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Abstract: Hydraulic fracturing is a widely employed technique for stimulating unconventional shale
gas reservoirs. Supercritical CO, (SC-CO;) has emerged as a promising fracturing fluid due to its
unique physicochemical properties. Existing theoretical models for calculating breakdown pressure
often fail to accurately predict the outcomes of SC-CO, fracturing due to the complex, nonlinear
interactions among multiple influencing factors. In this study, we conducted fracturing experiments
considering parameters such as fluid type, flow rate, temperature, and confining pressure. A fully
connected neural network was then employed to predict breakdown pressure, integrating both
our experimental data and published datasets. This approach facilitated the identification of key
influencing factors and allowed us to quantify their relative importance. The results demonstrate
that SC-CO; significantly reduces breakdown pressure compared to traditional water-based fluids.
Additionally, breakdown pressure increases with higher confining pressures and elevated flow rates,
while it decreases with increasing temperatures. The multi-layer neural network achieved high
predictive accuracy, with R, RMSE, and MAE values of 0.9482 (0.9123), 3.424 (4.421), and 2.283 (3.188)
for training (testing) sets, respectively. Sensitivity analysis identified fracturing fluid type and tensile
strength as the most influential factors, contributing 28.31% and 21.39%, respectively, followed by flow
rate at 12.34%. Our findings provide valuable insights into the optimization of fracturing parameters,
offering a promising approach to better predict breakdown pressure in SC-CO; fracturing operations.

Keywords: supercritical CO,; hydraulic fracturing; breakdown pressure prediction; multi-layer
neural network; laboratory data

1. Introduction

Hydraulic fracturing has been extensively employed as a reservoir stimulation tech-
nique in the development of unconventional shale gas resources. In recent years, CO,-based
fracturing fluids have emerged as a promising alternative to traditional water-based fluids,
offering several technical advantages, such as minimal damage to the reservoir, improved
fluid recovery, and the dual benefits of enhancing methane desorption and enabling CO,
sequestration [1]. When injected CO, exceeds its critical temperature of 31.1 °C and critical
pressure of 7.38 MPa, it transitions to a supercritical state [2]. Supercritical CO, (SC-CO5)
exhibits unique physicochemical properties, such as low viscosity, near-zero surface ten-
sion, high diffusion coefficients, and a density approaching that of water. These properties
contribute to its superior heat and mass transfer capabilities, making SC-CO, fracturing a
promising technology for stimulating unconventional oil and gas reservoirs [3,4].

Breakdown pressure remains one of the key parameters in assessing fracturing ef-
fectiveness. Mathematical models for calculating breakdown pressure are widely used in
the analysis of fracturing mechanisms. Traditional models are predominantly based on
elasticity theory and fracture mechanics, focusing on tensile or shear strength criteria [5].
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Among these models, the calculation of breakdown pressure based on tensile strength is
the most prevalent. Hubbert and Willis [6] first proposed a formula to calculate breakdown
pressure, which was later refined by Haimson and Fairhurst [7] to incorporate the effects of
rock permeability. Additionally, the point-stress model proposed by Ito [§] (i.e., Ito model)
suggests that fracturing initiates at the borehole wall when a point within the rock, at a cer-
tain distance from the wall, reaches the tensile strength of the rock. Experiments conducted
by Li et al. [9] on cylindrical shale specimens using liquid CO; (L-CO,), water, and nitrogen
led to a modified fitting formula for breakdown pressure; however, it does not account
for the influence of fluid properties associated at different CO, phases, particularly under
varying confining and axial pressures. In the context of SC-CO, fracturing, Chen et al. [10]
developed a breakdown pressure prediction model incorporating the unique properties
of SC-CO,. This model, based on Ito’s [8] equation for fluid pressure distribution, was
compared with hydraulic fracturing results. However, significant discrepancies between
laboratory experiments and theoretical predictions were observed. Currently, no universal
theoretical model exists that can fully explain the abnormal pressure phenomena observed
in SC-CO; fracturing experiments.

Due to the high costs and resource demands of large-scale field operations, most
current research on hydraulic fracturing relies on laboratory-scale physical simulations.
However, these experiments present their challenges, such as complex testing processes,
extended durations, and significant variability in rock properties. To address these lim-
itations, researchers have increasingly turned to artificial intelligence (AI) methods to
investigate fracturing stimulation issues. Specifically, these methods have been applied
in predicting reservoir geological parameters (Zhang and Chen [11]), calibrating the con-
stitutive model [12], optimizing fracturing design parameters [13], evaluating fracturing
effectiveness [14], predicting shale gas sweet spots [15], and developing fracturing tools
and materials [16]. In the context of the fracturing effectiveness, Gao [17] employed neural
networks and Al algorithms such as stepwise regression to predict fracturing effectiveness
based on field data. Similarly, Yan [18] developed a hybrid intelligent model combining a
Discrete Grey Wolf Optimizer (DGWO) combined with a Support Vector Machine (SVM) to
predict outcomes in SC-CO, fracturing. The model’s performance was evaluated using cor-
relation coefficients and root mean square error, while sensitivity analysis was conducted
using the Mean Impact Value method. Subsequently, Yan et al. [19] developed a hybrid Al
model integrating a Backpropagation Neural Network, an Extreme Learning Machine, and
SVM, using input factors such as vertical and horizontal principal stresses, injection volume,
tensile strength, elastic modulus, and Poisson’s ratio to predict breakdown pressure for
SC-CO; fracturing.

