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Featured Application: Studies utilizing GIS-based tools (e.g., PVGIS), which provide localized
atmospheric data with a limited number of parameters.

Abstract: Accurate dew point estimation is crucial for measuring water condensation in various fields
such as environmental studies, agronomy, or water harvesting, among others. Despite the numerous
models and equations developed over time, including empirical and machine learning approaches,
they often involve trade-offs between accuracy, simplicity, and computational cost. A major limitation
of the current approaches is the lack of balance among these three factors, limiting their practical
applications under diverse conditions. This research addresses these key challenges by developing a
new, streamlined equation for dew point estimation. Using the Magnus–Tetens equation, deemed
as the most reliable equation, as a benchmark, and by applying a process of non-linear regression
fitting and parametric optimization, a new equation was derived. The results demonstrate high
accuracy with a streamlined implementation, validated through extensive data and computational
simulations. This study highlights the importance of accurate dew point modeling, especially under
variable environmental conditions, provides a reliable solution to existing limitations, paving the
way for enhanced efficiency in related processes and research endeavors, and offers researchers and
practitioners a practical tool for more effective modeling of water condensation phenomena.

Keywords: dew point estimation; water condensation modeling; parametric optimization

1. Introduction
1.1. State of the Art

The accurate estimation of dew point temperature (DPT) plays a crucial role in en-
hancing the efficiency and performance of various systems, ranging from meteorological
forecasting to industrial applications, extending to the design of atmospheric water capture
systems [1,2]. The DPT refers to the temperature at which the atmosphere reaches satura-
tion with water vapor, leading to the condensation of a portion of this suspended water [3].
The DPT is invariably lower than or equal to the ambient temperature. Consequently,
precise determination of the DPT holds significant importance, as it governs heat stress on
individuals, and monitors variations in evaporation rates and humidity trends [4].

Beyond its fundamental thermodynamic relevance, the dew point serves as a con-
nection between theoretical understanding and practical applications across diverse fields
such as agriculture, horticulture, and agronomy, where seasonal DPT trends inform irriga-
tion strategies and optimize water usage, maximizing crop productivity [5]. Additionally,
accurate weather pattern prediction relies on incorporating DPT calculation into models,
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providing insights for public safety, agricultural planning, and climate research [6]. Further-
more, DPT plays a crucial role in various engineering applications such as construction [7,8]
and industry. Controlling humidity through dew point manipulation is essential for en-
suring product quality and process efficiency in diverse sectors like food processing [9],
electronics manufacturing [10], or water harvesting [2,11]. Additionally, most studies
analyzing humid air in ambient conditions of temperature and pressure focus on partial
pressure calculation, relegating the DPT as a secondary parameter [12,13]. Nevertheless, the
dew point is a key factor for different fields, especially, but not limited to, water harvesting,
where cooling the air below its DPT consumes enormous energy and causes low energy
efficiency, especially in hot and dry areas [14].

Regarding the specific DPT calculation, various methods for determining the DPT
have been discussed, including empirical equations, depending on the operating conditions.
Different correlations have been developed to determine properties of compressed humid
air [15–17]. To date, the estimation of DPT in ambient conditions was traditionally per-
formed using empirical equations [18]. In this regard, among the most common approaches,
the rule of thumb for moist air suggests a 1 ◦C decrease in DPT for every 5% decrease in
relative humidity, starting at the dry bulb temperature when RH = 100% [19]. However,
these methods are limited in their accuracy, particularly under varied environmental con-
ditions, including the spectrum of average conditions of temperature and humidity, but
also very high temperatures (above 40 ◦C) or temperatures near 0 ◦C, where condensation
becomes challenging. Additionally, conditions of very high relative humidity (above 80%)
and very low relative humidity (below 15%) further complicate the accuracy. Combining
extreme temperatures with extreme humidity levels presents the most difficult scenarios
for accurately modeling the DPT.

With the development of Machine Learning and Soft Computing Techniques (SCTs),
more sophisticated models have been developed for DPT estimation. Support Vector
Regression (SVR), optimized with algorithms such as Ant Colony Optimization (ACO),
has been employed to balance accuracy and complexity, providing DPT estimations across
different climatic conditions [20,21]. Artificial Neural Networks (ANNs) and Adaptive
Neuro-Fuzzy Inference Systems (ANFISs) have shown great potential in capturing non-
linear relationships between meteorological variables and DPT. Studies have demonstrated
their effectiveness, particularly when integrated with optimization techniques like Genetic
Algorithms (GAs) [22,23]. Likewise, hybrid models, which combine different computational
techniques, are also employed, enhancing the accuracy of DPT estimation [21]. Additionally,
studies have shown that integrating Genetic Algorithms (GAs) to optimize the parameters
of Least Square Support Vector Machine (LSSVM) and ANFIS can significantly improve the
predictive performance, making these models valuable tools for practical applications [24].

While these previous works [16–27] discuss methods and approximations, there are
no specific equations or models using only ambient temperature and relative humidity
as single inputs for calculating water DPT. Furthermore, soft computing models do not
explicitly reveal the correlation between input and output data, making it difficult to un-
derstand the relationships and reasoning processes. In contrast, mathematical approaches
or physical-based equations provide clear and explicit correlations between inputs and
outputs, offering a transparent justification of the results. While SCT models are effective,
their lack of interpretability can be a significant drawback in applications requiring clear
understanding and justification of the predictions [25].

