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Abstract: The exploitation of the spatial and spectral characteristics of hyperspectral remote sensing
images (HRSIs) for the high‑precision classification of earth observation targets is crucial. Convo‑
lutional neural networks (CNNs) have good classification performance and are widely used neu‑
ral networks. Herein, a morphological processing (MP)‑based HRSI classification method and a
3D–2D CNN are proposed to improve HRSI classification accuracy. Principal component analysis
is performed to reduce the dimensionality of the HRSI cube, and MP is implemented to extract the
spectral–spatial features of the low‑dimensional HRSI cube. The extracted features are concatenated
with the low‑dimensional HRSI cube, and the designed 3D–2D CNN framework completes the clas‑
sification task. Residual connections and an attention mechanism are added to the CNN structure
to prevent gradient vanishing, and the scale of the control parameters of the model structure is op‑
timized to guarantee the model’s feature extraction ability. The CNN structure uses multiscale con‑
volution, involving depthwise separable convolution, which can effectively reduce the amount of
parameter calculation. Two classic datasets (Indian Pines and Pavia University) and a self‑made
dataset (My Dataset) are used to compare the performance of this method with existing classifica‑
tion techniques. The proposed method effectively improved classification accuracy despite its short
classification time.

Keywords: convolutional neural nets; hyperspectral imaging; mathematical morphology; principal
component analysis

1. Introduction
Hyperspectral remote sensing image technology refers to a comprehensive sensing

technique that acquires and analyzes the data and information of ground objects without
direct contact with distant research targets and regions through specific devices. Remote
sensing technology is characterized by its scientificity, practicability, and advancement. It
is an interdisciplinary subject integrating mathematics, computer science, geography, and
other disciplines. A hyperspectral remote sensing image (HRSI) is a three‑dimensional
(3D) structure containing two‑dimensional (2D) spatial information and rich spectral in‑
formation. Making full use of such spectral and spatial information can significantly im‑
prove the accuracy of HRSI classification [1]. Hyperspectral remote sensing is widely used
for disaster monitoring [2], mineral exploration [3], precision agriculture [4], and military
reconnaissance [5], and HRSI classification is an important part of these applications. Clas‑
sical classification methods include random forest [6], support vector machine (SVM) [7],
K‑nearest neighbor [8], and logistic regression [9] approaches. However, these traditional
machine learning methods only consider the spectral features of HRSIs; the importance of
the image’s spatial features is ignored, and the classification results are not ideal. Many
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spatial feature extraction methods have been proposed to solve this problem, such as the
use of morphological features [10], texture features [11], and edge preservation filters [12].
The high spatial resolution of hyperspectral images allows for a very small number of hy‑
brid pixels and provides clear boundaries between different objects [13]. Spatial features,
such as morphological features, can provide high classification accuracy.

Recent studies show that the classification accuracy of hyperspectral images using
deep learning is high in practice [14]. Deep learning was developed on the basis of ma‑
chine learning (through the study of artificial neural networks); a machine mimics the
information processing structure of the human brain [15]. Deep learning often involves
multiple levels of neural network structures, and a neural network automatically learns
from a large number of samples during stepwise training to obtain deep features from the
data [16]. As typical models in the field of deep learning, convolutional neural networks
(CNNs) are vital in the field of computer vision. A CNN is a deep feedforward neural
network with a convolutional structure in which neurons can respond to cells in a region
with a central point; CNNs process large images well and are widely used in the field of
image processing [17]. Vaddi et al. [18] used probabilistic principal component analysis
(PCA) and Gabor filters to extract spectral and spatial features, respectively, and fused
these features into their designed 2D CNN framework for classification. Ahmad et al. [19]
proposed a fast 3D CNN model to extract spatial–spectral features and improve hyper‑
spectral image classification performance. Yang et al. [20] proposed a deep CNN with a
two‑branch structure; they used one‑dimensional (1D) convolution and 2D convolution
to extract spectral and spatial features, respectively, and combined them for classification.
Driven by ResNet, Zhong et al. [21] designed a spatial–spectral residual network (SSRN) to
classify hyperspectral images and obtained good results. Wang et al. [22] proposed an end‑
to‑end fast dense spectral–spatial convolution network framework. Different convolution
kernels were used to extract multiscale spectral–spatial features, and features at multiple
scales were extracted. Both 1D and 2D convolution can be used to extract spectral and
spatial features, but the spectral–spatial relationship is ignored. Three‑dimensional con‑
volution can directly extract spectral–spatial features, but the use of 3D convolution itself
complicates calculations. Therefore, Roy et al. [23] proposed a model that stacks 3D and
2D convolutional layers to make full use of spectral and spatial features to improve classi‑
fication accuracy. CNN‑based methods have achieved good results in the field of hyper‑
spectral image classification, but the contribution of the featuremap outputs of each convo‑
lutional layer of classification is different. The performance and generalization ability of a
model should be improved to enable the neural network to focus selectively on important
information in the input. Hu et al. [24] constructed a so‑called squeeze incentive network
and achieved remarkable results in the 2017 Large‑Scale Visual Identity Challenge classifi‑
cation competition. Sergio R et al. [25] proposed a newmachine learning‑based tool called
VULMA (Vulnerability Analysis using Machine Learning) that is able to capture the key
features of buildings in existing inventory starting with a simple photo of the building.
Their approach gave us a lot of ideas.