Given the complexity of the factors influencing breakdown pressure in SC-CO, fractur-
ing, traditional mathematical models often fail to provide accurate predictions. In contrast,
deep learning offers a promising alternative by automatically learning hierarchical represen-
tations of data, enabling complex functions to be mapped from inputs to outputs without
predefined assumptions [20]. By capturing the intricate relationships between multiple
factors, deep learning models can identify key variables influencing SC-CO, breakdown
pressure and provide reliable predictive outcomes.

In this study, we first conducted fracturing experiments to obtain breakdown pressure,
considering influencing factors such as fracturing fluid type, flow rate, temperature, and
confining pressure. We then compared experimental data with values calculated from
breakdown pressure models based on elasticity theory. Key influencing factors were
identified, and additional indoor fracturing data from the literature were incorporated
with our experimental results to create a comprehensive dataset. A fully connected neural
network was then applied to predict breakdown pressure and assess the relative importance
of each factor. This integrated methodology significantly enhances our understanding of
breakdown pressure in SC-CO, fracturing, and provides valuable insights for optimizing
fracturing operations.
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2. Fracturing Tests
2.1. Rock Specimens and Apparatus

The experimental specimens were Longmaxi shales collected from outcrops in Changn-
ing (labeled as CN-Shale) and Pengshui (labeled as PS-Shale), both located in the Sichuan
Basin, China. Figure 1 shows the flow chart of the shale specimen preparation. The prepared
specimens were used in hydraulic fracturing experiments to determine the breakdown
pressure, and in basic tests to measure the rock’s petrophysical and mechanical properties,
including bulk density, tensile strength, compressive strength, P-wave velocity, and water
content (Table 1). The processing requirements of the shales for these basic tests adhered to
International Society of Rock Mechanics standards.

Figure 1. Flow chart of the shale specimen preparation for the experiments. UCS denotes uniaxial
compressive strength. $50 * 100 and $50 * 25 denote cylindrical specimens with a diameter of
50 mm and heights of 100 mm and 25 mm, respectively. “¢” is the symbol that typically represents
diameter, and “x*” is a notation for the dimension.

Table 1. Average values of basic parameters of shale.

Parameters CN-Shale PS-Sahle Units
Bulk density, ps 2546 2648 kg/m3
Elastic modulus, E 12.16 11.99 GPa
Poisson’s ratio, v 0.20 0.25 —
Tensile strength, o} 15.63 18.18 MPa
Compressive strength, o, 151.55 138.45 MPa
P-wave velocity, v 5.00 4.47 km/s
Water content, w 0.4 0.3 %
Sampling site Changning Pengshui —
Bedding orientation Perpendicular Perpendicular —

As shown in Figure 2, the shale specimens used for fracturing had a diameter of
100 mm and height of 200 mm, with a central borehole of 10 mm in diameter and 110 mm
in height, leaving an open hole section with a depth of 40 mm. The shale bedding planes
were oriented perpendicularly, with the borehole drilled parallel to the bedding planes.
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The packer fixing method for sealing and forming the open hole was described in detail by
Zhu et al. [21] and Zhang et al. [22].
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Figure 2. Experimental apparatus used for hydraulic fracturing tests. AE refers to acoustic emission,
while FPC stands for flexible printed circuit.

Figure 2 shows the experimental apparatus used for hydraulic fracturing tests, which
consisted of six main modules, as follows: (1) gas supply; (2) water supply; (3) axial
and confining pressure loading; (4) vacuuming; (5) temperature control; and (6) seepage
testing. These modules operate collaboratively to achieve specific functions. Further
design and functionality details are available in the work of Zhu et al. [21]. This apparatus
enables fracturing experiments using various injection fluids on shale under different in situ
stress conditions, reservoir temperatures, and flow rates, with real-time data acquisition of
injection pressure, axial/confining pressure, temperature, strain, and acoustic emission (AE)
signals during the fracturing process, as well as seepage testing when fractures propagate to
the end face of the shale specimen. In this study, we merely concentrated on the breakdown
pressure for providing experimental data.

2.2. Fracturing Schemes and Procedure

When analyzing fracturing performance, various factors need to be considered, includ-
ing reservoir characteristics (e.g., geothermal gradient, in situ stress, weak planes, strength,
porosity, and permeability) and operational parameters (e.g., fracturing fluid type, perfora-
tion, completion, pump rate, and stage division) [23]. This study focused on the primary
factors of fracturing fluid type, reservoir temperature, flow rate, and confining pressure.
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Figure 3 illustrates the experimental schemes of fracturing. Specimens No. 1# to 5#
(CN-Shales) were used to investigate the effects of fracturing fluid and flow rate, while
specimens No. 6# to 11# (PS-Shales) focused on the effects of temperature and in situ stress.

1

Scenario 1,

Flow rate
CN-Shale:
Specimen No. 1#~3# ; CN-Shale:
Specimen No. 3#~5#

Temperature

Confining
PS-Shale: " DItSsuLe
Specimen No. 6#~8# ’ PS-Shale:

Specimen No. 9#~11#

Figure 3. Fracturing experiment schemes.