Late studies exploring hybrid SCTs highlight the importance of minimizing compu-
tational demands while maintaining high accuracy, which is crucial for practical applica-
tions [26,27]. Computational demand refers to the amount of resources, such as processing
time and memory, required to perform a task. Simplifying an equation does not significantly
reduce computational load on modern processors, but simplicity can enhance usability and
reduce the risk of errors. For instance, adding a single mathematical operation may have a
minimal effect on a one-time calculation, but can significantly increase the load depending
on the type of operation and the ongoing process. Considering addition/subtraction as
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the elemental baseline of computing, taking around 1 ns per operation, other operations
require more time: multiplication takes 5–10 times more, division 10–20 times more, expo-
nentiation 20–30 times more for small exponents (and much higher for large exponents),
square roots 30–40 times more, logarithms 50–100 times more, and trigonometric functions
100–200 times more. These differences are further influenced by the specific algorithms
and implementation strategies used in software and platforms, with efficient algorithms
significantly enhancing performance [28,29]. Furthermore, iterative calculations, optimiza-
tion problems, and especially nested operations can repeat these operations dozens to
thousands of times. Using RAM for storing intermediate results offers the fastest access
with times in the order of nanoseconds to microseconds. However, this approach can be
constrained by the available memory, particularly for large-scale computations, where
writing results to temporary files can introduce considerable overhead, increasing access
times to milliseconds, which is approximately 1000 times slower [30]. Therefore, reducing
and replacing operations correctly can significantly reduce computing time. Recent works
have emphasized that developing new, accurate, and reliable dew point equations for
scientific and practical applications would contribute to applied thermal engineering and
energy-efficient system designs [21].

1.2. Research Gaps

Despite advancements in DPT estimation models, several gaps persist in the existing
literature, limiting the effectiveness and applicability of these models in various scenarios:

• Dependence on Multiple Variables: Many models require different meteorological vari-
ables (e.g., temperature, humidity ratios, vapor pressure), complicating their use and
implementation. Simplifying the input requirements can make models more accessible
and easier to implement, especially in resource-constrained environments [16–27].

• Limited Applicability under Varied Conditions: These conditions include the spectrum
of average conditions of temperature and humidity, but also very high temperatures
(above 40 ◦C) or temperatures near 0 ◦C, where condensation becomes challenging.
Additionally, conditions of very high relative humidity (above 80%) and very low
relative humidity (below 15%) further complicate the accuracy. Combining extreme
temperatures with extreme humidity levels presents the most difficult scenarios for
accurately modeling the DPT. Current empirical models and some machine learning
models fail to provide accurate estimates under extreme environmental conditions.
Accurate DPT estimation under a wide range of conditions is critical for applications
like water harvesting and energy efficiency [8,9,15,27,28].

• Lack of Specialized Tools: Currently, there is no tool specifically designed to address
the combined results of temperature and humidity conditions beyond the simplistic
rule of thumb, which is often inadequate. Developing dedicated tools that can handle
these combined scenarios with precision and reliability is essential for advancing prac-
tical applications and enhancing model accuracy in diverse environmental contexts.

1.3. Contributions

This study aims to address these identified research gaps by developing a new, simpli-
fied, and accurate dew point estimation equation based solely on ambient temperature and
relative humidity. In this regard, this work provides the following contributions:

• Development of a specific equation: This work introduces a new equation obtained
through non-linear regression fitting and parametric optimization, using only ambient
temperature and relative humidity. This simplifies the input requirements while
maintaining high accuracy, making the model more practical and accessible. This work
provides a robust tool for optimizing water harvesting and other related processes,
improving overall efficiency.

• Enhanced accuracy across conditions: The equation is validated through extensive data
comparison, demonstrating consistent accuracy under real environmental conditions.
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This ensures reliable performance in critical applications, especially in hot and dry
areas where energy efficiency is paramount.

• An equation which is particularly useful for environmental studies: This work utilizes
GIS-based tools (e.g., PVGIS), which provide localized atmospheric data with a limited
number of parameters. Having a model dependent on as few parameters as possible
is crucial for its applicability and real-world implementation.

By addressing these gaps, this study offers a practical and reliable solution for DPT
estimation, benefiting both scientific research and practical applications. For this purpose,
this paper is organized as follows: Section 2 presents a comprehensive literature review
identifying research gaps, establishing precise research objectives, and clarifying the paper’s
contributions. Subsequently, a description of the methodological process followed are
presented in Section 3. The obtained equations are presented, analyzed, and evaluated in
Section 4. Finally, Section 5 presents the conclusions of the research.

2. Materials and Methods
2.1. Background

The estimation of DPT in ambient conditions traditionally relies on empirical equa-
tions [18], but there are also theoretical ones. Among the most common approaches for
humid air conditions, the rule of thumb suggests a 1 ◦C decrease in DPT for every 5%
decrease in relative humidity, starting at the dry bulb temperature when RH = 100%, as
indicated in Equation (1) [19]. Furthermore, the most relevant empirical equations are the
Buck’s equation [31], Goff–Gratch’s equation [32], and Magnus–Tetens’ equation [33].

DPT = T − 100 − RH
5

(1)

where:

• T refers to the ambient temperature,
• RH corresponds to the relative humidity of the air.

Magnus–Teten’s equation, described in Equation (2):

DPT =
273.3 ×

(
ln
(

17.269
RH

)
+ 17.269×T

237.3+T

)
17.269 −

(
ln
(

17.269
RH

)
+ 17.269×T

237.3+T

) (2)

where:

• T refers to the ambient temperature,
• RH corresponds to the relative humidity of the air,
• 273.3 and 17.269 are non-dimensional coefficients.

