustainable use conservation units (Table A6) were primarily
characterized by Barren Land, which comprised 39.9% (4 ha) of their area in 2023; this could
be due to their approximation or total inclusion inside urban areas, where development
activities are clearly observed.

Manaus presented a unique case with its Local full protection conservation units
(Table A3). In the initial year of this study (2018), Terra-Firme Forests were the dominant
land cover within these units, covering 23 ha. However, by 2023, a dramatic shift had
occurred, with Agriculture/Pastureland becoming the primary land cover, occupying
37.4% (22 ha) of the total area. This transformation represents a change of 11 ha over
five years.

3.2.3. Buffer Areas Around Conservation Units

The analysis of buffer zones surrounding conservation units revealed patterns largely
consistent with the overall land cover distribution in both study areas (Tables A7–A12). For-
est classes remained the predominant land cover type within these buffer zones, reflecting
the broader landscape composition.

In Manaus, the buffer zones around Local full protection conservation units (Table A9)
exhibited a distinct land cover distribution. Development Areas emerged as the dom-
inant land cover type, occupying 46.5% (5314 ha) of the total buffer area. Porto Velho
demonstrated an even more pronounced anthropogenic influence in the buffer zones of
its Local-Level conservation units (Table A12). The areas surrounding both management
types of Local-Level conservation units were primarily characterized by human-modified
landscapes. Agriculture/Pastureland dominated the buffer zones of full protection units,
covering 33.1% (3985 ha) of the area, while Development Areas were prevalent in buffer
zones of sustainable use units, accounting for an overwhelming 82.4% (2539 ha) of the
total area.
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3.3. Deforestation and Forest Degradation
3.3.1. Study Sites

The analysis of deforestation and forest degradation rates revealed distinct patterns
and trends in Porto Velho and Manaus over the five-year study period. In both study
sites, forest degradation consistently outpaced deforestation, with Porto Velho experiencing
higher frequencies of both phenomena compared to Manaus (Figure 2). Mapped areas of
yearly deforestation and forest degradation, derived from LULC transition maps, in both
study sites, are represented in Figure 3. Visually, it was observed that deforestation areas
are more concentrated and compact than degradation areas, which are more fragmented
throughout the landscape.
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Porto Velho exhibited more dramatic fluctuations in both deforestation and degra-
dation (Figure 2). Deforestation peaked in 2020–2021, with 14,653 ha of forest converted,
primarily to Agriculture/Pastureland (9869 ha, accounting for 67.4% of the total deforesta-
tion). Following this peak, deforestation declined by approximately half in 2021–2022 and
remained relatively stable in subsequent years. Forest degradation in Porto Velho was most
pronounced in 2018–2019, affecting 31,157 ha. After reaching its lowest level the following
year, degradation showed an increasing trend in subsequent years.

In contrast, Manaus displayed a more gradual increase in deforested areas (Figure 2).
Starting from 2018–2019, deforestation steadily rose, culminating in 5267 ha of forest loss
in 2022–2023. This final year’s figure narrowly surpassed the previous year’s record by
just 3 ha. Similar to Porto Velho, the primary driver of deforestation in Manaus was the
conversion of forest areas to Agriculture/Pastureland, accounting for 4625 ha (87.8% of
the total deforestation area) in the final year. Forest degradation in Manaus peaked earlier
in the study period, with 26,500 ha affected in 2018–2019, followed by fluctuating rates in
subsequent years.

3.3.2. Conservation Units

Within conservation units, the total area of deforestation and forest degradation
revealed complex patterns across different management types and administrative levels
in both Manaus and Porto Velho in 5 years. Consistently, forest degradation surpassed
deforestation in most conservation units.

In Manaus, Federal sustainable use units experienced minimal change, with no de-
forestation and only 2 ha converted to Secondary Forest. Federal full protection units
faced more significant challenges, with 40 ha deforested and 4163 ha degraded (4.0% of the
total unit area) (Figure 4a). State-level units in Manaus showed greater areas of change,
with State sustainable use units experiencing 2223 ha of deforestation and 13,889 ha of
degradation, while State full protection units saw 14 ha deforested and 349 ha degraded
(Figure 4b). Local-level units in Manaus exhibited smaller but still notable areas of forest
loss (Figure 4c).
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Porto Velho displayed a different pattern, with Federal sustainable use units experi-
encing 2449 ha of deforestation and 7957 ha of degradation (6.0% of the total unit area).
Federal full protection units in Porto Velho showed lower deforestation (35 ha) but sig-
nificant degradation (2177 ha) (Figure 4a). The State sustainable use units in Porto Velho,
the only state-level category present, faced substantial challenges, with 9834 ha deforested
and 5849 ha degraded (Figure 4b). Local-level units in Porto Velho experienced minimal
changes, likely due to their small size (Figure 4c).

Across both cities, sustainable use units consistently showed larger areas of deforesta-
tion and degradation compared to full protection units. Porto Velho’s sustainable use units
consistently experienced more substantial deforestation than degradation, unlike Manaus,
where degradation significantly outpaced deforestation. The primary driver of forest loss in
conservation areas mirrored the broader trend, with conversion to Agriculture/Pastureland
being the main factor.

Analysis at the administrative level revealed that local-level units generally experi-
enced less disturbance, while state-level units in Manaus and federal-level units in Porto
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Velho faced the largest deforestation and degradation. Specific units stood out for their
extensive changes, such as the Environmental Protection Area on the Left Bank of the Ne-
gro River in Manaus (State sustainable use) and the Bom-Futuro National Forest (Federal
sustainable use) in Porto Velho.