As shown in Figure 2, each shale specimen was first placed into a triaxial core holder,
which was then submerged in a thermostatic water bath to simulate reservoir temperature
conditions. Two hydraulic pumps alternately applied axial and confining pressures to
the specimen, replicating the in situ stress condition of the shale reservoir. Finally, the
appropriate fracturing fluid was selected for injection based on the fracturing schemes.
For hydraulic fracturing, deionized water was directly injected into the specimen using a
high-pressure, high-speed electric hydraulic pump. SC-CO, fracturing, however, required
a specialized SC-CO,; preparation system, including a gas booster and an intermediate
container. The gas booster pressurized CO; in the intermediate container beyond the
critical pressure of 7.38 MPa, while the thermostatic water bath raised the CO, temperature
above the critical threshold of 31.1 °C. This process produced SC-CO; at the required
temperature and pressure, which was stored in the intermediate container and fracturing
lines, establishing the starting condition for the fracturing experiment.

2.3. Experimental Results

The fracturing process is typically analyzed by monitoring the variation in injection
pressure over time. The peak of the injection pressure curve, which corresponds to the first
maximum fluid pressure, is identified as the breakdown pressure (denoted as Pj, hereafter).
Reaching this pressure signifies that the shale specimen is fractured [24,25]. To illustrate the
injection pressure curve, the results from the flow rate have been provided as an example
in Figure 4. In addition, since the primary focus of this study is breakdown pressure, the
breakdown pressure values for each scenario are listed in Figure 5.
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Figure 4. Injection pressure versus time under various flow rates.
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Figure 5. Breakdown pressure under different fracturing schemes.

A comparison of breakdown pressures under different flow rates has revealed that
higher flow rates resulted in higher breakdown pressures. As shown in Figure 4, the
breakdown pressures at flow rates of 70 mL/min, 50 mL/min, and 30 mL/min were
37.70 MPa, 29.83 MPa, and 20.82 MPa, respectively. Correspondingly, the times to reach
breakdown pressure were 30.0 s, 146.9 s, and 300.5 s, indicating that higher flow rates can
raise CO, injection pressure, causing shale failure more quickly.

As illustrated in Figure 5, the peak injection pressures for shale fracturing with water,
L-CO,, and SC-CO, were 33.16 MPa, 27.99 MPa, and 20.82 MPa, respectively. Compared
to hydraulic fracturing with water, the breakdown pressure for SC-CO, decreased by
37.2%, and for L-CO,, it decreased by 15.6%. This reduction may be attributed to the high
diffusivity and superior penetrability of SC-CO,, which enables it to infiltrate microfractures
and natural crack tips, significantly enhancing its rock-breaking capability.

Figure 5 shows that when the temperature increased from 35 °C to 45 °C and 55 °C,
the breakdown pressure of the shale specimens decreased from 40.13 MPa to 37.85 MPa and
33.36 MPa, corresponding to reductions of 5.68% and 16.87%, respectively. This trend aligns
with the findings of Lu et al. [26]. Two potential explanations are available, as follows: First,
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higher temperatures reduce the viscosity and increase the diffusivity of SC-CO,, resulting
in lower breakdown pressures. Second, the thermal stress generated within the shale
decreases the effective stress on the mineral matrix, further contributing to the reduction in
breakdown pressure.

Based on the theory of linear elastic tensile failure, the breakdown pressure models
proposed by Hubbert and Willis [6] (commonly referred to as the H-W model) and Haimson
and Fairhurst [7] (referred to as the H-F model) primarily account for the influences of
horizontal stress and tensile strength. In this study, we varied the confining pressure to
investigate the impact of in situ stress on breakdown pressure. As illustrated in Figure 4,
higher confining pressures necessitated larger injection pressures to induce rock failure.
Specifically, at a confining pressure of 5 MPa, the breakdown pressure was measured
at 17.70 MPa. When the confining pressure was increased to 10 MPa and 15 MPa, the
breakdown pressures rose by 43.85% and 54.95%, respectively.

3. Theoretical Models for Calculating Breakdown Pressure
3.1. Theoretical Model Based on Elasticity Mechanics

Theoretical models used to predict hydraulic fracturing breakdown pressure are
generally based on various assumptions. Common models include those based on linear
elasticity, poroelasticity, characteristic distance, shear failure, energy release, and stress
intensity factors [27,28]. Several factors influence the breakdown pressure, such as the
viscosity of the fracturing fluid [29], the stress state of the rock surrounding the borehole [6],
the size and orientation of the borehole [30,31], the pressurization rate [32,33], the formation
pore pressure [8], rock mechanical properties [7], and the reservoir temperature [19].

Assuming the reservoir behaves as a homogeneous, isotropic, linear elastic porous
medium, and the rock surrounding the central borehole (wellbore) is subjected to plane
strain conditions, the stresses in the system can be categorized as tensile (positive) and
compressive (negative). As illustrated in Appendix A, the total circumferential stress
around the borehole consists of three components. Upon the injection of high-pressure
fluid, the total stress distribution around the borehole is altered. This stress alteration can
be evaluated through the principle of superposition, where the original in situ stresses
combine with the additional stresses induced by the fluid injection. This superimposed
stress field ultimately governs the breakdown pressure and fracture propagation in the
surrounding rock mass.

When the circumferential effective stress oy at the wellbore wall reaches the tensile
strength of the rock (¢}), failure occurs, in accordance with the Hubbert-Willis criterion (i.e.,
H-W model) [6]. This criterion is predicated on the assumption that the rock is impermeable.
Consequently, the circumferential stress component resulting from pore pressure can be
disregarded, leading to breakdown pressure primarily governed by in situ stress and
injection pressure. Furthermore, the criterion posits that fractures initiate perpendicular to
the minimum horizontal stress (i.e., § = 0 or 7r in Equation (Al)). The H-W breakdown
pressure P, can be calculated with or without accounting for the initial pore pressure P, as
illustrated in Equations (1) and (2).