Regarding theoretical equations, the most relevant one is the Clausius–Clapeyron
equation [34], described in Equation (3):

DPT = T

1 −
T·ln

(
RH
100

)
L/Rw

−1

(3)

where:

• T = 273.15 K,
• L is the enthalpy of vaporization; L = 2.501 × 106 J

kg (T = 273.15K) ÷ 2.257 × 106 J
kg

(T = 373.15K),
• Rw is the gas constant for water vapor; Rw = 461.5 J

K·kg .
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Equation (3) gives a good approximation to Magnus–Tetens’ equation (Equation (2))
when T is close to the value for which L is chosen, with small but non-negligible errors
away from the chosen reference temperature.

The most commonly used equation to obtain the DPT based on the ambient tempera-
ture and relative humidity is the previously defined rule of thumb. Previous works delve
into the mathematical basis and accuracy of different relationships between dew point and
relative humidity, presenting practical applications like computing the cumulus cloud-base
level. However, the exact conversion from relative humidity to DPT is complex. One of the
main problems highlighted is the difficulty in achieving highly accurate approximations
without sophisticated tools, emphasizing the need for simpler yet reliable methods for
practical applications in meteorology and atmospheric science [4]. Based on this, the most
common problems associated with existing dew point equations based on temperature and
relative humidity include:

• Complexity: Many existing equations for calculating dew point from temperature and
relative humidity are complex and demand a higher computation cost, especially in
case of iterative calculations.

• Accuracy: Some equations may lack accuracy, especially in approximating the con-
version from relative humidity to DPT, leading to potential errors in moisture content
estimations in the air.

• Pressure dependency: The accuracy of dew point calculations can be influenced by
variations in pressure, affecting the reliability of the results, especially in scenarios
where environmental conditions fluctuate significantly. Additionally, it supposes an
additional variable to consider while solving the defined problem.

Addressing these common issues in dew point equations is essential to improve the
accuracy, simplicity, and reliability of calculations related to DPT and relative humidity in
atmospheric science and meteorology.

2.2. Problem Definition and Methodology

The objective is to estimate the DPT using just ambient temperature and relative
humidity. To address this problem, mathematical models derived from empirical data are
used. By leveraging upon known relationships between temperature, humidity, and dew
point, it is possible to construct equations that approximate the DPT based on ambient
conditions. These equations are formulated through non-linear regression fitting and
parametric optimization and the subsequent validation processes, ensuring their reliability
and accuracy across various scenarios.

Following the development of these equations, their efficacy is assessed through es-
tablished statistical measures, quantifying the correspondence between forecasted and
observed DPT. This systematic approach’s workflow is shown in Figure 1. The observed
data constitutes a dataset utilized for dual purposes: as training and testing data. The
training dataset serves as the foundation for deriving equations that model the data distri-
bution. Should the obtained equations yield satisfactory results (R2 > 0.95, STD < 2), the
process proceeds to optimization; otherwise, it reverts to mathematical modeling. Sub-
sequent to the optimization phase, where the coefficients are tuned, the results undergo
statistical scrutiny to ascertain any enhancements compared to prior iterations. Specifically,
an approximation target of R2 ≥ 0.99 and STD < 1 is sought. Subsequently, an iterative
simplification procedure ensues, wherein the decimal precision of equation components is
successively reduced. Acceptance of modifications is contingent upon the demonstration of
improved results after each iteration; otherwise, iterations are performed on a term-by-term
basis of the equation. Should any variation yield superior outcomes, the process concludes.
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2.3. Equation Finding
2.3.1. Preliminary Considerations

The computational cost of an equation refers to the amount of computational resources
required to solve it. This cost is typically measured in terms of: (1) time complexity, i.e., the
number of elementary operations needed to solve the equation as a function of the input
size (number of variables, terms); and (2) space complexity, i.e., the memory required to
store the intermediate results during the solving process [35].

For most applications, like water harvesting, weather forecasting, or optimization
processes, where the DPT estimation involves iterative calculations, complexity can be
significant beyond just the number of operations. Complex equations with many variables
or nested operations may require more calculations and memory to store intermediate
results, increasing both time and space complexity. However, reducing the number of
variables can simplify implementation and improve accessibility without substantially
affecting computational efficiency.

The primary advantage lies in making the model easier to understand and apply,
rather than in dramatically lowering computational requirements. Therefore, the objective
is to find a model that, despite considering fewer parameters, yields results with minimal
error and maintains practical usability.
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Given the aforementioned premises, certain considerations must be taken into account.
Determining the dew point for given ambient temperature and relative humidity involves a
minimum of two variables. Although psychrometric charts are typically used to obtain the
dew point, the process based on these two variables is manual. Reducing computational
cost impels simplifying the complexity of the mathematical operations used. Therefore,
the use of polynomial equations is justified as an optimal method for approximation and
reduction of computational cost, considering the inherent complexity of the equations
relevant in this context. Based on this, the subsequent variables are adopted:

• X: Ambient temperature,
• Y: Relative humidity,
• Z: Dew point temperature.