We found that it is difficult for the traditional hyperspectral remote sensing image clas‑
sification method to distinguish some highly similar objects effectively in the face of com‑
plex objects. Inspired by the above research, we designed an HRSI classification method
based on morphological processing (MP) and a 3D–2D CNN to improve the classification
accuracy of hyperspectral remote sensing images and the feature discrimination ability of
the network:

1. A newHRSI classification frameworkwas designed. This framework consists of PCA,
MP, CNNs, residual connections, and an attention mechanism.

2. A new 3D–2D CNN model was designed. This model combines 3D convolution
for extracting spatial and spectral features and 2D convolution for extracting spatial
features only. Such a combination effectively improves the classification accuracy
of HRSIs.
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3. Combining residual connections and the attention mechanism establishes a multi‑
scale residual attention module to refine feature mapping.

4. The 3D–2D CNN structure uses multiscale convolution composed of depthwise sep‑
arable convolution (DSC), which can effectively reduce the amount of parameter cal‑
culation and prevent overfitting.

2. Problem Formulation
An HRSI is a data cube with two spatial dimensions and one spectral dimension. An

HRSI can be expressed as O ∈ Rh×w×b, where O is the original HRSI; h and w are the
spatial height and width of the HRSI, respectively; and b is the number of bands. The
first p principal components (Op ∈ Rh×w×p) are retained after PCA dimensionality reduc‑
tion. The first J principal components are selected for binarization, and the spatial features
(OpJ ∈ Rh×w×j) of the binarized data are extracted via MP. Op and OpJ are concatenated to
obtain OA ∈ Rh×w×A, A = p + 3j. The input patch is Opatch ∈ Rs×s×A; finally, the created
HRSI patch is fed to the 3D–2D CNN.

The flow of the proposed HRSI classification method is illustrated in Figure 1. First,
PCA is used to reduce the dimensionality of the HRSI cube, and the first p principal com‑
ponents are extracted from the low‑dimensional HRSI cube. The first j principal compo‑
nents are binarized, and the spatial features of the binary data are extracted through MP.
Then, the low‑dimensional HRSI cube and spatial features are concatenated. Finally, the
designed 3D–2D CNN framework is used to complete classification.
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Figure 1. Network structure.

2.1. PCA
PCA reduces the dimensionality of high‑dimensional data by converting them into

a low‑dimensional subspace. The use of PCA to reduce the dimensionality of an original
hyperspectral image can effectively accelerate feature extraction [26]. The pixels of the
HRSI data cube are expressed as vectors ti =

[
t1, t2, t3, . . . . . . , tx]Ti , and the average value

of the pixel vectors is as follows:

tavg =
1
s

n

∑
i=1

[t1,t2, t3 · · · · · · tx]
T
i , (1)
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where s = r × c, where r is the row of the pixel vector, and c is the column of the pixel
vector. The formula for the covariance matrix is as follows:

σ =
1
s

n

∑
i=1

(ti − s)(ti − s)T . (2)

The feature decomposition of the covariance matrix is as follows:

σ = VΛVT , (3)

where Λ is a diagonal matrix composed of eigenvalues, and V is an orthogonal matrix,
with the corresponding eigenvector being a column. The linear conversion of the original
HRSI yields the following data after dimensionality reduction:

yi = VTti(i = 1, 2, 3 . . .). (4)

The rows of VT are arranged according to the eigenvalues (from large to small), and
the selected first p rows and pixel ti are multiplied to obtain the PCA spectral band com‑
posed of most of the original HRSI information.