Py, = —oy+30, +0:t— D (1)

Py, = —oy + 30y, + 01 (2)

In dense reservoirs, characterized by nanometer-scale permeability and the near
incompressibility of water, hydraulic fracturing occurs rapidly, making fluid penetration
negligible at the moment of injection and fracturing. As a result, the breakdown pressure for
water as a fracturing fluid can be directly calculated using Equations (1) and (2). Conversely,
SC-CO,, with its low viscosity, absence of surface tension, and strong diffusion capabilities,
demonstrates significant filtration effects. Consequently, the influence of pore pressure
on breakdown pressure becomes significant and cannot be overlooked. This filtration
effect introduces an additional circumferential stress component (03). Assuming that SC-
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CO; penetrates the rock completely, the breakdown pressure can be determined using the
Haimson-Fairhurst formula (i.e., H-F model) [7]. The H-F breakdown pressure Pj,, which
can be calculated with or without accounting for the initial pore pressure Py, is expressed
in Equations (3) and (4).

—oyg + 30y, + ot 7061177211/130

Py = 5 _ a1172u — (3)
-V
_ —0g + 303 + 0y
A= @
1—v

The breakdown pressure models discussed above assume that rock failure occurs
at a specific point on the wellbore wall, and do not consider the actual fluid pressure
distribution within the rock. Numerical simulations by Jia et al. [34] demonstrated that,
prior to fracturing, SC-CO; infiltrates a significantly larger area of shale compared to water,
which fails to penetrate to the characteristic distance defined by Ito [8]. The point-stress
model proposed by Ito [8] provides a framework for explaining breakdown pressure during
SC-CO; fracturing, as expressed in Equations (5) and (6). This model enhances previous
approaches by incorporating the fluid pressure distribution outside the wellbore, allowing
for a more accurate calculation of the circumferential stress component 3. Additionally, it
considers the effects of wellbore diameter and pressurization rate on breakdown pressure.
The model posits that the location where the maximum effective stress surpasses the tensile
strength of the rock is not at the wellbore wall, but rather at a point within the rock. The
distance from this point to the wellbore wall is defined as the characteristic distance d.,
given by d. = K3./(27mt0?). Here, K¢ represents the mode I fracture toughness, MPa-m?>.
Thus, the total circumferential stress (Sy) and pore pressure distribution can be expressed
as follows:

So= (05 +95 +93),_, sa. (5)

t
p(r,t) = C /0 F(r, t)dt + Py ©)
where C denotes the wellbore pressurization rate, and f(r,t) is defined as [8]:

Yo(ua) — Yo(ur)Jo(ua) | du
J5(ua) + Y§ (ua) u

f(r,t) =1+ %/{)mexp(—xuzt) [fo(ur)

In this context, x = k,/u¢p, where k, represents the rock permeability, y is the fluid
viscosity, ¢ is the porosity of the rock, and f is the fluid compressibility. Additionally, Jo
and Y{ are the zero-order Bessel functions of the first and second kind, respectively.

For both infinite and zero pressurization rates, Ito’s model provides the upper and
lower bounds for breakdown pressure, as shown in Equations (7) and (8) [8].

g2
By = <1+rc) (o~ — Po) + Py %
w
0 — 0'01 - PO
Py, = + P 8)

2
d 1-2
;{1 + (1 + a) }(2 - “<HV))
3.2. Comparison of Theoretical and Experimental Results

As confirmed in the literature, the H-W, H-F, and Ito models yield reasonable estimates
for calculating breakdown pressure. However, the fundamental assumptions underlying
these models often fail to fully reflect real conditions. Moreover, breakdown pressure
models based solely on tensile strength face challenges in accurately predicting the complex
fracture processes involved. Consequently, a notable discrepancy exists between theoretical
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predictions and experimental values [27,28]. To calculate the breakdown pressure corre-
sponding to the theoretical models discussed, we combined experimental measurements
with previously published results [35,36]. The parameters used for these calculations are
detailed in Table 2, where the initial pore pressure was assumed to be 0 MPa.

Table 2. Parameters used in the theoretical models.

Biot
Parameters Coefficient ot (MPa) v rw (m) d; (m)
Value 0.9 15.63 (1#~5#) 0.20 (1#~5#) 001 0.0024 (1#~5#)

18.18 (6#~11#) 0.25 (6#~11#) 0.0017 (6#~11#)

Figure 6 compares the breakdown pressure values obtained from laboratory experi-
ments with those calculated using the aforementioned theoretical models. In Figure 6, the
H-W model and H-F model are denoted as H-W and H-F, respectively. The H-W model
assumes that the rock is either impermeable or possesses low permeability, while the H-F
model assumes high permeability in the rock. It is evident from Figure 6 that the experi-
mental data do not consistently fall within the theoretical ranges predicted by these models,
indicating that classical breakdown pressure models fail to capture the anomalous phenom-
ena observed during experiments. Several factors contribute to this discrepancy, as follows:
(1) the assumptions underlying the theoretical models do not encompass all the influencing
factors present in the experiments, and (2) these models, typically applied to hydraulic
fracturing, may not be suitable for predicting breakdown pressure in SC-CO, fracturing.