Defining the background to consider, it is also necessary to include the relevant
boundary conditions. Understanding the relationship between temperature and relative
humidity in atmospheric conditions is crucial for explaining water condensation. The
psychrometric chart is a key tool in this regard, providing important insights. Specifically,
the horizontal line at 0 ◦C on the chart, shown in Figure 2, marks the acceptable range
where temperature and relative humidity intersect within feasible limits.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 20 
 

The primary advantage lies in making the model easier to understand and apply, 
rather than in dramatically lowering computational requirements. Therefore, the objective 
is to find a model that, despite considering fewer parameters, yields results with minimal 
error and maintains practical usability. 

Given the aforementioned premises, certain considerations must be taken into ac-
count. Determining the dew point for given ambient temperature and relative humidity 
involves a minimum of two variables. Although psychrometric charts are typically used 
to obtain the dew point, the process based on these two variables is manual. Reducing 
computational cost impels simplifying the complexity of the mathematical operations 
used. Therefore, the use of polynomial equations is justified as an optimal method for 
approximation and reduction of computational cost, considering the inherent complexity 
of the equations relevant in this context. Based on this, the subsequent variables are 
adopted: 
• X: Ambient temperature, 
• Y: Relative humidity, 
• Z: Dew point temperature. 

Defining the background to consider, it is also necessary to include the relevant 
boundary conditions. Understanding the relationship between temperature and relative 
humidity in atmospheric conditions is crucial for explaining water condensation. The psy-
chrometric chart is a key tool in this regard, providing important insights. Specifically, the 
horizontal line at 0 °C on the chart, shown in Figure 2, marks the acceptable range where 
temperature and relative humidity intersect within feasible limits. 

To ensure scientific accuracy, it is important to note that points below this line on the 
chart can be disregarded, as they do not significantly contribute to the analysis. This helps 
to minimize irrelevant factors and unnecessary complexity, resulting in a more precise 
dataset needed to develop a new equation. 

 
Figure 2. Psychrometric chart [36]. 

The delineation of the horizontal line at 0 °C on the psychrometric chart corresponds 
to a specific relationship between temperature and relative humidity. This line, which 
marks the boundary of permissible atmospheric conditions for water condensation, can 
be defined as 𝑅𝐻ெ using the equation: 𝑅𝐻ெ  130.31 · 𝑒ሺି.ଵ·்ሻ (4) 

where: 
• RH represents relative humidity, 
• T denotes temperature in degrees Celsius, 
• e is Euler’s number. 

Figure 2. Psychrometric chart [36].

To ensure scientific accuracy, it is important to note that points below this line on the
chart can be disregarded, as they do not significantly contribute to the analysis. This helps
to minimize irrelevant factors and unnecessary complexity, resulting in a more precise
dataset needed to develop a new equation.

The delineation of the horizontal line at 0 ◦C on the psychrometric chart corresponds
to a specific relationship between temperature and relative humidity. This line, which
marks the boundary of permissible atmospheric conditions for water condensation, can be
defined as RHMin using the equation:

RHMin ≥ 130.31·e(−0.061·T) (4)

where:

• RH represents relative humidity,
• T denotes temperature in degrees Celsius,
• e is Euler’s number.

This equation encapsulates the empirical relationship between temperature and rel-
ative humidity along the 0 ◦C line, defining that RH should not be less than RHMin. By
plotting this equation, it is possible to visually represent the range of temperature and
relative humidity values where condensation of water vapor occurs under atmospheric
conditions, as shown in Figure 3.
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Finally, the mathematical process employed to derive the first- and second-degree
equations from ambient temperature, relative humidity, and DPT data involves polynomial
regression and least squares methods.

Due to limitations in available meteorological data, where direct dew point mea-
surements are often unavailable and data are typically limited to parameters such as
temperature and relative humidity, it was necessary to generate a custom dataset. This
dataset was created to ensure consistency and cover a broad range of conditions for accu-
rately modeling dew point temperature (DPT). By applying the Magnus–Tetens equation
across defined ranges of ambient temperature (T) and relative humidity (RH), this study
aimed to establish a comprehensive, reliable foundation for developing predictive models.
Specifically, temperature values from 10 ◦C to 50 ◦C were paired with relative humidity
values from 10% to 100%, using a resolution of 100 intervals for each parameter. This struc-
tured dataset provided the unique combinations needed to accurately calculate DPT values,
addressing limitations and ensuring a consistent basis for model training and evaluation.

2.3.2. Derivation of the First-Degree Equation

Data on ambient temperature, relative humidity, and DPT are gathered into vectors.
Subsequently, a matrix A is utilized to represent the variables X and Y along with a constant
term. The coefficients a, b, and c of the Equation (1) are then computed through the least
squares’ method using the matrix inverse.

Z = aX + bY + c (5)

2.3.3. Derivation of the Second-Degree Equation

Similarly, an A matrix with columns X2, X, Y2, Y, 1 is used to adjust a quadratic
equation as:

Z = aX2 + bX + cY2 + dY + e (6)

Both resulting Equations, (5) and (6), are mathematical expressions modeling the
relation between the income variables (ambient temperature and relative humidity) and
the outcome variable (dew point).

For the first-degree equation, the following expression is used:

A =
[
X Y 1

]
(7)

For the second-degree equation, the expression defined by Equation (8) is used:

A =
[
X2 X Y2 Y 1

]
(8)
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To obtain the coefficients, Equation (9) is used:(
AT ·A

)−1
·AT ·Z = 0 (9)

where:

• AT is the transposed matrix of A,

•
(

AT ·A
)−1 is the inverse matrix of

(
AT ·A

)
,

• Z is the coefficients vector.

Equations are obtained through fitting, then, a parametric optimization process
is performed.