3.3.3. Buffer Areas Around Conservation Units

In Manaus, buffer zones around Federal sustainable use units experienced a relatively
low level of change, with 23 ha deforested and 76 ha degraded. The buffers of Federal
full protection units faced more significant pressures, with 183 ha deforested and 3321 ha
degraded (Figure 5a). State-level units in Manaus showed varying impacts, with buffers
around sustainable use units experiencing 362 ha of deforestation and 1599 ha of degrada-
tion, while the buffers of full protection units saw 19 ha deforested and 292 ha degraded
(Figure 5b). Local-level units in Manaus exhibited similar deforestation levels in their
buffer zones (around 145 ha for both sustainable use and full protection), but degrada-
tion was more pronounced around sustainable use units (739 ha against 250 ha for full
protection) (Figure 5c).
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Porto Velho displayed different trends, particularly in federal-level units. Buffer
zones around Federal sustainable use units experienced higher deforestation (4593 ha)
than degradation (3712 ha), contrasting with the general trend. The buffers of Federal full
protection units showed lower but still significant changes (189 ha deforested and 1808 ha
degraded) (Figure 5a). Buffers of State sustainable use units in Porto Velho faced substantial
pressures, with 1270 ha deforested and 2269 ha degraded (Figure 5b). Local-level units
in Porto Velho showed minimal changes in sustainable use buffers but more significant
impacts around full protection units (127 ha deforested and 497 ha degraded) (Figure 5c).

Comparing the two areas, Porto Velho’s sustainable use units’ buffer zones experi-
enced significantly higher levels of both deforestation (5863 ha) and degradation (5981 ha)
compared to Manaus (529 ha and 2416 ha, respectively). Conversely, the buffers of full
protection units in Manaus showed slightly higher rates of deforestation (349 ha) and
degradation (3865 ha) than those in Porto Velho (316 ha and 2305 ha, respectively).

Across both areas, the primary driver of forest loss in buffer zones was conversion to
Agriculture/Pastureland, mirroring the broader regional trend. Federal-level units’ buffer
zones experienced the largest disturbance, particularly in Porto Velho for deforestation
(4782 ha) and in both areas for degradation (5520 ha in Porto Velho, 3397 ha in Manaus).

4. Discussion
4.1. LULC Classification Performance

The object-based supervised classification in this study achieved high accuracy (Over-
all Accuracy > 0.94) for all classified maps in each year in both areas (Tables 4 and 5). This
is comparable to previous LULC change studies in the Amazon using Random Forest [55]
and object-based image classification [19]. Brovelli et al. used Random Forest to classify
land cover and simulate forest dynamics in an area inside Para state, in the Brazilian
Amazon, with an overall accuracy reaching 0.97 for the classified map using Sentinel 2 [55].
Souza-Filho et al. used object-based classification, and Landsat and Sentinel 2 mosaics for
LULC classification of a watershed, also located in Para state, reaching an overall accuracy
higher than 0.94 for all classified maps [19].

Regarding the accuracy of each class, despite the object-based classification approach
generally aiming to reduce spectral confusion compared to pixel-based approaches, some
land cover classes still faced misclassification issues [56–58]. This challenge is common in
tropical forest studies, where dense canopy cover can complicate the differentiation of forest
types. Similar difficulties were encountered with Agriculture/Pastureland classification,
leading to the combination of these two land use types into a single class. Additionally,
some Burned Areas were incorrectly classified as Agriculture/Pastureland, possibly due to
the prevalence of slash-and-burn practices in the Amazon region [59].

Elevation data and Principal Component Analysis (PCA) proved particularly useful
in enhancing the model’s performance. The inclusion of topographic information has
been shown to improve land cover classification accuracy in complex terrains [43], while
PCA can effectively reduce data dimensionality while retaining essential information for
classification [60].

4.2. Land Cover Distribution and Change

The dominance of Terra-Firme Forest in both study areas underscores the continued
importance of these regions for biodiversity conservation and ecosystem services (Table 6).
However, the significant loss of forest over the short study period is concerning, pointing
to persistent deforestation pressures despite conservation efforts.

The contrasting secondary land covers—Water Bodies in Manaus and Agriculture/
Pastureland in Porto Velho—reflect the distinct developmental trajectories and environ-
mental contexts of these areas. While Manaus has a longer history (dating back to the
19th century “rubber boom”), Porto Velho experienced a significant transformation begin-
ning in the 1970s. This change was primarily driven by the implementation of colonization
projects and settlements by the Instituto Nacional de Colonização e Reforma Agrária (IN-
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CRA). The Brazilian government’s initiative to expand the agricultural frontier in Rondônia
state led to a substantial migratory flow of people to the region who, encouraged by
federal policies, rapidly converted vast areas of forest into agricultural lands and cattle
ranches [61,62]. Consequently, Porto Velho and its surrounding areas underwent a more
extensive and rapid deforestation process compared to Manaus.

Porto Velho’s higher proportion of agricultural land suggests a more intense an-
thropogenic modification, which is further supported by its larger gains in Agriculture/
Pastureland over the study period. This trend aligns with broader patterns of agricultural
expansion in the Amazon, often at the expense of Primary Forests [63–65].

The LULC dynamism observed in Manaus, and more greatly in Porto Velho, through
the frequency of change (Table 7), suggests an intense land use pressure and potentially
unsustainable practices in the area. One of the common LULC trajectories in the Amazon is
the conversion of Primary Forests to pasture. This transition often follows a pattern where
forests are cleared and then converted to pasture for cattle grazing. A cyclical pattern of
regrowth and re-clearing of Secondary Forests is also commonly observed, where farmers
may leave areas unused, on purpose or not, for a period of time to restore soil fertility
before reusing them. This transition may happen many times over the years and the use
of slash-and-burn techniques can also be widely applied in these processes, which can
increase soil degradation and carbon emissions [59].