2.2. Binarization Process
Binarization is the process of converting the input value from 0 to 1. First, the data

are converted into a range of 0 to 255 via the following formula:

Gij =
Iij −min(I)

Iij
∗ 255, (5)

where I is the input image, and Iij is the pixel value of I at the ij position. After the range
is converted, a threshold must be selected as follows:

Th =
∑h−1

i=0 ∑w−1
j=1 Gij

h ∗ w ∗ j
, (6)

where h andw are the height and width of the input data, respectively, and j is the number
of bands that are binary. The value is 1 when Gij is greater than or equal to Th and 0 when
it is less than Th. The formula is as follows:

Bij =

{
1, i f Gij ≥ Th
0, i f Gij < Th

. (7)

2.3. MP
Morphological analysiswas proposed by Serra et al. [27] in 1982 to collect information,

such as image shapes and boundaries, using structural elements. Thismethod captures the
spatial morphology of land‑cover types and eliminates the interference between different
types. The two basic morphological operations are erosion and dilation. Their formulas
are as follows [13].

Erosion:
(BI ⊖ g)(i, j) = min[BI(i + m), (j + n)− g(m, n)], (8)

Dilation (an erosion dual operator):

(BI ⊕ g)(i, j) = min[BI(i + m), (j + n)− g(m, n)], (9)

where BI(i,j) is a binary image; g(m,n) is a structural element; and� and� are the symbols
for erosion and dilation, respectively.
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Structural elements:

SE(i, j) =

0 1 0
1 1 1
0 1 0

 (10)

Opening:
(BI·g)(i, j) = (BI ⊖ g ⊕ g)(i, j) (11)

Gradient:
G(i, j) = (BI ⊕ g − BI ⊖ g)(i, j) (12)

The proposed framework uses the erosion, opening, and gradient operations. Erosion
removes pixels from the object’s boundary; the opening operation eliminates small areas
of the image; the gradient operation provides boundary information for objects.

2.4. CNNs
A 2D CNN performs convolution through a 2D convolution kernel, which can move

in two directions on a 2D plane, and the convoluted features improve nonlinear expression
through the activation function. The output features are as follows:

f l
j = a

∑
i∈Sj

f l−1
i ∗ ωl

ij + bl
j

, (13)

where f l
j is the output feature after convolution, a is the activation function, Sj is the set of

pixel features, f l−1
i is the feature map of the previous layer, * is the convolution operation,

ωl
ij is the convolution kernel weight of the i and j positions of the l layer, and bl

j is the bias.
According to the above formula, the feature value formula for each pixel is as follows:

λ
xy
ij = a

(
∑
c=0

Mi−1

∑
m=0

Ni−1

∑
n=0

ωmn
ijc u(x+m)(x+n)

(i−1)c + bij

)
, (14)

where λ
xy
ij is the eigenvalue of the pixel; xy is the position of the pixel in the eigenvalue; xy

is the position of the eigenvalue in the eigengram; a is the activation function; c is the index
value of the number of eigenvalues; Mi and Ni represent the size of the convolution kernel
of the ith layer; ωmn

ijc is the weight of the corresponding position; u(x+m)(x+n)
(i−1)c represents

the i − 1 layer, the cth feature map, and the eigenvalue at the (x + m)(x + n) position; and
bij is the bias.

A 3DCNNperforms convolution through a 3D convolution kernel, which canmove in
three directions: height, width, and channel. It can simultaneously combine the spatial and
spectral features of an HRSI, making full use of the structural characteristics of the image.
According to the feature representation of the above 2D convolution, the eigenvalue λ

xyz
ij

of the xyz pixel of the jth feature map is deduced for layer i, as follows:

λ
xyz
ij = a

(
∑
c=0

Mi−1

∑
m=0

Ni−1

∑
n=0

Li−1

∑
l=0

ωmnl
ijc u(x+m)(y+n)(z+l)

(i−1)c + bij

)
, (15)

where Mi, Ni, and Li are the sizes of the i‑layer convolution kernels.

2.5. DSC
DSC was proposed by Howard et al. [28] and used in MobileNetV1. DSC integrates

standard convolution into depthwise convolution, which is used to extract features from
input channels, and pointwise convolution is combined with the depthwise convolution
output [29]. Compared with standard convolution, DSC significantly reduces the compu‑
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tation effort. The ratio of the number of 2D DSC parameters to the number of standard 2D
convolution parameters and the amount of computation are as follows:

Pr
2D =

PDSC
2D

PCNN
2D

=
k2Dk2D I + IO

k2Dk2D IO
=

1
O

+
1

k2
2D

, (16)

Cr
2D =

CDSC
2D

CCNN
2D

=
k2Dk2D Ixy + IOxy

k2Dk2D IOxy
=

1
O

+
1

k2
2D

, (17)

where Pr
2D is the ratio of the number of 2D DSC parameters to the number of standard 2D

convolution parameters, PDSC
2D is the number of 2D DSC parameters, PCNN

2D is the number
of standard 2D convolution computations, k2D is the size of the convolution kernel, the
input size is x × y, I is the number of channels of the input feature map, and O is the
number of output channels. Cr