2.4. Optimization
2.4.1. Model Definition

The parametric mathematical model f (x; θ) describes the relationship between an
independent variable x and a dependent variable y. This model contains parameters θ that
need to be adjusted. In our case, f (X, Y; a, b, c, d, e) represents the equation Z1 that we aim
to adjust.

2.4.2. Observed Data

Observed data yi correspond to values of the dependent variable at specific points xi.
In this case, the observed data are Zr obtained from the equation Z(X, Y).

2.4.3. Objective Function

The objective function is the summation of the squares of the differences between the
observed data and the values predicted by the model. This function is denoted as J(θ) and
is defined according to Equation (10), which in our case would be the sum of the squares of
the differences between Zr and Z1.

J(θ) =
n

∑
i=1

[yi − f (xi; θ)] 2 (10)

2.4.4. Optimization Model

The objective is to find the values of the parameters θ that minimize J(θ). This can
be achieved by solving the system of equations given by the partial derivatives of J with
respect to each parameter, setting them to zero as described in Equation (11) [37–39].

∂J
∂θj

= −2·
n

∑
i=1

[yi − f (xi; θ)]
∂(xi; θ)

∂θj
= 0 (11)

These equations can be numerically solved using methods such as the Levenberg–
Marquardt Method (LMM), which combines gradient descent techniques and the Gauss–
Newton method to find optimal parameter values [40].

In this case, the LMM is employed for numerical optimization. It is an iterative
algorithm for solving non-linear least squares problems. The LMM merges the advantages
of the gradient descent method and the Gauss–Newton method. The algorithm iteratively
adjusts the parameters of the function to minimize the cost function, which, in this case, is
the sum of the squares of the differences between the observed and predicted values. The
key to apply the LMM is to adjust the magnitude of the parameter update to strike a balance
between the convergence speed of the Gauss–Newton method and the robustness of the
gradient descent method. In mathematical terms, the Levenberg–Marquardt algorithm
adjusts the parameters as described in Equation (12):

θnew = θcurrent −
(

JT ·J + λI
)−1

·JT ·r (12)
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where:

• θnew are the new parameters to calculate,
• θcurrent are the current parameters,
• J is the Jacobian matrix,
• r corresponds to the residual vector (difference between the observed and the

predicted values),
• λ is a regularization parameter.

The parameter λ is adjusted during the iterations to control the convergence of the
method. If λ is small, the method resembles the Gauss–Newton method, and if it is large,
it resembles the gradient descent method. This dynamic adjustment helps to deal with
convergence and robustness issues at different stages of the optimization process.

2.4.5. Optimal Solution

Once the optimal values of the parameters θ are found, the adjusted model f
(

x; θoptimal

)
= Z1

is obtained, fitted to the observed data Zr. This process aims to minimize the discrep-
ancy between the model and the observed data, favouring a better representation of the
underlying phenomenon described by the model.

2.5. Perform Evaluation

Statistical parameters allow assessing the level of confidence and reliability of the
estimates of the model. The performance of the empirical equations modeled is evaluated
using R2, RMSE, MSE, and MAE indices.

The Coefficient of Determination (R2) measures the proportion of the variability in
the dependent variable that is explained by the independent variable(s) in the model.
RMSE provides an estimate of the average magnitude of the errors between estimated
and observed values. Similar to RMSE, MSE is commonly used in optimization problems
and is sensitive to large errors. MAE measures the average absolute errors, providing a
more interpretable scale than MSE. Finally, STD is widely used as a measure of variability
or dispersion.

In addition to the accuracy evaluation, it is necessary to study the computational cost
of the equations in terms of time and memory, and these equations are tested with various
input sizes using different values. Execution time is recorded, and memory usage is tracked
to measure peak memory consumption.

3. Results

The following section presents the outcomes of the analysis, emphasizing the first- and
second-degree equations obtained via the optimization procedure. Quantitative results,
inclusive of statistical analyses and graphical comparisons, are provided. Specifically,
the equations are plotted alongside the observed data, and the error rates between these
equations and the reference equation against the observed data are depicted. Furthermore,
the statistical error rates are presented to offer further insight into the performance and
accuracy of the derived models. This thorough examination aims to offer insights into the
efficacy and reliability of the derived equations in describing the underlying phenomena.
Table 1 presents the mathematical expressions of both obtained equations, and Figure 4
represents the surface defined by each equation. Figure 4a shows the dataset (red points)
against the planar surface of the first-degree equation (blue surface). Likewise, Figure 4b,
represents the dataset (red points) against the surface generated by the second-degree
equation (blue surface).
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Table 1. Equations obtained.