4.3. Deforestation and Forest Degradation Rates

The study found that forest degradation consistently outpaces deforestation in both
areas, a trend that is sometimes overlooked in broader assessments of forest loss [11]. In
their 2020 study, Matricardi et al. reported that long-term forest degradation in the Brazilian
Amazon has surpassed deforestation, affecting an estimated 337,427 km2 of forest between
1992 and 2014, compared to 308,311 km2 lost through deforestation [66]. The same trend
was observed by Qin et al., who estimated that during 2010–2019, the Brazilian Amazon
experienced a cumulative gross loss of 4.45 Pg C against a gross gain of 3.78 Pg C. In their
results, forest degradation (73%) contributed three times more to the gross AGB loss than
deforestation (27%) [67]. This highlights the significant impact of degradation on carbon
stocks and underscores the importance of considering both deforestation and degradation
in forest monitoring efforts.

A significant driver of forest degradation in the Amazon is illegal selective logging,
as there is a high demand for valuable timber species, especially in international markets.
This practice involves the removal of targeted high-value tree species, which disrupts the
forest structure and composition. The creation of access roads and tree extraction open the
forest canopy, which leads to increased light penetration and drier conditions on the forest
floor, making the forest more susceptible to fires, especially during drought periods [68–70],
leading to more degradation and eventual forest loss.

In this study, Secondary Forests, which often result from previous disturbances like
logging or fire, were observed to have the largest area gain in Manaus over the study period
(Table 6), which shows a great level of forest degradation in the area. This may be due to the
city’s strategic location and status as a major economic hub placing it at risk of increased
forest disturbance as development continues to expand in this area [71,72].

The high yearly rates of deforestation and degradation observed in Porto Velho, com-
pared to Manaus, can be partly attributed to its location within the “arc of deforestation,”
a region along the southern and eastern edges of the Amazon that has been particularly
vulnerable to forest clearance [3]. Additionally, infrastructure projects like the reconstruc-
tion of the BR-319 highway connecting Porto Velho to Manaus have been associated with
increased land speculation and forest clearing, even before the road’s completion [73,74].

The primary drivers of forest loss observed in our study areas mirror those identified
in the broader Amazon region. Agriculture, particularly the expansion of pastureland
for cattle ranching, emerged as the dominant force behind deforestation, consistent with
findings from Tyukavina et al., who attributed 63% of forest disturbance in the Brazilian
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Amazon to pasture conversion between 2000 and 2013 [75]. The creation of pastureland is
also frequently driven by land speculation, where areas are deforested to create pastures to
quickly sell the land at inflated prices to crop producers, generating a complex land rights
problem for the region. Deforestation derived from this land use was highly observed in
Porto Velho by this study, as the city is a major cattle producer in the region.

4.4. Conservation Effectiveness and Buffer Zones Dynamics

The results of this study demonstrate that conservation units provide a good level of
protection against deforestation and forest degradation when compared to their surround-
ing areas. However, the effectiveness of this protection varied across different management
types and administrative levels. Full protection conservation units were shown to be more
effective when compared to sustainable use units in both cities, likely reflecting the stricter
regulations and limited human activities allowed in these areas. However, the significant
levels of forest degradation observed even within full protection units indicate that these
areas are not immune to anthropogenic pressures.

The large areas of deforestation and degradation detected in sustainable use units,
particularly at the State level in both areas, raise questions about the efficacy of current
management strategies in these areas. The predominant occurrence of agriculture and
pasture within these units, especially in Porto Velho, suggests that economic pressures
may outweigh conservation objectives in some units under state-level management. These
findings echo concerns raised by previous studies about the challenges faced by sustainable
use reserves in balancing conservation with local resource needs [22,23]. Furthermore,
differences in local economic activities and enforcement capacities are reflected in the
dominance of deforestation patterns found in sustainable use units in Porto Velho compared
to the prevalence of forest degradation patterns in Manaus.

Regarding the effectiveness of conservation units across administrative levels, Fed-
eral units showed less disturbance, particularly in Manaus, suggesting that national-level
management may provide stronger protection. Local-level units also experienced less
disturbance, possibly due to their smaller sizes. In contrast, state-level units faced exten-
sive deforestation and degradation, indicating potential challenges in enforcement and
management at this level. This aligns with the findings from Herrera et al., where federally
protected areas and indigenous lands generally experienced less internal deforestation
than state-managed protected areas, particularly in the “arc of deforestation”. This discrep-
ancy may be attributed to federal agencies considering broader jurisdictional benefits and
potentially having greater resources or enforcement capabilities [76].

The analysis of buffer zones around conservation units provided crucial insights into
the broader landscape context of protected areas. The large areas of deforestation and
degradation detected inside buffer zones, compared to the conservation units themselves,
highlight the effectiveness of the protected areas and the importance of considering local-
level conservation approaches. This is particularly evident in Porto Velho, where buffer
zones around sustainable use units experienced substantial forest loss and degradation,
showing the consistent anthropogenic pressure over the units. Buffer zones around local-
level units similarly experienced larger areas of disturbance than the units themselves,
which may be due to these units being established in areas with high levels of human
intervention, such as urban environments.

The predominant conversion of forest to Agriculture/Pastureland in buffer zones mir-
rors the broader regional trend and underscores the ongoing tension between conservation
and agricultural expansion in the Amazon [77]. This pattern suggests that conservation
strategies need to extend beyond protected area boundaries to address local-level drivers
of deforestation.

4.5. Implications for Conservation and Policy

The persistent forest loss and degradation observed in this study, even within pro-
tected areas, call for a reevaluation of current conservation strategies in the Brazilian
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Amazon [3,77]. The varying effectiveness of different management types and adminis-
trative levels suggests that a homogeneous approach to conservation is insufficient. For
sustainable use units, which showed higher forest loss and degradation, there is a need to
strengthen management practices and explore alternative livelihood options that can recon-
cile conservation with local development needs. This might involve promoting sustainable
agroforestry practices or developing markets for non-timber forest products [78,79].

The significant pressures observed in buffer zones highlight the need for integrated
management approaches that consider both protected areas and their surrounding land-
scapes. This could involve creating ecological corridors, implementing sustainable land
use practices in buffer zones, and, most importantly, engaging local communities in conser-
vation efforts.