75
70 r § f/.
65 5/
< r & s
E 60 - e@-"
j =2 [ e o /‘,
g 35 Tto upper limit <5,
§ 50 + /
345 [ //
g ’
400 pw o 2o S0
Sacl - ____-_Z ol
< 35+ .
3 r ,/ Q;Q\},/'
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Figure 6. Comparison between theoretical and experimental results. The areas shaded in green, blue,
yellow, and red represent the scheme of fracturing fluid type, flow rate, temperature, and confining
pressure, respectively. Black circle means the value of the breakdown pressure.

Various fracturing parameters such as the type of fracturing fluid, flow rate, tempera-
ture, and confining pressure significantly influence the experimental breakdown pressure
values. For instance, an increase in the flow rate corresponds to a rise in breakdown pres-
sure, as it relates to the rate of pressurization. Although the Ito model accounts for both
pressurization rate and wellbore diameter, the upper and lower bounds of this model do
not encompass the breakdown pressure for specimens 3 and 9 (Figure 6). This limitation
may be attributed to the inherent heterogeneity of natural rock.
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4. Breakdown Pressure Prediction with a Multi-Layer Neural Network
4.1. Dataset Preparation and Model Verification

As supported by Sampath et al. [28], theoretical models for calculating breakdown
pressure are developed within different theoretical frameworks and assumptions, each
focusing on a unique set of controlling factors. This variability restricts the applicability
of these models. For example, the H-W model considers only horizontal principal stress,
tensile strength, and pore pressure, while omitting factors such as wellbore diameter and
pressurization rate. Although the Ito model incorporates wellbore diameter, it still assumes
a constant pressurization rate and overlooks the impact of fracturing fluid temperature.
As a result, numerous researchers have compared experimental data with breakdown
pressures derived from these theoretical models, highlighting their inability to adequately
account for abnormally high or low breakdown pressures observed during hydraulic and
SC-CO, fracturing [37,38].

In other words, the fracturing of rock specimens during hydraulic fracturing and SC-
CO;, fracturing is a complex process involving the interaction of multiple factors. Currently,
no comprehensive mathematical model encompasses all these variables for predicting
breakdown pressure. Furthermore, established models indicate that not all influencing
factors exhibit a linear relationship with breakdown pressure.

Similarly, the factors affecting fracturing effectiveness are numerous and intercon-
nected in complex, nonlinear ways [39]. If breakdown pressure, a key indicator for fractur-
ing effectiveness, could be predicted prior to experimentation or field operations, it would
provide valuable reference data for optimizing fracturing design parameters. Presently,
large-scale field fracturing experiments are costly and cannot be conducted repeatedly.
Consequently, the trend leans towards small-scale laboratory experiments, which also
require complex testing procedures and rock preparation [19]. Therefore, we aim to predict
breakdown pressure under the influence of multiple factors by identifying the primary
factors influencing breakdown pressure, collecting a substantial dataset from fracturing
experiments, and employing neural networks to model the intricate nonlinear relationships
between input and output variables.

Building upon extensive literature research [40—49] and our experimental data, we
compiled a dataset consisting of 362 specimens. While this dataset provides a foundation
for the model, it is insufficient for training a deep learning model. Therefore, special
measures were taken to mitigate overfitting and improve model generalization, such as
cross-validation, regularization, and parameter tuning [50].

The theoretical models discussed above do not account for vertical principal stress,
the effect of wellbore diameter, and the minimal impact of the rock’s elastic modulus on
fracturing outcomes [14]. To address these limitations, we selected eight influencing factors
for modeling: fracturing fluid type, maximum and minimum horizontal principal stresses,
initial fracturing fluid temperature, wellbore diameter, flow rate, tensile strength, and Pois-
son’s ratio of the specimens. Given the highly complex and nonlinear relationships between
these factors and breakdown pressure, a simple multiple-linear regression approach would
be insufficient. Therefore, we employed a multi-layer fully connected neural network, as
illustrated in Figure 7, to learn representations from the experimental data. This neural
network comprises three main components: an input layer (shown in orange), multiple
hidden layers (shown in yellow and blue), and an output layer (shown in dark blue). The
input layer receives data corresponding to the aforementioned eight influencing factors,
which are then passed to the hidden layers through weighted connections (depicted by
black arrows in Figure 7). In the hidden layers, each input is weighted, combined with a
bias, and processed through an activation function to capture complex nonlinear relation-
ships (illustrated by the diagram in the red frame in Figure 7). Finally, the output layer uses
these transformed values to generate the predicted values for breakdown pressure.
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n b: bias
w: weight
x: input variable
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Figure 7. Schematic diagram of a multi-layer neural network model.

The model was implemented using the PyTorch deep learning framework (https:
/ /pytorch.org/) and coded in Python. To capture the nonlinear interactions among the
variables, the ReLU activation function was introduced for two primary reasons, as follows:
(1) if each layer’s output were a linear function of its input, adding more hidden layers
would not effectively represent the coupling effects of multiple factors on breakdown
pressure, and (2) compared to traditional neural network activation functions such as
the sigmoid function, ReLU promotes sparsity in the network, reducing overfitting and
significantly improving training efficiency.