2D is the ratio of the number of 2D DSC computations to
the number of standard 2D convolution computations, CDSC

2D is the number of 2D DSC
computations, CCNN

2D is the number of standard 2D convolution computations, and the
ratio of the number of 3D DSC computations to the number of standard 3D convolution
computations is as follows:

Pr
3D =

PDSC
3D

PCNN
3D

=
k3Dk3Dk3D I + IO

k3Dk3Dk3D IO
=

1
O

+
1

k3
3D

, (18)

Cr
3D =

CDSC
3D

CCNN
3D

=
k3Dk3Dk3D Ixyz + IOxyz

k3Dk3Dk3D IOxyz
=

1
O

+
1

k3
3D

, (19)

where Pr
3D is the ratio of the number of 3D DSC parameters to the number of standard 3D

convolution parameters, PDSC
3D is the number of 3D DSC parameters, PCNN

3D is the number
of standard 3D convolution computations, k3D is the size of the convolution kernel, the
input size is x × y × z, I is the number of channels of the input feature map, and O is the
number of output channels. Cr

3D is the ratio of the number of 3D DSC computations to
the number of standard 3D convolution computations, CDSC

3D is the number of 3D DSC
computations, and CCNN

3D is the number of standard 3D convolution computations. The
above formulas show that DSC can effectively reduce the number of parameters and the
amount of calculation.

2.6. Residual Connections
In deep learning, as the network depth increases, accuracy tends to be saturated and

then degrades rapidly, resulting in poor network training. Residual networks were pro‑
posed to address such network degradation. The inputs and outputs of residual cells are
denoted as follows [30]:

xl = Fl(xl−1) + xl−1, (20)

where F is the residual function, xl−1 is the input of the element, and xl is the output of
the element.

2.7. Attention Mechanism
Squeeze‑and‑excitation (SE) blocks are newbuilding blocks introduced byHuet al. [24]

to improve network performance by explicitly modeling the interdependencies between
the characteristic channels of network evolution and introducing an attention mechanism
between the channels. SE blocks can map the inputX (X ∈ RH×W×C ) toU (U ∈ RH×W×C).
For any given Ftr transformation, Ftr is regarded as a simple convolution operation, and
the input is represented as V = [v1, v2, . . . , vC]. Vc represents the parameters of the cth
convolution kernel, and the output of Ftr is U = [u1, u2, . . . , uC]. The formula is as follows:
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uC = vC ∗ X =
C′

∑
s=1

vs
C ∗ xs, (21)

where ∗ denotes convolution, vc =
[
v1

c , v2
c , . . . vC

c
]
, and X =

[
x1, x2 . . . xC ].

Z ∈ RC is obtained via the global average pooling of the feature U on the spatial
dimension H × W, where the c element of z is as follows:

zC = Fsq(uC) =
1

H × W

H

∑
i=1

W

∑
j=1

uC(i, j) (22)

The channel dependencies are fully obtained to use the information of the squeeze
operation. A simple gatingmechanismwith sigmoid activation is implemented as follows:

s = Fex(z,W) = σ(g(z,W)) = σ(W2δ(W1z)), (23)

where σ is the sigmoid activation function, and δ is the ReLU activation function. W1 ∈
R

C
r ×C, W2 ∈ R

C
r ×C. Activation swap is used to rescale the feature map and obtain the final

output of the block.
x̃C = Fscale (uC, sC) = sC · uC, (24)

where
∼
X =

[∼
x1,

∼
x2 . . .

∼
xC

]
, uc ∈ RW×H , and Fscale(uC, sC) is the product of the channel.

3. Experiments and Discussion
3.1. Dataset Description

In this paper, three hyperspectral image datasets [31] (Indian Pines [IP], Pavia Uni‑
versity [PU], and the self‑made dataset “My Dataset”) are used to validate the proposed
method. Figures 2–4 show diagrams of the true categories of the hyperspectral images.

IP: This dataset includes 145 × 145 pixels with 200 spectral bands with a spatial res‑
olution of approximately 20 m at wavelengths of 0.5 to 2.5 µm. The image contains 16
different land‑cover categories.

PU: This dataset includes 610× 340 pixels with 200 spectral bands with a spatial reso‑
lution of approximately 1.3 m at wavelengths of 0.43 to 0.86 µm. The image contains nine
different land‑cover categories.