Finally, the higher rates of forest degradation compared to deforestation in many
areas show the importance of monitoring and addressing less visible forms of forest
disturbance [66]. This calls for improved remote sensing techniques and on-the-ground
monitoring to detect and mitigate forest degradation.

5. Conclusions

This study provided a comprehensive analysis of deforestation and forest degradation
using LULC changes in Manaus and Porto Velho, Brazil, within and around conservation
units from 2018 to 2023. By employing advanced remote sensing techniques and object-
based classification methods, this study has achieved high-accuracy mapping of LULC
dynamics in the Brazilian Amazon landscape.

Our findings reveal several key insights:
1. Despite the continued dominance of Terra-Firme Forest in both study areas, sig-

nificant forest loss and degradation were observed, highlighting ongoing pressures on
ecosystems in the Brazilian Amazon. This study revealed a gain of 22,362 ha in Secondary
Forest areas in Manaus and 29,088 ha in Agriculture/Pastureland in Porto Velho within the
study period.

2. The effectiveness of conservation units varied considerably across management
types and administrative levels. Full protection units generally showed lower deforestation
compared to sustainable use units, but both categories still face substantial challenges in
preventing forest degradation.

3. Buffer zones around conservation units experienced larger deforestation and degra-
dation compared to the conservation units, highlighting the effectiveness of these pro-
tected areas.

4. The conversion of forest to Agriculture/Pastureland emerged as the primary driver
of land cover change and forest loss, reflecting the ongoing tension between conservation
and agricultural expansion in the Amazon.

5. Forest degradation consistently surpassed deforestation in most areas.
These results have important implications for conservation policy and practice in the

Brazilian Amazon. They suggest that while protected areas play a crucial role in forest
conservation, current strategies may be insufficient to fully safeguard these ecosystems.

The high-accuracy LULC classification achieved in this study demonstrates the poten-
tial of advanced remote sensing and machine learning techniques for monitoring complex
tropical forest landscapes. These methods provide valuable tools for tracking progress
toward conservation goals and informing adaptive management strategies.

In conclusion, while conservation units in Manaus and Porto Velho play a vital role in
forest protection, they face significant challenges from both internal and external pressures.
By providing a detailed analysis of LULC dynamics in these areas, this study contributes to
the evidence base needed to develop more effective and resilient conservation policies for
these areas in the Brazilian Amazon.
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Table A1. LULC area distribution (in hectares and %) and total area changed (ha) inside Manaus’
Federal-Level conservation units in all years.

Manaus—Federal-Level Conservation Units

Full Protection 2018 2019 2020 2021 2022 2023 Change
LULC Class ha % ha % ha % ha % ha % ha % ha

Terra-Firme Forest 134 0.1 270 0.3 88 0.1 206 0.2 1498 1.5 678 0.7 +543
Floodplain Forest 20,212 20.0 17,307 17.1 20,220 20.0 19,320 19.1 16,641 16.5 15,836 15.7 −4376
Secondary Forest 381 0.4 3001 3.0 667 0.7 665 0.7 1614 1.6 4506 4.5 +4125

Agriculture/Pastureland 81 0.1 67 0.1 74 0.1 74 0.1 655 0.6 100 0.1 +19
Burned Areas 1 0.0 1 0.0 1 0.0 9 0.0 1 0.0 4 0.0 +3

Barren Land 4 0.0 0 0.0 0 0.0 1 0.0 1 0.0 11 0.0 +7
Development Areas 4 0.0 0 0.0 0 0.0 1 0.0 1 0.0 1 0.0 −3

Water Bodies 80,312 79.4 80,485 79.6 80,080 79.2 80,854 79.9 80,719 79.8 79,995 79.1 −318

Sustainable Use 2018 2019 2020 2021 2022 2023 Change
LULC Class ha % ha % ha % ha % ha % ha % ha

Terra-Firme Forest 96 85.7 109 96.6 106 94.1 103 91.7 105 93.9 106 94.2 +10
Floodplain Forest 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.1 0
Secondary Forest 16 14.3 4 3.4 7 5.9 9 8.3 7 6.1 6 5.7 −10

Agriculture/Pastureland 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
Burned Areas 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

Barren Land 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
Development Areas 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

Water Bodies 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

Table A2. LULC area distribution (in hectares and %) and total area changed (ha) inside Manaus’
State-Level conservation units in all years.

Manaus—State-Level Conservation Units

Full Protection 2018 2019 2020 2021 2022 2023 Change
LULC Class ha % ha % ha % ha % ha % ha % ha

Terra-Firme Forest 73,683 94.3 72,657 93.0 72,293 92.6 73,132 93.6 75,146 96.2 74,447 95.3 +764
Floodplain Forest 4108 5.3 5052 6.5 5485 7.0 4719 6.0 2574 3.3 3129 4.0 −979
Secondary Forest 206 0.3 299 0.4 221 0.3 127 0.2 248 0.3 416 0.5 +210

Agriculture/Pastureland 20 0.0 11 0.0 20 0.0 30 0.0 41 0.1 25 0.0 +5
Burned Areas 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 2 0.0 +2

Barren Land 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
Development Areas 2 0.0 1 0.0 0 0.0 1 0.0 1 0.0 1 0.0 −1

Water Bodies 77 0.1 76 0.1 76 0.1 88 0.1 87 0.1 76 0.1 −1

Sustainable Use 2018 2019 2020 2021 2022 2023 Change
LULC Class ha % ha % ha % ha % ha % ha % ha

Terra-Firme Forest 470,572 86.5 469,519 86.3 471,885 86.7 464,095 85.3 475,448 87.4 463,126 85.1 −7446
Floodplain Forest 34,807 6.4 32,722 6.0 33,811 6.2 34,609 6.4 25,817 4.7 34,409 6.3 −398
Secondary Forest 18,811 3.5 24,134 4.4 19,580 3.6 26,248 4.8 22,782 4.2 27,392 5.0 +8581

Agriculture/Pastureland 8241 1.5 6925 1.3 7783 1.4 7516 1.4 8699 1.6 8108 1.5 −133
Burned Areas 427 0.1 166 0.0 348 0.1 235 0.0 173 0.0 447 0.1 +20

Barren Land 703 0.1 176 0.0 426 0.1 542 0.1 473 0.1 759 0.1 +56
Development Areas 82 0.0 293 0.1 83 0.0 36 0.0 43 0.0 40 0.0 −42

Water Bodies 10,550 1.9 10,259 1.9 10,278 1.9 10,911 2.0 10,758 2.0 9912 1.8 −639

Table A3. LULC area distribution (in hectares and %) and total area changed (ha) inside Manaus’
Local-Level conservation units in all years.