Equation Non-Optimized Optimized

1st Degree 0.9063·X + 0.3458·Y − 28.1317 0.8912·X + 0.3595·Y − 27.9842
2nd Degree −0.00037·X2 + 1.2175·X − 0.0035·Y2 + 0.7474·Y − 43.8711 −0.00013·X2 + 0.93·X − 0.003·Y2 + 0.66·Y − 35.39
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Reaching the DPT is unfeasible under conditions falling below the delineated thresh-
old, as depicted by the red line in Figure 2. Additionally, the practical limitations of
commercial cooling systems render temperatures below approximately 5–7 ◦C [41,42]
unattainable, further constraining the applicability of predictive models in real-world
scenarios. To address this, adjustments were made to the Magnus–Tetens’ equation to
preclude erroneous values below 0 ◦C. Furthermore, empirical data revealed that relative
humidity rates of 20% become feasible only upon attaining temperatures exceeding 25 ◦C.
Consequently, the observed dataset was restricted to relative humidity rates surpassing this
threshold to optimize the utility of available data points. Notably, this study scrutinized
approximately 9000 data points encompassing temperatures ranging from 5 to 50 ◦C and
relative humidity spanning from 20 to 100%, with each parameter measured at 300 intervals
between the minimum and maximum values. To calibrate and validate predictive models
like the second-order polynomial, a large dataset is crucial. While, theoretically, only a few
points are required to fit a polynomial, these would not suffice to ensure the model’s ro-
bustness, accuracy, and reliability across a wide range of conditions. The extensive dataset
of 9000 points allows for capturing the inherent variability in the observed phenomena,
thereby refining the model to generalize well to unseen data. This comprehensive approach
ensures that the model not only fits the given data accurately, but also performs reliably
under various conditions, preventing overfitting and improving predictive capabilities. In
essence, the large dataset serves to enhance the model’s validity and utility, making the
predictions more trustworthy and applicable in real-world scenarios.

Figure 5 illustrates the error rates of each equation relative to the observed values,
providing both 2D and 3D perspectives. The 3D plots represent a surface, encompassing
regions beyond the specified boundaries, creating a waterfall-like visualization near the
limits. Dark blue shades denote lower error values, indicative of temperatures below
0 ◦C, while yellow hues signify higher errors, associated with temperatures above 0 ◦C.
Conversely, the 2D representations employ a contour plot method to present a heatmap of
error distribution across temperature and relative humidity ranges.
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The obtained first-degree equation produces a parabolic distribution of the errors,
with maximum values up to 6 ◦C over the observed values, while underestimations reach
3 ◦C under observed values. The 3D surface plot in Figure 5a shows significant variances
with pronounced peaks and troughs, highlighting extensive underestimations under high
temperature and mid to low humidity, and overestimations under cooler, highly humid
conditions. The 2D heatmap, Figure 5b, clearly illustrates the errors with vertical gra-
dients that show increasing error magnitudes with rising temperatures across nearly all
humidity levels, confirming the tendency of the equation to overestimate dew point in
warmer conditions.

The obtained second-degree equation produces a non-homogeneous distribution of the
errors, with maximum values up to 1.2 ◦C over the observed values, while underestimations
reach a difference of 3 ◦C under observed values. Figure 5c shows that underestimation
errors are more pronounced in conditions of high temperature and low humidity, which is
evident in the deeper areas of the graph. Conversely, the equation demonstrates greater
precision under conditions of high relative humidity, as indicated by lower elevations on
the Z-axis. Additionally, slight overestimations are noted in conditions of intermediate
temperature and high humidity. It is important to highlight that the values in the lower left
corner, which show a value of zero, are excluded from the analysis due to being outside
the established boundary conditions. This exclusion is relevant, as these values do not
contribute to the analysis. Figure 5d displays a flat representation of the surface shown in
Figure 5c as a heat map for a more generalized view. The performance across a broad range
of environmental conditions is robust. Specifically, in conditions of high relative humidity,
close to 100%, and across all temperature ranges, the equation exhibits remarkable precision,
reflected by the more neutral colors in the visualization.
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Figure 6 shows the graphical representations of the error rate obtained using the
Thumb equation as a representative example of a commonly used equation for estimating
DPT from ambient temperature and relative humidity. The results highlight substantial er-
rors. Specifically, the 3D surface plot from Figure 6a displays a significant underestimation
of dew point at lower temperatures, increasing together with the relative humidity. Con-
versely, at higher temperatures, it produces homogeneous accurate results independently
from the relative humidity. In the case of the 2D heatmap in Figure 6b, it provides a detailed
visualization of these discrepancies across the temperature and humidity spectrum. The
error magnitude increases markedly with temperature, peaking particularly in the higher
temperature ranges, where errors escalate to over 12 units. This gradient shift from cool to
warm hues in the heatmap clearly illustrates how the error magnitude is exacerbated by
increasing temperatures, regardless of humidity levels.
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This analysis reveals that the traditionally used model has limited efficacy under varying
climatic conditions, particularly failing to provide reliable predictions at higher temperatures.

Following the graphical presentations, an analysis of statistical parameters is con-
ducted. This analysis, which results are shown in Table 2, includes R-squared (R2), Root
Mean Squared Error (RMSE), Mean Squared Error (MSE), Mean Absolute Error (MAE),
and Standard Deviation. These metrics play a pivotal role in evaluating the accuracy
and performance of the models, providing insights into the degree of variation between
predicted and observed values. Their examination enables a comprehensive understanding
of the efficacy of the predictive equations.

Table 2. Error indices.

1st Degree Eq 2nd Degree Eq Rule of Thumb

R2 0.98 1 0.95
RMSE 1.82 0.71 2.67
MSE 3.33 0.51 7.13
MAE 1.44 0.53 1.45
STD 1.82 0.62 2.39

Max Error * 4.88 2.92 12.95
Mean Error * 1.59 0.72 1.805

* After 10,000 random calculations.
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The statistical parameters provided for the three equations reveal some interesting
insights into their performance. The second-degree equation stands out distinctly, achieving
a perfect R-squared value of 1.00, which suggests it perfectly captures the variance in the
dependent variable from the predictors. It also records the lowest errors across RMSE,
MSE, and MAE, indicating its high accuracy and reliability in prediction. On the other
hand, while the first-degree and Thumb equations also exhibit relatively high R-squared
values, they fall short on error metrics, with the Thumb equation notably showing the
highest errors and thus the least precision. This divergence in performance highlights
the superior capability of the second-degree equation in providing reliable and accurate
predictions under the conditions tested, while also underscoring the limitations of the more
traditionally used Thumb equation in terms of accuracy and consistency.