My Dataset: This dataset includes 182 × 217 pixels with 135 spectral bands at wave‑
lengths of 0.3 to 0.9 µm. The image contains seven different land‑cover categories.
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Figure 4. My Dataset: (a) false‑color image, (b) ground‑truth image, and (c) class names.

3.2. Parameter Setting
The proposed model divides the total input into the training set (30%) and the test

set (70%). All datasets are optimized using the Adam optimizer, the learning rate is 0.001,
the learning rate decay is (0.9, 0.999), the training batch size is 256, 100 repetitions are
performed, the loss function is the cross‑entropy loss function, and the patch size is 21 × 21.
For IP and My Dataset, the first two principal components are selected using 14 principal
components and a binarization process. For PU, the first principal component is selected
using seven principal components and a binarization process (Tables 1–3).

Table 1. Framework structure of IP dataset.

Layer (Type) Kernel Size Stride Padding Output Shape

Input layer Input: [(21,21,20,1)]
Conv3D_1 (3,3,3) (1,1,1) (0,0,0) Out_1: (19,19,18,8)
Conv3D_2 (3,3,3) (1,1,1) (0,0,0) Out_2: (17,17,16,16)

Separable_Conv3D_3_1_1 (3,3,3) (1,1,1) (0,0,0) Out_3_1_1: (15,15,14,32)
Conv3D_3_1_2 (1,1,1) (1,1,1) (0,0,0) Out_3_1_2: (15,15,14,16)

Separable_Conv3D_3_2_1 (3,3,3) (1,1,1) (0,0,0) Out_3_2_1: (15,15,14,32)
Conv3D_3_2_2 (1,1,1) (1,1,1) (0,0,0) Out_3_2_2: (15,15,14,32)

Separable_Conv3D_3_2_3 (3,3,3) (1,1,1) (0,0,0) Out_3_2_3: (13,13,12,32)
Conv3D_3_2_4 (1,1,1) (1,1,1) (1,1,1) Out_3_2_4: (15,15,14,16)

Concatenate_1 (Out_3_1_2, Out_3_2_4) Out_C_1: (15,15,14,32)
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Table 1. Cont.

Layer (Type) Kernel Size Stride Padding Output Shape

Residual Connection_1 (3,3,3) (1,1,1) (0,0,0) Out_R_1: (15,15,14,32)
Add (Out_C1, Out_R1) Out_A1: (15,15,14,32)
Reshape (Out_A1) Out_Re: (15,15,448)

Separable_Conv2D_4_1_1 (3,3) (1,1) (0,0) Out_4_1_1: (13,13,64)
Conv2D_4_1_2 (1,1) (1,1) (0,0) Out_4_1_2: (13,13,32)

Separable_Conv2D_4_2_1 (3,3) (1,1) (0,0) Out_4_2_1: (13,13,64)
Conv2D_4_2_2 (1,1) (1,1) (0,0) Out_4_2_2: (13,13,64)

Separable_Conv2D_4_2_3 (3,3) (1,1) (0,0) Out_4_2_3: (11,11,64)
Conv2D_4_2_4 (1,1) (1,1) (1,1) Out_4_2_4: (13,13,32)

Concatenate_2 (Out_4_1_2, Out_4_2_4) Out_C_2: (13,13,64)
Attention Out_SE: (13,13,64)

Residual Connection_2 (3,3) (1,1) (0,0) Out_R_2: (13,13,64)
Add (Out_C_2, Out_R_2) Out_A_2: (13,13,64)

Flatten Out_F: (10,816)
Linear_1 Out_L_1: (256)
Dropout_1 Out_D_1: (256)
Linear_2 Out_L_2: (128)
Dropout_2 Out_D_2: (128)
Linear_3 Out_L_3: (16)

Total Parameters: 3,270,656

Table 2. Framework structure of My Dataset.

Layer (Type) Kernel Size Stride Padding Output Shape

Input layer Input: [(21,21,20,1)]
Conv3D_1 (3,3,3) (1,1,1) (0,0,0) Out_1: (19,19,18,8)
Conv3D_2 (3,3,3) (1,1,1) (0,0,0) Out_2: (17,17,16,16)

Separable_Conv3D_3_1_1 (3,3,3) (1,1,1) (0,0,0) Out_3_1_1: (15,15,14,32)
Conv3D_3_1_2 (1,1,1) (1,1,1) (0,0,0) Out_3_1_2: (15,15,14,16)

Separable_Conv3D_3_2_1 (3,3,3) (1,1,1) (0,0,0) Out_3_2_1: (15,15,14,32)
Conv3D_3_2_2 (1,1,1) (1,1,1) (0,0,0) Out_3_2_2: (15,15,14,32)