Manaus—Local-Level Conservation Units

Full Protection 2018 2019 2020 2021 2022 2023 Change
LULC Class ha % ha % ha % ha % ha % ha % ha

Terra-Firme Forest 23 38.1 7 12.3 6 9.5 6 9.8 6 9.9 1 1.4 −22
Floodplain Forest 9 14.6 0 0.8 3 4.5 1 2.0 0 0.8 0 0.0 −9
Secondary Forest 13 21.4 42 70.4 42 71.7 41 69.1 33 55.1 33 55.7 +20

Agriculture/Pastureland 11 18.3 7 12.5 6 10.9 9 15.3 19 31.5 22 37.4 +11
Burned Areas 0 0.0 1 1.6 0 0.0 0 0.1 0 0.0 0 0.0 0

Barren Land 2 2.6 0 0.0 0 0.1 0 0.1 0 0.1 1 1.4 −1
Development Areas 2 3.2 1 2.3 2 3.4 1 2.0 2 2.6 2 4.0 0

Water Bodies 1 1.7 0 0.0 0 0.0 1 1.5 0 0.0 0 0.0 −1

Sustainable Use 2018 2019 2020 2021 2022 2023 Change
LULC Class ha % ha % ha % ha % ha % ha % ha

Terra-Firme Forest 31,442 58.7 30,182 56.3 29,838 55.7 28,076 52.4 29,384 54.8 27,451 51.2 −3992
Floodplain Forest 4364 8.1 2980 5.6 3275 6.1 3613 6.7 3867 7.2 3631 6.8 −734
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Table A3. Cont.

Manaus—Local-Level Conservation Units

Sustainable Use 2018 2019 2020 2021 2022 2023 Change
LULC Class ha % ha % ha % ha % ha % ha % ha

Secondary Forest 4414 8.2 8733 16.3 7976 14.9 8827 16.5 6562 12.2 8474 15.8 +4060
Agriculture/Pastureland 8064 15.0 7035 13.1 7498 14.0 7409 13.8 8213 15.3 8033 15.0 −32

Burned Areas 88 0.2 35 0.1 104 0.2 126 0.2 36 0.1 154 0.3 +66
Barren Land 1490 2.8 725 1.4 1033 1.9 1578 2.9 1569 2.9 1950 3.6 +460

Development Areas 1369 2.6 1537 2.9 1483 2.8 1446 2.7 1475 2.8 1670 3.1 +301
Water Bodies 2354 4.4 2358 4.4 2379 4.4 2512 4.7 2480 4.6 2224 4.2 −130

Table A4. LULC area distribution (in hectares and %) and total area changed (ha) inside Porto Velho’s
Federal-Level conservation units in all years.

Porto Velho—Federal-Level Conservation Units

Full Protection 2018 2019 2020 2021 2022 2023 Change
LULC Class ha % ha % ha % ha % ha % ha % ha

Terra-Firme Forest 38,298 74.9 39,464 77.2 41,670 81.5 38,928 76.2 37,821 74.0 37,554 73.5 −744
Floodplain Forest 6933 13.6 4828 9.4 3603 7.0 4519 8.8 7291 14.3 6244 12.2 −689
Secondary Forest 649 1.3 1918 3.8 1125 2.2 2953 5.8 1512 3.0 2686 5.3 +2038

Agriculture/Pastureland 977 1.9 1210 2.4 594 1.2 905 1.8 517 1.0 549 1.1 −428
Burned Areas 1 0.0 34 0.1 1 0.0 2 0.0 1 0.0 2 0.0 +1

Barren Land 13 0.0 7 0.0 19 0.0 13 0.0 5 0.0 2 0.0 −11
Development Areas 0 0.0 1 0.0 0 0.0 0 0.0 1 0.0 0 0.0 0

Water Bodies 400 0.8 415 0.8 412 0.8 414 0.8 419 0.8 420 0.8 +20
Savanna 3842 7.5 3236 6.3 3690 7.2 3381 6.6 3547 6.9 3657 7.2 −185

Sustainable Use 2018 2019 2020 2021 2022 2023 Change
LULC Class ha % ha % ha % ha % ha % ha % ha

Terra-Firme Forest 98,439 78.2 96,977 77.1 97,941 77.8 96,891 77.0 96,533 76.7 95,273 75.7 −3165
Floodplain Forest 5231 4.2 4176 3.3 3227 2.6 3476 2.8 4171 3.3 3670 2.9 −1561
Secondary Forest 13,251 10.5 14,586 11.6 13,530 10.8 13,357 10.6 13,126 10.4 14,532 11.5 1280

Agriculture/Pastureland 8448 6.7 8705 6.9 10,019 8.0 10,467 8.3 11,339 9.0 11,470 9.1 +3022
Burned Areas 55 0.0 914 0.7 693 0.6 1270 1.0 222 0.2 353 0.3 +298

Barren Land 133 0.1 226 0.2 159 0.1 173 0.1 75 0.1 217 0.2 +84
Development Areas 21 0.0 92 0.1 1 0.0 2 0.0 35 0.0 3 0.0 −18

Water Bodies 95 0.1 142 0.1 151 0.1 152 0.1 151 0.1 142 0.1 +47
Savanna 184 0.1 40 0.0 135 0.1 67 0.1 205 0.2 198 0.2 +14

Table A5. LULC area distribution (in hectares and %) and total area changed (ha) inside Porto Velho’s
State-Level conservation units in all years.