For preprocessing the raw data, two key aspects were considered:

e Normalization of input parameters—Since the influencing factors have varying di-
mensions and value ranges, normalization was necessary to prevent large fluctuations
in model loss during backpropagation. The data were standardized based on the
mean (¢) and standard deviation (¢) of the raw data (x) [51], as shown in the equation
x" = (x — u) /o, where x’ represents the normalized data. This standardization process
improves the model’s convergence speed and accuracy. Notably, the fracturing fluid
type was assigned numeric codes in descending order of viscosity;

e  Splitting the dataset into training and testing sets—The training set was employed for
model construction, parameter optimization, and variable updates, while the testing
set was reserved for evaluating the model’s performance and generalization ability,
allowing for the detection of overfitting or underfitting. Data from the testing set were
solely used for evaluation and did not affect model parameters. For this study, the
dataset was split in a 7:3 ratio, with 250 samples allocated for training and 112 samples
for testing. To fully utilize the entire dataset of 362 samples and validate the model
with experimental results, the data obtained from 11 experimental groups were fixed
as part of the testing set. An additional 101 samples were randomly selected from the
remaining data to complete the testing set, resulting in a total of 112 testing samples,
while the remaining 250 samples constituted the training set. Cross-validation was
performed by using different random seeds to generate varying train—test splits. This
process ensured the consistent generalization ability of the model, and aimed to
achieve high accuracy and repeatability for subsequent test set analyses.

The loss function in deep learning [52] plays a critical role in assessing model conver-
gence, training adequacy and the proper initialization of weights. In this study, the mean
square error (MSE) function was adopted as the loss function, MSE = %Zl’-l:l (yi — yl’.‘)z,
where 7 is the number of data points, y; is the actual value, and y; is the predicted value.
The accuracy curve assesses the linear correlation between predicted and actual values
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using the Pearson correlation coefficient [53]. By analyzing the trends in loss and accuracy
across both the training and testing sets, we were able to determine whether the model
underfits or overfits.

The maximum number of epochs for model training was set at 20,000, utilizing
stochastic gradient descent as the optimizer with a learning rate of 0.0001. After conducting
multiple tests with varying sample sizes and comparing the expected results, we selected
a model consisting of three fully connected hidden layers, with 16, 16, and 12 neurons,
respectively. The loss and accuracy results for the training and testing sets are shown in
Figures 8 and 9. As illustrated, the loss function was initially high, but upon increasing
the number of iterations, the error between the actual and predicted values decreased for
both the training and testing sets, eventually stabilizing. After stabilization, both training
and testing accuracy exceeded 90%, indicating that the multi-layer neural network model
effectively learned and predicted breakdown pressure.

(@) (b)
600 1.0
0.9
500
0.8
400 > 0.7
Q
2 £ 0.6
S 300 H g
£ 05
200 H 0.4
0.3
100 H
0.2
0 1 1 1 1 1 T . 1 1 1 1 1 1
0 3,000 6,000 9,000 12,000 15,000 18,000 21,000 0 3,000 6,000 9,000 12,000 15,000 18,000 21,000
Epochs Epochs
Figure 8. Performance of the neural network model on the training set: (a) Training loss curve,
illustrating the model’s reduction in prediction error across epochs, which demonstrates the model’s
learning process and its convergence toward minimizing error on known data; (b) training accuracy
curve, showing the model’s predictive accuracy on the training set over epochs, indicating the model’s
capacity to accurately capture the relationships between variables affecting breakdown pressure.
(@ (b)
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400 | 0.7
>
Q
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= 3 0.5
<
200 H 0.4
0.3
100 H
0.2
1 1 1 1 1 1 0. 1 n 1 n 1 n 1 " 1 n 1 1 n
0 3,000 6,000 9,000 12,000 15,000 18,000 21,000 0 3,000 6,000 9,000 12,000 15,000 18,000 21,000
Epochs Epochs

Figure 9. Performance of the neural network model on the testing set: (a) Testing loss curve, showing
the reduction in prediction error across epochs, which indicates the model” ability to generalize and
converge toward minimizing prediction error on unseen data; (b) testing accuracy curve, representing
the model’s predictive accuracy on the testing set over epochs, reflecting its capability to generalize
and correctly predict breakdown pressure under various experimental conditions.



Appl. Sci. 2024, 14, 10545

13 of 20

—_
&
~

(o))
S

Metrics commonly used to evaluate prediction performance include the coefficient
of determination (R), root mean square error (RMSE), and mean absolute error (MAE).
A higher R value, closer to 1, indicates a stronger correlation between predicted and
actual values, while lower RMSE and M AE values reflect higher prediction accuracy. The
formulae for these evaluation metrics are provided in Table 3, where n represents the
number of data points, i and y; are the actual and predicted values, respectively, and y*
and y represent the mean of actual and predicted values, respectively.

Table 3. Equations for calculating R, RMSE, and MAE.

Index Calculation
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R R
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To further validate the prediction performance of the trained model, we compared the
predicted values from the training set with the actual values and performed a regression
analysis of the predicted versus actual values for the testing set. The coefficients R, RMSE,
and MAE were calculated, as shown in Table 3. Figure 10 illustrates that the data points for
both the training and testing samples are closely aligned with the ideal fit line, where the
actual value equals the predicted value. The R, RMSE, and MAE values for the training
set (testing set) were 0.9482 (0.9123), 3.424 (4.421), and 2.283 (3.188), respectively.
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Figure 10. Correlation between actual values and predictive values: (a) Training dataset; (b) predicting
dataset.