In addition to the accuracy evaluation, it is necessary to study the computational
cost of the four equations in terms of time and memory, and these equations are tested
with various input sizes (10, 100, 500, 1000, 5000, 10,000, 12,000, 14,000, and 19,000) using
random values within the range of 0 to 100. The test is conducted on the Google Colab
cloud platform, utilizing a system with 12.67 GB of RAM and two cores of an AMD EPYC
7B12 processor running at 2.25 GHz (AMD, Santa Clara, CA, USA). Execution time is
recorded, and memory usage is tracked to measure peak memory consumption. For each
input size, random values of temperature and relative humidity are generated, and a
mesh grid is created. The execution time and memory usage for each equation are then
measured and recorded. Table 3 and Figure 7 capture this test and show the results. In
Figure 7 it is possible to observe that for the Magnus–Tetens’ equation, for inputs larger
than 13,500 iterations, the graphic turns horizontal; this is due to the impossibility to run
this simulation because of RAM restrictions.

Table 3. Time and memory usage required by each equation according to different input size sets.

Input Size

Rule of Thumb 1st Degree Eq 2nd Degree Eq Magnus–Tetens_Eq

Time (s) Memory
(MB) Time (s) Memory

(MB) Time (s) Memory
(MB) Time (s) Memory

(MB)

10 0.101348 0.000 0.101430 0.000 0.100395 0.000 0.100561 0.000
100 0.100687 0.289 0.100642 0.000 0.100640 0.000 0.100902 0.257
500 0.109729 2.339 0.104308 3.089 0.105810 3.605 0.119401 5.722

1000 0.111176 4.042 0.111405 15.066 0.118247 15.066 0.144974 22.886
5000 0.343232 175.566 0.321507 190.738 0.542450 190.738 1.018584 190.738

10,000 0.675680 1525.887 0.734755 1525.891 1.722551 1525.953 3.547877 3814.711
12,000 0.797302 2197.273 0.867124 2197.293 2.032610 2197.326 4.186645 5493.221
13,500 0.925682 2990.741 1.010614 2990.786 2.359895 2990.778 4.860767 7476.830
19,000 1.290548 5508.481 1.403382 5508.478 3.290072 5508.479 - -
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Additionally, equations were tested with the same methodology, replacing the use
of RAM for writing intermediate results to a file, as represented in Figure 8. Firstly, data
and results are stored one by one (Figure 8a,b), and secondly, in blocks of 1000 entries
(Figure 8c,d). The execution time and memory usage for each equation were measured and
recorded, ensuring efficient memory management. Figure 8 illustrates the execution time,
in the first case, Figure 8a, and in the second case, Figure 8c. Additionally, the memory
usage across iterations is shown for the first case in Figure 8b and for the second case in
Figure 8d, highlighting the performance differences between the equations. Figure 8a,c
displays the averaging of each 100 results to enhance clarity and avoid noise.
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In the case of RAM usage limitations, the results show a much slower individual
behavior. Despite individual and sporadic peaks, they do not represent a significative
variance (around 1% over the standard results); likewise in the case of RAM, where just
sporadic peaks appear.

4. Discussion

This study evaluated two models designed to estimate DPT from ambient temperature
and relative humidity. The performance of each model was analyzed through statistical
parameters and error distribution. Considering the statistical parameters, the R-squared
(R2) values range over 0.95 in all cases, with the proposed second-degree equation achieving
a perfect score of 1.00, indicating that it captures all the variance in the dependent variable
from the predictors. The RMSE and MSE both highlight the second-degree equation as the
most accurate, showing the smallest errors among the three compared equations, while
the Thumb equation exhibits the highest errors, suggesting it is the least precise. The MAE
confirms this pattern, with the second-degree equation again showing the lowest error,
indicative of predictions that are closest to the observations. Lastly, the STD of the errors
also confirms this trend, with the second-degree equation showing the least variability
in its predictions. Overall, the second-degree equation outperforms the other two across
all considered metrics, making it the most reliable and accurate for practical applications,
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while the Thumb equation, despite having a decent R-squared value, proves less reliable
due to its higher error rates and greater estimation variability.

The error distributions highlight the relative performance of the equations across
varied environmental conditions. It is possible to observe that while the second-degree
equation maintained a consistent accuracy across a wide range of temperatures and hu-
midities, the first-degree equation struggled, particularly under extreme conditions. The
same problem was observed in the Thumb equation under low temperature conditions.
This variance in performance underscores the importance of choosing a model that robustly
handles the complex interactions between multiple atmospheric variables.

Furthermore, these findings suggest that models relying on a linear structure, like the
Thumb and first-degree equations, may not fully account for the non-linear interactions
between temperature and relative humidity under extreme conditions. By contrast, the
second-degree equation, with its quadratic components, is inherently better equipped to
capture such complexities, enhancing its reliability for applications where fluctuations in
environmental conditions are prevalent.

This study’s results highlighted several factors influencing model accuracy, including
the complexity of the model, the quality and range of the dataset, and the mathematical
robustness of the modeling process. The iterative approach adopted in this study, involving
repeated refinement and validation of the models, helped simplify the final equations,
providing shorter and more user-friendly coefficients. This process was crucial in ensuring
that the models remained adaptable and accurate over diverse testing scenarios.