Porto Velho—State-Level Conservation Units

Sustainable Use 2018 2019 2020 2021 2022 2023 Change
LULC Class ha % ha % ha % ha % ha % ha % ha

Terra-Firme Forest 62,553 34.3 56,895 31.2 58,429 32.0 53,178 29.2 50,652 27.8 49,464 27.1 −13,089
Floodplain Forest 3925 2.2 3140 1.7 2771 1.5 3424 1.9 4448 2.4 3860 2.1 −65
Secondary Forest 13,189 7.2 18,708 10.3 13,987 7.7 13,651 7.5 13,247 7.3 12,888 7.1 −301

Agriculture/Pastureland 93,976 51.5 93,390 51.2 97,328 53.4 103,315 56.7 10,6770 58.6 108,842 59.7 +14,866
Burned Areas 647 0.4 1811 1.0 1902 1.0 2184 1.2 713 0.4 710 0.4 +63

Barren Land 4559 2.5 5062 2.8 4315 2.4 2997 1.6 2207 1.2 2899 1.6 −1660
Development Areas 231 0.1 204 0.1 113 0.1 209 0.1 151 0.1 134 0.1 −97

Water Bodies 2935 1.6 2875 1.6 3428 1.9 3015 1.7 3165 1.7 3016 1.7 +81
Savanna 336 0.2 264 0.1 77 0.0 377 0.2 997 0.5 538 0.3 +202

Table A6. LULC area distribution (in hectares and %) and total area changed (ha) inside Porto Velho’s
Local-Level conservation units in all years.

Porto Velho—Local-Level Conservation Units

Full Protection 2018 2019 2020 2021 2022 2023 Change
LULC Class ha % ha % ha % ha % ha % ha % ha

Terra-Firme Forest 357 85.6 353 84.6 378 90.5 369 88.5 366 87.7 370 88.6 +12
Floodplain Forest 25 6.1 26 6.2 17 4.1 16 3.8 24 5.8 13 3.2 −12
Secondary Forest 16 3.9 25 6.0 11 2.7 19 4.4 16 3.8 24 5.8 +8

Agriculture/Pastureland 13 3.2 10 2.4 6 1.5 10 2.4 8 1.9 7 1.6 −6
Burned Areas 1 0.1 0 0.0 0 0.0 0 0.1 0 0.1 0 0.0 −1

Barren Land 4 1.0 3 0.8 5 1.1 2 0.6 3 0.7 2 0.6 −2
Development Areas 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

Water Bodies 0 0.1 0 0.0 0 0.1 0 0.1 0 0.0 0 0.0 0
Savanna 0 0.0 0 0.0 0 0.0 0 0.1 0 0.0 1 0.2 +1
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Table A6. Cont.

Porto Velho—Local-Level Conservation Units

Sustainable Use 2018 2019 2020 2021 2022 2023 Change
LULC Class ha % ha % ha % ha % ha % ha % ha

Terra-Firme Forest 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
Floodplain Forest 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
Secondary Forest 0 0.0 2 24.3 2 24.0 3 24.7 2 24.3 2 20.9 +2

Agriculture/Pastureland 5 54.2 1 14.5 1 7.9 1 12.7 4 43.3 3 33.9 −2
Burned Areas 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

Barren Land 3 24.8 5 53.2 7 65.8 4 34.9 1 11.9 4 39.9 2
Development Areas 2 20.9 1 8.0 0 2.3 3 27.7 2 16.4 1 5.2 −2

Water Bodies 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
Savanna 0 0.0 0 0.0 0 0.0 0 0.0 0 4.2 0 0.0 0

Table A7. LULC area distribution (in hectares and %) and total area changed (ha) inside Manaus’
Federal-Level buffer zones in all years.

Manaus—Federal-Level Buffer Zones

Full Protection 2018 2019 2020 2021 2022 2023 Change
LULC Class ha % ha % ha % ha % ha % ha % ha

Terra-Firme Forest 12,208 38.7 12,203 38.7 12,830 40.7 10,509 33.3 12,846 40.8 11,232 35.6 −976
Floodplain Forest 5843 18.5 4062 12.9 4763 15.1 4878 15.5 3455 11.0 4243 13.5 −1600
Secondary Forest 3670 11.6 5825 18.5 4385 13.9 6490 20.6 5392 17.1 6514 20.7 +2844

Agriculture/Pastureland 792 2.5 441 1.4 546 1.7 513 1.6 777 2.5 582 1.8 −210
Burned Areas 12 0.0 21 0.1 54 0.2 38 0.1 17 0.1 83 0.3 +71

Barren Land 30 0.1 5 0.0 13 0.0 11 0.0 8 0.0 61 0.2 +31
Development Areas 12 0.0 2 0.0 5 0.0 3 0.0 2 0.0 8 0.0 −4

Water Bodies 8950 28.4 8958 28.4 8920 28.3 9076 28.8 9019 28.6 8794 27.9 −157

Sustainable Use 2018 2019 2020 2021 2022 2023 Change
LULC Class ha % ha % ha % ha % ha % ha % ha

Terra-Firme Forest 3800 75.5 4082 81.1 4129 82.0 3939 78.3 3988 79.2 4077 81.0 277
Floodplain Forest 30 0.6 50 1.0 52 1.0 68 1.4 17 0.3 9 0.2 −21
Secondary Forest 1186 23.6 886 17.6 833 16.6 999 19.9 996 19.8 916 18.2 −270

Agriculture/Pastureland 9 0.2 15 0.3 18 0.4 25 0.5 30 0.6 19 0.4 10
Burned Areas 6 0.1 1 0.0 1 0.0 2 0.0 2 0.0 11 0.2 +5

Barren Land 2 0.0 0 0.0 0 0.0 1 0.0 1 0.0 1 0.0 −1
Development Areas 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

Water Bodies 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

Table A8. LULC area distribution (in hectares and %) and total area changed (ha) inside Manaus’
State-Level buffer zones in all years.