Compared to the PSO-BPNN model in the literature [19], which achieved an R value
of 0.6971 for the test set, the multi-layer neural network improved the R value by 23.6%.
These results demonstrate the neural network’s effectiveness in learning and predicting
breakdown pressure, indicating the strong predictive capability of the trained model.

Notably, Figure 11 shows the model’s predicted breakdown pressure for the fracturing
experiments, with an average relative error of approximately 16% between the predicted
and experimental values. This highlights the model’s accuracy in predicting breakdown
pressure and its potential as an effective tool for optimizing fracturing operation parameters.
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Figure 11. Comparison of actual values and predictive values.

4.2. Relative Importance of Influencing Variables

Following the method proposed by Yan et al. [54], the procedure for quantifying
the relative importance of the eight influencing factors mentioned earlier involves the
following steps:

Step 1—Keep all other variables constant while increasing or decreasing the input
variable under analysis by 10% from its original value in the training dataset, generating
two new input datasets;

Step 2—Apply the trained neural network model to compute the results for these two
datasets and calculate the difference between them. The greater the difference, the more
significant the influence of that variable on the output;

Step 3—Repeat this process for each input variable, then compute the average differ-
ence across all variables. The mean difference provides a measure of each input variable’s
influence on the predicted outcome.

As illustrated in Figure 12, the relative importance of the factors is ranked as follows:
fracturing fluid type > tensile strength > flow rate > maximum horizontal stress > Poisson’s
ratio > wellbore diameter > minimum horizontal stress > initial fracturing fluid temperature.
Specifically, fracturing fluid type and tensile strength are the most sensitive variables,
contributing 28.31% and 21.39% of the influence, respectively. This is due to the significant
role of fracturing fluid properties in establishing the pore pressure system within the rock,
and the critical impact of effective stress on fracture initiation. Tensile strength directly
determines the rock’s failure resistance, as it defines the relationship between effective
circumferential stress at the wellbore or characteristic distance and the rock’s ability to
resist failure [28].

The flow rate accounted for 12.34% of the influence on breakdown pressure, as differ-
ent fracturing fluids exhibit varying compressibility, resulting in distinct effects on pressure
buildup within the same injection time. The initial fracturing fluid temperature had a mini-
mal impact, likely due to two reasons: (1) the dataset included multiple types of fracturing
fluids, with temperature variation closely tied to the fluid type, and (2) for SC-CO,, the ini-
tial temperature only reflects pre-injection conditions, without accounting for temperature
changes during the fracturing process, which significantly affect fracturing performance.
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P Fracturing fluid type
[ Diameter of borehole

7 Maximum horizontal principal stress
P Minimum horizontal principal stress

I Flow rate

P Initial temperature of fracturing fluid
[ Poisson's ratio

I Tensile strength

28.31%

9.32%

12.34% 6.44%

Figure 12. The relative importance of influencing variables.

Although the multi-layer neural network model built in this study achieved high pre-
dictive accuracy, the experimental data used were limited. Moreover, many key parameters
(e.g., fracture toughness, permeability) that are crucial in the fracturing process were not
included in the available literature. Future studies should expand the dataset and compre-
hensively test the mechanical properties of rocks used in fracturing experiments. Predicting
the effects of multiple factors on breakdown pressure using deep learning represents a
notable advancement in understanding the complex relationships between variables in
fracturing operations.

By quantifying the relative importance of factors such as fluid type, tensile strength,
and flow rate, the trained neural network model provides valuable insights into their
interactions. This knowledge can guide the optimization of fracturing parameters for more
efficient and effective operations. The findings of this study align with those from previous
research, which indicates that key variables like fluid type and rock strength dispropor-
tionately affect breakdown pressure. This can be attributed to the distinct properties and
interactions of SC-CO, with rock formations. SC-CO,, with its low viscosity and high diffu-
sivity, penetrates microfractures and rock fissures more efficiently than water-based fluids,
thereby lowering the breakdown pressure required for fracture initiation. This property
is especially beneficial for rocks with high tensile strength, where conventional fluids are
less effective in initiating fractures due to limited penetrative ability. Additionally, tensile
strength significantly influences the pressure threshold for fracture initiation. Higher ten-
sile strength requires increased breakdown pressure, which SC-CO; mitigates through its
superior infiltration capability and stress-reducing properties. These characteristics enable
SC-CO; to overcome the resistance posed by high tensile strength, enhancing fracturing
performance in formations that are challenging for use in traditional hydraulic fracturing.
By incorporating various fluid types, flow rates, and stress conditions, this study provides
a more nuanced understanding of how different factors contribute to fracturing outcomes.
Moreover, the use of data-driven, deep learning techniques offers a flexible and adaptable
approach to predicting breakdown pressure, particularly in the context of SC-CO, fractur-
ing, where traditional models often fall short. The trained neural network model serves as
a decision-support tool, enabling engineers to simulate fracturing outcomes under various
parameter settings before field implementation. This application minimizes trial-and-error
in parameter selection and improves operational efficiency by predicting optimal condi-
tions for SC-CO; fracturing, such as ideal injection rates and pressure levels. By accurately
predicting breakdown pressure, the model ensures safe, cost-effective fracturing operations
while maximizing resource extraction.
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5. Conclusions

This study presents an integrated approach to predicting breakdown pressure in SC-
CO; fracturing by combining experimental data with a multi-layer neural network model.
The findings confirm that SC-CO, exhibits superior fracturing performance compared to
traditional hydraulic fracturing fluids, primarily due to its high diffusivity and effective
infiltration of microfractures, thereby lowering the breakdown pressure required for frac-
ture initiation. Elevated confining pressures significantly increase breakdown pressure,
highlighting the critical role of in situ stress. Additionally, the study found that higher
flow rates also led to higher breakdown pressures, suggesting that increased flow rates
enable the faster build-up of injection pressure, thus causing rock failure more rapidly. The
effect of temperature was also evident, with breakdown pressure decreasing as temperature
increased, indicating that higher temperatures facilitate fracturing by reducing the effective
stress in the rock.