The analysis of the results of computational cost reveals important insights into the
efficiency of the equations under different input sizes. Focusing on execution time, the
rule of thumb and 1st degree equation exhibit the fastest computation times across all
tested sizes. Their simplicity in terms of arithmetic operations contributes to their efficiency.
The 2nd degree equation shows a moderate increase in execution time, particularly for
larger input sizes. This can be attributed to the quadratic terms, which require more
computational resources, while the Magnus–Teten equation is the slowest among all the
tested equations, with a significant increase in execution time for larger inputs. This is
expected due to the logarithmic and multiple division operations involved.

Regarding memory usage, the rule of thumb and the 1st and 2nd degree equations
show relatively similar results, especially for larger input sizes. This similarity may pri-
marily be due to the large and consistent input and output array sizes. In a different way,
the Magnus–Teten equation stands out with substantially higher memory usage, especially
for the largest input size. The complex mathematical operations, including logarithms,
likely contribute to this increased memory requirement. Furthermore, the results, shown in
the figures, indicate that while using RAM for storing intermediate results provides the
fastest access, alternative methods such as writing results to provisional files can introduce
significant overhead, increasing the computation time due to slower disk I/O operations.

Given the substantial memory usage observed with the Magnus–Tetens equation, the
developed second-degree model demonstrates a significant advantage, maintaining effi-
ciency without compromising accuracy. This makes it a feasible alternative in systems with
constrained memory resources, where the Magnus–Tetens equation may not be sustainable,
particularly for high-frequency data streams or real-time applications.

Although the Thumb equation is widely used because it provides very good results
with minimal errors at high temperatures, its performance is poor at low temperatures,
regardless of the relative humidity ratio. This is problematic because accurate dew point
modeling is critical at low temperatures, where the margin for error is smaller. In applica-
tions such as water harvesting, the dew point directly influences available production, and
in other applications, it indirectly affects the energy consumption of the process.

The second-degree equation presents more generally reliable results because it main-
tains high accuracy and low error rates across a wider range of temperatures and humidity
conditions. It is able to represent complex relationships between temperature and humidity
more effectively than simpler models. This consistency is particularly important in practical
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applications where varying environmental conditions can significantly impact performance.
The comprehensive validation process and iterative refinement of the second-degree equa-
tion also contribute to its reliability, making it a suitable choice for accurate and dependable
dew point modeling.

Furthermore, these findings imply that in conditions requiring high precision, such as
low-temperature scenarios in meteorological and industrial applications, the second-degree
equation may offer critical advantages. Given its demonstrated accuracy and robustness,
it stands out as a viable alternative for operational systems that require consistent per-
formance across a diverse range of conditions, supporting a broad array of applications,
including energy-efficient building climate control and agricultural monitoring systems.

5. Conclusions

This study has developed and assessed a model for estimating dew point temperature
(DPT), a crucial factor for thermal and energy applications. The new equation, obtained
through non-linear regression fitting and parametric optimization, uses only ambient
temperature and relative humidity, simplifying input requirements while maintaining high
accuracy. Validated through extensive data comparison, it demonstrates consistent accuracy
under real environmental conditions, ensuring reliable performance in critical applications.

First-degree and a second-degree polynomial equations were modeled and compared
together and against the commonly used rule of thumb equation for dew point. The
findings demonstrate that the obtained second-degree equation provides significantly
better predictions than the commonly used Thumb rule and the first-degree equation.
Specifically, the second-degree equation achieved an R2 value of 1, RMSE of 0.71, and a
standard deviation of 0.62, highlighting its potential for reliable and precise estimations.
The precision and reliability of the second-degree equation make it particularly useful for
practical applications, including weather forecasting, water harvesting, thermal comfort
in buildings, heat recovery systems, and humidity control in agricultural settings. The
first-degree equation also showed good performance (R2 equal to 0.98, RMSE of 1.82,
STD of 1.82), surpassing the Thumb rule (R2 equal to 0.95, RMSE of 2.67, STD of 2.39) in
accuracy, which indicates that even simpler models can be effective.

A notable advantage of the developed equations lies in their efficient memory usage,
which remains stable and manageable even with large datasets, unlike the Magnus–Tetens
equation, which exhibits high and exponentially increasing memory demands. The devel-
oped equations use 2.5 times less RAM than the Magnus–Tetens, enabling them to process
large datasets more feasibly for real-time applications such as weather monitoring and
industrial humidity control. The first-degree equation matches the Thumb rule in execu-
tion time, while the second-degree equation requires only half the processing time of the
Magnus–Tetens, providing both memory and time efficiency. Furthermore, the simplicity
of these equations makes them far easier to implement and integrate into various systems
compared to complex ML models, which are often computationally intensive and act as
“black boxes.” In contrast, the developed equations offer transparent and interpretable
relationships between temperature, humidity, and dew point, eliminating the need for
specialized recalibration. These characteristics make them robust, scalable, and well-suited
for practical applications, addressing the complexity of traditional empirical models and
the opacity of ML approaches.

This equation is particularly useful for environmental studies that utilize GIS-based
tools (e.g., PVGIS), which provide localized atmospheric data with a limited number of
parameters. Having a model dependent on as few parameters as possible is crucial for its
applicability and real-world implementation. For instance, in water harvesting from ambi-
ent air at various locations, this equation can accurately model and estimate potential water
production, making it a helpful, reliable, and user-friendly tool for practical applications.
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