Manaus—State-Level Buffer Zones

Full Protection 2018 2019 2020 2021 2022 2023 Change
LULC Class ha % ha % ha % ha % ha % ha % ha

Terra-Firme Forest 34,771 81.7 34,647 81.4 34,659 81.4 34,375 80.7 34,962 82.1 34,381 80.8 −390
Floodplain Forest 3248 7.6 3418 8.0 3473 8.2 3691 8.7 3016 7.1 3579 8.4 +331
Secondary Forest 324 0.8 566 1.3 432 1.0 396 0.9 364 0.9 480 1.1 +157

Agriculture/Pastureland 966 2.3 858 2.0 857 2.0 770 1.8 876 2.1 780 1.8 −185
Burned Areas 2 0.0 0 0.0 3 0.0 1 0.0 1 0.0 3 0.0 0

Barren Land 258 0.6 104 0.2 142 0.3 241 0.6 189 0.4 158 0.4 −100
Development Areas 2623 6.2 2661 6.2 2687 6.3 2683 6.3 2774 6.5 2875 6.8 +252

Water Bodies 383 0.9 321 0.8 322 0.8 417 1.0 391 0.9 319 0.7 −64

Sustainable Use 2018 2019 2020 2021 2022 2023 Change
LULC Class ha % ha % ha % ha % ha % ha % ha

Terra-Firme Forest 24,050 51.8 22,925 49.4 23,375 50.4 22,934 49.4 24,316 52.4 22,966 49.5 −1084
Floodplain Forest 7218 15.5 7338 15.8 7554 16.3 6960 15.0 5958 12.8 7192 15.5 −26
Secondary Forest 1183 2.5 2398 5.2 1653 3.6 2417 5.2 2012 4.3 2493 5.4 +1310

Agriculture/Pastureland 740 1.6 677 1.5 790 1.7 742 1.6 881 1.9 819 1.8 +79
Burned Areas 39 0.1 75 0.2 57 0.1 38 0.1 22 0.0 91 0.2 +51

Barren Land 60 0.1 8 0.0 24 0.1 47 0.1 38 0.1 72 0.2 +12
Development Areas 8 0.0 13 0.0 5 0.0 3 0.0 2 0.0 2 0.0 −6

Water Bodies 13,120 28.3 12,986 28.0 12,960 27.9 13,278 28.6 13,192 28.4 12,785 27.5 −335
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Table A9. LULC area distribution (in hectares and %) and total area changed (ha) inside Manaus’
Local-Level buffer zones in all years.

Manaus—Local-Level Buffer Zones

Full Protection 2018 2019 2020 2021 2022 2023 Change
LULC Class ha % ha % ha % ha % ha % ha % ha

Terra-Firme Forest 1966 17.2 2348 20.6 2212 19.4 1678 14.7 2057 18.0 1846 16.2 −120
Floodplain Forest 69 0.6 38 0.3 53 0.5 40 0.3 42 0.4 67 0.6 −1
Secondary Forest 687 6.0 1219 10.7 1013 8.9 1356 11.9 719 6.3 798 7.0 +111

Agriculture/Pastureland 2917 25.5 2373 20.8 2531 22.2 2484 21.7 2778 24.3 2710 23.7 −207
Burned Areas 53 0.5 4 0.0 22 0.2 22 0.2 5 0.0 25 0.2 −28

Barren Land 728 6.4 332 2.9 515 4.5 805 7.1 588 5.2 504 4.4 −224
Development Areas 4846 42.4 4946 43.3 4922 43.1 4870 42.6 5060 44.3 5314 46.5 +468

Water Bodies 155 1.4 160 1.4 153 1.3 167 1.5 171 1.5 155 1.4 0

Sustainable Use 2018 2019 2020 2021 2022 2023 Change
LULC Class ha % ha % ha % ha % ha % ha % ha

Terra-Firme Forest 7528 43.8 7037 40.9 7548 43.9 7043 40.9 7452 43.3 7018 40.8 −510
Floodplain Forest 1416 8.2 1171 6.8 1252 7.3 1202 7.0 1152 6.7 1390 8.1 −26
Secondary Forest 386 2.2 1393 8.1 707 4.1 1204 7.0 820 4.8 1100 6.4 715

Agriculture/Pastureland 835 4.9 675 3.9 748 4.3 695 4.0 760 4.4 774 4.5 −62
Burned Areas 11 0.1 6 0.0 19 0.1 16 0.1 6 0.0 24 0.1 13

Barren Land 51 0.3 18 0.1 24 0.1 42 0.2 30 0.2 66 0.4 15
Development Areas 13 0.1 6 0.0 9 0.0 7 0.0 6 0.0 5 0.0 −8

Water Bodies 6965 40.5 6899 40.1 6900 40.1 6996 40.7 6979 40.6 6828 39.7 −137

Table A10. LULC area distribution (in hectares and %) and total area changed (ha) inside Porto
Velho’s Federal-Level buffer zones in all years.