Separable_Conv3D_3_2_3 (3,3,3) (1,1,1) (0,0,0) Out_3_2_3: (13,13,12,32)
Conv3D_3_2_4 (1,1,1) (1,1,1) (1,1,1) Out_3_2_4: (15,15,14,16)

Concatenate 1 (Out_3_1_2, Out_3_2_4) Out_C_1: (15,15,14,32)
Attention1 Out_SE1: (15,15,14,32)

Residual Connection_1 (3,3,3) (1,1,1) (0,0,0) Out_R_1: (15,15,14,32)
Add (Out_C1, Out_R1) Out_A1: (15,15,14,32)
Reshape (Out_A1) Out_Re: (15,15,448)

Separable_Conv2D_4_1_1 (3,3) (1,1) (0,0) Out_4_1_1: (13,13,64)
Conv2D__4_1_2 (1,1) (1,1) (0,0) Out_4_1_2: (13,13,32)

Separable_Conv2D_4_2_1 (3,3) (1,1) (0,0) Out_4_2_1: (13,13,64)
Conv2D_4_2_2 (1,1) (1,1) (0,0) Out_4_2_2: (13,13,64)

Separable_Conv2D_4_2_3 (3,3) (1,1) (0,0) Out_4_2_3: (11,11,64)
Conv2D_4_2_4 (1,1) (1,1) (1,1) Out_4_2_4: (13,13,32)

Concatenate_2 (Out_4_1_2, Out_4_2_4) Out_C_2: (13,13,64)
Attention2 Out_SE2: (13,13,64)

Residual Connection_2 (3,3) (1,1) (0,0) Out_R_2: (13,13,64)
Add (Out_C_2, Out_R_2) Out_A_2: (13,13,64)

Flatten Out_F: (10,816)
Linear_1 Out_L_1: (256)
Dropou_1 Out_D_1: (256)
Linear_2 Out_L_2: (128)
Dropout_2 Out_D_2: (128)
Linear_3 Out_L_3: (7)

Total Parameters: 3,269,495
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Table 3. Framework structure of PU dataset.

Layer (Type) Kernel Size Stride Padding Output Shape

Input layer Input: [(21,21,10,1)]
Conv3D_1 (3,3,3) (1,1,1) (0,0,0) Out_1: (19,19,8,8)
Conv3D_2 (3,3,3) (1,1,1) (0,0,0) Out_2: (17,17,6,16)

Separable_Conv3D_3_1_1 (3,3,3) (1,1,1) (0,0,0) Out_3_1_1: (15,15,4,32)
Conv3D_3_1_2 (1,1,1) (1,1,1) (0,0,0) Out_3_1_2: (15,15,4,16)

Separable_Conv3D_3_2_1 (3,3,3) (1,1,1) (0,0,0) Out_3_2_1: (15,15,4,32)
Conv3D_3_2_2 (1,1,1) (1,1,1) (0,0,0) Out_3_2_2: (15,15,4,32)

Separable_Conv3D_3_2_3 (3,3,3) (1,1,1) (0,0,0) Out_3_2_3: (13,13,2,32)
Conv3D_3_2_4 (1,1,1) (1,1,1) (1,1,1) Out_3_2_4: (15,15,4,16)

Concatenate_1 (Out_3_1_2, Out_3_2_4) Out_C_1: (15,15,4,32)
Residual Connection_1 (3,3,3) (1,1,1) (0,0,0) Out_R_1: (15,15,4,32)
Add (Out_C1, Out_R1) Out_A1: (15,15,4,32)
Reshape (Out_A1) Out_Re: (15,15,128)

Separable_Conv2D_4_1_1 (3,3) (1,1) (0,0) Out_4_1_1: (13,13,64)
Conv2D_4_1_2 (1,1) (1,1) (0,0) Out_4_1_2: (13,13,32)

Separable_Conv2D_4_2_1 (3,3) (1,1) (0,0) Out_4_2_1: (13,13,64)
Conv2D_4_2_2 (1,1) (1,1) (0,0) Out_4_2_2: (13,13,64)

Separable_Conv2D_4_2_3 (3,3) (1,1) (0,0) Out_4_2_3: (11,11,64)
Conv2D_4_2_4 (1,1) (1,1) (1,1) Out_4_2_4: (13,13,32)

Concatenate_2 (Out_4_1_2, Out_4_2_4) Out_C_2: (13,13,64)
Attention Out_SE: (13,13,64)

Residual Connection_2 (3,3) (1,1) (0,0) Out_R_2: (13,13,64)
Add (Out_C_2, Out_R_2) Out_A_2: (13,13,64)

Flatten Out_F: (10,816)
Linear_1 Out_L_1: (256)
Dropout_1 Out_D_1: (256)
Linear_2 Out_L_2: (128)
Dropout_2 Out_D_2: (128)
Linear_3 Out_L_3: (9)

Total Parameters: 3,059,193

The proposed method is compared with various existing classification methods: an
SVM [32], a 2D CNN [33], a 3D CNN [34], an SSRN [21], and HybridSN [23].