A comparison of experimental results with theoretical predictions from the H-W and
H-F models revealed discrepancies, indicating that classical breakdown pressure models
fail to fully capture the complex phenomena observed during SC-CO, fracturing. This is
partly because these models were originally designed for hydraulic fracturing and operate
under simplifying assumptions, such as low or high rock permeability, which may not
align with actual experimental conditions. Moreover, the Ito model, which incorporates
parameters, such as pressurization rate and wellbore diameter, also failed to predict the
breakdown pressures of certain specimens, likely due to the inherent heterogeneity of
natural rock.

Using a fully connected neural network, this study successfully captured the non-
linear relationships among multiple influencing factors (fracturing fluid type, flow rate,
temperature, tensile strength, and confining pressure) and the breakdown pressure. The
model outperformed traditional predictive models, achieving an R value of 0.9123 for
the testing set, thereby demonstrating strong predictive capability. The sensitivity anal-
ysis identified fracturing fluid type and tensile strength as the most influential factors,
contributing 28.31% and 21.39% to the overall breakdown pressure, respectively. These
insights offer a data-driven foundation for optimizing fracturing design and improving
operational efficiency.

Despite promising results, this study acknowledges limitations, including the rela-
tively small dataset size and the exclusion of critical parameters such as fracture toughness
and rock permeability. Future research should expand the dataset and incorporate a more
comprehensive range of rock properties to further enhance the model’s predictive accuracy.
Opverall, the application of a multi-layer neural network model provides a robust, adaptable
framework for predicting fracturing outcomes, particularly for unconventional fractur-
ing techniques such as SC-CO,, as traditional models often fail to account for complex
variable interactions.
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Appendix A

As illustrated in Figure A1, the total circumferential stress around the borehole consists
of three components, as follows: (1) the circumferential stress component ((7(}) resulting
from the maximum and minimum horizontal stresses (07 and 03,); (2) the circumferential
stress component (07) generated by the injection pressure of the fracturing fluid (Py,); and
(3) the circumferential stress component (mg) induced by the pore pressure distribution (p)
within the rock. The stress distribution in ¢} can be visualized as acting on the edges of a
large rectangular plate containing a central circular hole. In ¢, the wellbore pressure rises
from the original pore pressure (Py) to the injection pressure (Py,). Finally, o3 represents the
radial fluid flow into the rock when there is a pressure differential between the injected
fluid and the pore fluid, leading to an additional stress component.

© @

@ (b) .
| Eﬂ” ’ n ’ - ) a”#}l
| T

Figure Al. Stress distribution leading to rock formation breakdown: (a) In situ circumferential

stress field resulting from the maximum and minimum horizontal stresses; (b) circumferential stress
induced by the injection pressure of the fracturing fluid within the wellbore; (c) circumferential stress
attributed to pore pressure distribution throughout the rock mass; (d) total circumferential stress
distribution after the superimposition of all three components [28].

The in situ circumferential total stress field ((T; ), resulting from the maximum and
minimum horizontal stresses, is calculated using Equation (A1) [28],

oy + 0] r2 oy — 0] 3rd
ol (th) (1 n rf;) _ (H2h> (1 + r;”>c0529+1>0 (A1)

where 0y and oy, represent the maximum and minimum horizontal stresses, respectively,
with the condition oy | > loj, 1. The angle 6 is measured counterclockwise from the
direction of oy, where 0 = 0 corresponds to the oy direction. The variable r;, denotes the
borehole radius, while r represents the horizontal radial distance from the center of the hole.

The circumferential total stress (¢07) induced by the injection pressure of the fracturing
fluid in the wellbore is calculated using Equation (A2),

2.2 2
2 TwlePw T"wPw

= — A2
TSR -n) n-7 (42

where r. is the radius of the far-field boundary, and py, is the pressure difference between
the injected fluid pressure and the reservoir pore pressure, defined as py, = P, — P.

The circumferential total stress (03), arising from the pore pressure distribution within
the rock mass, is calculated using Equation (A3),

_ 2 2 Te r
75 = fz% _25; K:zf:? )/ v(r)rdﬁ/r p(r)rdr — p(r)r? (A3)

where v is the Poisson’s ratio of the reservoir, « is the Biot coefficient, ranging from 0 to 1,
and p(r) is the pore pressure at a radial distance r from the center of the wellbore, exceeding
the original pore pressure Py, such that p(r) = P, — P,.
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The circumferential effective stress (0p) is the sum of these three stress components
minus the original pore pressure Py, as shown in Equation (A4).

og = (7(} + (792 + ag’ — Py (A4)

Assuming that the far-field boundary r, is significantly larger than the wellbore radius
rw, the circumferential stress components 0'92 and ag can be expressed in simplified forms

as follows: )
r
of = —pe (A5)
0.3 _ 06(1 —21/) /r (T’)T’di’ (1’)1’2 (A6)
o 7"2(1—1/) Vzup P
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