Porto Velho—Federal-Level Buffer Zones

Full Protection 2018 2019 2020 2021 2022 2023 Change
LULC Class ha % ha % ha % ha % ha % ha % ha

Terra-Firme Forest 14,682 58.8 15,055 60.3 16,013 64.1 14,910 59.7 15,524 62.1 14,446 57.8 −236
Floodplain Forest 5268 21.1 3770 15.1 2612 10.5 3401 13.6 3035 12.1 3757 15.0 −1511
Secondary Forest 677 2.7 1805 7.2 2015 8.1 2355 9.4 2213 8.9 2526 10.1 +1849

Agriculture/Pastureland 1523 6.1 1593 6.4 1671 6.7 1742 7.0 1610 6.4 1655 6.6 +132
Burned Areas 40 0.2 3 0.0 14 0.1 21 0.1 16 0.1 8 0.0 −33

Barren Land 531 2.1 510 2.0 571 2.3 531 2.1 560 2.2 384 1.5 −147
Development Areas 58 0.2 35 0.1 0 0.0 5 0.0 21 0.1 2 0.0 −57

Water Bodies 1981 7.9 2094 8.4 1986 7.9 1924 7.7 1863 7.5 2086 8.3 +105
Savanna 225 0.9 123 0.5 105 0.4 97 0.4 145 0.6 123 0.5 −102

Sustainable Use 2018 2019 2020 2021 2022 2023 Change
LULC Class ha % ha % ha % ha % ha % ha % ha

Terra-Firme Forest 57,413 61.8 55,053 59.2 55,851 60.1 53,241 57.3 52,647 56.6 51,973 55.9 −5440
Floodplain Forest 3551 3.8 2712 2.9 1917 2.1 2691 2.9 3334 3.6 3008 3.2 −543
Secondary Forest 6308 6.8 8748 9.4 7612 8.2 7208 7.8 6444 6.9 6710 7.2 +402

Agriculture/Pastureland 22,564 24.3 22,659 24.4 23,808 25.6 25,742 27.7 27,673 29.8 28,309 30.4 +5745
Burned Areas 197 0.2 719 0.8 829 0.9 1221 1.3 282 0.3 49 0.1 −147

Barren Land 1038 1.1 1307 1.4 1136 1.2 947 1.0 598 0.6 951 1.0 −87
Development Areas 53 0.1 29 0.0 10 0.0 56 0.1 35 0.0 21 0.0 −31

Water Bodies 928 1.0 986 1.1 1005 1.1 1038 1.1 1083 1.2 1087 1.2 +159
Savanna 918 1.0 756 0.8 800 0.9 825 0.9 874 0.9 861 0.9 −57

Table A11. LULC area distribution (in hectares and %) and total area changed (ha) inside Porto
Velho’s State-Level buffer zones in all years.

Porto Velho—State-Level Buffer Zones

Sustainable Use 2018 2019 2020 2021 2022 2023 Change
LULC Class ha % ha % ha % ha % ha % ha % ha

Terra-Firme Forest 34,192 56.3 34,076 56.2 35,514 58.5 33,712 55.6 33,718 55.6 32,860 54.1 −1332
Floodplain Forest 4905 8.1 4359 7.2 3253 5.4 3667 6.0 4023 6.6 3748 6.2 −1157
Secondary Forest 3336 5.5 3623 6.0 2915 4.8 4136 6.8 3742 6.2 4466 7.4 +1130

Agriculture/Pastureland 14,648 24.1 14,916 24.6 15,377 25.3 15,672 25.8 15,843 26.1 16,280 26.8 +1632
Burned Areas 254 0.4 342 0.6 182 0.3 253 0.4 142 0.2 166 0.3 −88

Barren Land 763 1.3 860 1.4 879 1.4 507 0.8 353 0.6 522 0.9 −241
Development Areas 9 0.0 18 0.0 6 0.0 48 0.1 18 0.0 6 0.0 −3

Water Bodies 2280 3.8 2263 3.7 2276 3.7 2276 3.7 2442 4.0 2259 3.7 −20
Savanna 299 0.5 227 0.4 283 0.5 414 0.7 402 0.7 377 0.6 77
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Table A12. LULC area distribution (in hectares and %) and total area changed (ha) inside Porto
Velho’s Local-Level buffer zones in all years.

Porto Velho—Local-Level Buffer Zones

Full Protection 2018 2019 2020 2021 2022 2023 Change
LULC Class ha % ha % ha % ha % ha % ha % ha

Terra-Firme Forest 2295 19.1 2492 20.7 2923 24.3 2567 21.3 2457 20.4 2560 21.3 +266
Floodplain Forest 683 5.7 375 3.1 410 3.4 320 2.7 595 4.9 429 3.6 −254
Secondary Forest 666 5.5 881 7.3 653 5.4 1002 8.3 1060 8.8 1152 9.6 +487

Agriculture/Pastureland 3845 32.0 3744 31.1 3541 29.4 4096 34.0 4096 34.0 3985 33.1 +140
Burned Areas 52 0.4 65 0.5 34 0.3 57 0.5 34 0.3 46 0.4 −6

Barren Land 1707 14.2 1918 15.9 2032 16.9 1161 9.6 1165 9.7 1257 10.4 −450
Development Areas 1901 15.8 1681 14.0 1520 12.6 1912 15.9 1672 13.9 1682 14.0 −219

Water Bodies 875 7.3 859 7.1 884 7.4 865 7.2 860 7.1 854 7.1 −21
Savanna 8 0.1 17 0.1 34 0.3 52 0.4 93 0.8 66 0.5 +58

Sustainable Use 2018 2019 2020 2021 2022 2023 Change
LULC Class ha % ha % ha % ha % ha % ha % ha

Terra-Firme Forest 0 0.0 12 0.4 16 0.5 11 0.4 11 0.4 14 0.5 +14
Floodplain Forest 9 0.3 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 −9
Secondary Forest 0 0.0 14 0.4 21 0.7 32 1.0 26 0.8 17 0.6 +17

Agriculture/Pastureland 173 5.6 181 5.9 230 7.5 241 7.8 262 8.5 273 8.9 +100
Burned Areas 2 0.1 11 0.4 1 0.0 1 0.0 2 0.1 3 0.1 +1

Barren Land 200 6.5 306 9.9 310 10.1 202 6.6 231 7.5 227 7.4 +27
Development Areas 2697 87.5 2557 83.0 2499 81.1 2594 84.2 2544 82.6 2539 82.4 −158

Water Bodies 0 0.0 1 0.0 1 0.0 1 0.0 1 0.0 2 0.1 +2
Savanna 0 0.0 0 0.0 3 0.1 0 0.0 3 0.1 5 0.2 +5
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