All experiments are performed on Python, and the experimental computing platform
is configured with an Intel Core i7‑12700k (Santa Clara, CA, USA), an Nvidia GeForce
GTX 3070Ti (Santa Clara, CA, USA), and 16 GB of RAM (Microsoft Corporation, Redmond,
WA, USA).

The kappa (κ) value, overall accuracy (OA), and average accuracy (AA) are used to
evaluate the performance of the classification methods.

3.3. Parameter Analysis
The model parameter settings are analyzed. Based on a large number of experiments,

several parameters that considerably affect the experimental results are selected for analy‑
sis: the size of the input patch; proportion of dropout probability values; and effectiveness
of the morphological features, residual connections, and attention mechanism.

3.3.1. Effect of Patch Size on Accuracy
Patch sizes 17, 19, 21, 23, and 25 are compared experimentally. Excessively large

patches increase the amount of computation and may cause overfitting, whereas too small
patches reduce accuracy. Table 4 shows the performance of the different‑sized patches on
the three datasets. The highest accuracy is obtained at a patch size of 21.



Appl. Sci. 2024, 14, 10577 11 of 16

Table 4. Effect of different‑sized patches on accuracy.

Dataset 17 × 17 19 × 19 21 × 21 23 × 23 25 × 25

OA 99.41 ± 0.19 99.54 ± 0.1 99.64 ± 0.08 99.59 ± 0.13 99.57 ± 0.16
IP AA 99.07 ± 0.53 99.16 ± 0.36 99.26 ± 0.32 99.13 ± 0.33 99.16 ± 0.32

K 99.32 ± 0.22 99.46 ± 0.11 99.59 ± 0.09 99.54 ± 0.15 99.56 ± 0.09
OA 99.96 ± 0.02 99.96 ± 0.03 99.97 ± 0.02 99.95 ± 0.02 99.93 ± 0.04

UP AA 99.91 ± 0.05 99.90 ± 0.05 99.92 ± 0.04 99.87 ± 0.03 99.84 ± 0.07
K 99.94 ± 0.03 99.95 ± 0.04 99.96 ± 0.02 99.94 ± 0.02 99.91 ± 0.05
OA 99.83 ± 0.04 99.82 ± 0.03 99.84 ± 0.03 99.83 ± 0.05 99.81 ± 0.03

My Dataset AA 99.64 ± 0.08 99.67 ± 0.07 99.70 ± 0.05 99.70 ± 0.06 99.66 ± 0.05
K 99.80 ± 0.05 99.78 ± 0.03 99.81 ± 0.04 99.79 ± 0.05 99.77 ± 0.02

3.3.2. Effect of Dropout Probability Values on Accuracy
A dropout layer prevents the model from relying too much on some local features

by randomly discarding the parameter values of some neurons, thereby enhancing model
robustness and preventing overfitting. Table 5 shows the effects of different dropout values
on accuracy.

Table 5. Effect of different dropout probability values on accuracy.

Dataset 25% 30% 35% 40% 45%

OA 99.58 ± 0.06 99.50 ± 0.08 99.64 ± 0.08 99.61 ± 0.12 99.60 ± 0.08
IP AA 99.13 ± 0.43 99.18 ± 0.32 99.26 ± 0.32 99.11 ± 0.5 99.15 ± 0.36

K 99.52 ± 0.07 99.43 ± 0.07 99.59 ± 0.09 99.56 ± 0.14 99.55 ± 0.08
OA 99.84 ± 0.11 99.88 ± 0.11 99.97 ± 0.02 99.95 ± 0.02 99.97 ± 0.02

UP AA 99.71 ± 0.23 99.81 ± 0.15 99.92 ± 0.04 99.90 ± 0.06 99.92 ± 0.05
K 99.79 ± 0.15 99.85 ± 0.14 99.96 ± 0.02 99.94 ± 0.03 99.96 ± 0.02
OA 99.82 ± 0.02 99.82 ± 0.04 99.84 ± 0.03 99.83 ± 0.03 99.80 ± 0.08

My Dataset AA 99.64 ± 0.05 99.66 ± 0.07 99.70 ± 0.05 99.68 ± 0.05 99.62 ± 0.17
K 99.77 ± 0.03 99.78 ± 0.05 99.81 ± 0.04 99.80 ± 0.03 99.75 ± 0.08

3.3.3. Effectiveness of MP
MP provides effective spatial features for the model. As seen in Table 6, the model

without MP has inferior results compared with the morphologically functional model.

Table 6. Effectiveness ofmorphological processing (MP), residual connections, and attentionmechanism.

Dataset Proposed Model No MP No Res No Attention

OA 99.64 ± 0.08 99.57 ± 0.11 99.48 ± 0.13 99.51 ± 0.14
IP AA 99.26 ± 0.32 99.11 ± 0.46 99.13 ± 0.43 99.12 ± 0.5

K 99.59 ± 0.09 99.47 ± 0.13 99.40 ± 0.14 99.45 ± 0.15
OA 99.97 ± 0.02 99.95 ± 0.02 99.95 ± 0.02 99.94 ± 0.07

UP AA 99.92 ± 0.04 99.86 ± 0.06 99.89 ± 0.06 99.90 ± 0.06
K 99.96 ± 0.02 99.93 ± 0.03 99.94 ± 0.03 99.92 ± 0.09
OA 99.84 ± 0.03 99.81 ± 0.03 99.79 ± 0.04 99.79 ± 0.11

My Dataset AA 99.70 ± 0.05 99.65 ± 0.06 99.56 ± 0.13 99.63 ± 0.08
K 99.81 ± 0.04 99.78 ± 0.04 99.74 ± 0.06 99.74 ± 0.13

3.3.4. Effectiveness of Residual Connections
The residual connections can prevent network degradation, and their effectiveness is ev‑

ident in Table 6.

3.3.5. Effectiveness of Attention Mechanism
Experimentswithout theuseof the attentionmechanismare conductedon the threedatasets.

The results, shown in Table 6, demonstrate the effectiveness of the attention mechanism.
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3.4. Classification Results and Analysis
As shown in Figures 5–7, My Net achieves the highest classification accuracy across all

three datasets, as reflected in the OA, AA, and κmetrics. In contrast, the SVM classification
yields the lowest performance. Although the 2D CNN method performs better than the
traditional SVM, it only extracts spatial features for each pixel. Consequently, it exhibits
relatively poor performance when tasked with simultaneously extracting both spectral and
spatial features.
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Figure 5. IP dataset classification results: (a) false‑color image, (b) ground‑truth image, (c) sup‑
port vector machine (SVM), (d) two‑dimensional convolutional neural network (2D CNN), (e) three‑
dimensional CNN (3D CNN), (f) spatial–spectral residual network (SSRN), (g) HybridSN, and
(h) My Net.
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Figure 7. My Dataset classification results: (a) false‑color image, (b) ground‑truth image, (c) SVM,
(d) 2D CNN, (e) 3D CNN, (f) SSRN, (g) HybridSN, and (h) My Net.

As presented in Tables 7–9, the 3D CNN model outperforms the 2D CNN model in
terms of classification accuracy. However, the 3D CNN is computationally expensive and
suffers from increased model complexity, leading to a higher risk of overfitting. To balance
classification accuracy with computational efficiency, this study employs a multiscale con‑
volutional layer consisting of two 3D convolution layers and aDSC layer. This configuration
allows for the simultaneous extraction of spectral and spatial features while effectively re‑
ducing overfitting due to model complexity. Compared to the 3D CNN, the SSRN enhances
accuracy by stacking multiple spectral residual blocks and spatial residual blocks for fea‑
ture extraction.

Table 7. Classification accuracy results on IP dataset.

Class SVM 2D CNN 3D CNN SSRN HybridSN Proposed Model

1 83.21 76.3 100 100 100 100
2 74.83 82.5 77.92 98.79 99.30 99.50
3 81.05 86.9 91.25 100 99.83 99.83
4 78.72 63.54 91.84 98.96 100 98.81
5 74.65 89.63 98.92 99.20 99.11 100
6 92.5 99.03 97.99 99.31 99.80 100
7 95.31 77.41 100 100 100 100
8 84.7 100 96.97 100 100 100
9 96.83 65.31 100 100 100 100
10 72.04 81.93 80.6 99.36 99.85 99.85
11 77.51 90.65 86.44 99.80 99.59 99.88
12 85.6 84.25 90.74 98.54 98.33 99.04
13 84.61 99.36 97.62 94.25 98.59 100
14 97.54 98.68 97.64 99.12 99.66 99.89
15 93.61 88.29 94.44 97.77 99.26 98.18
16 73.4 99.63 100 100 95.31 100
OA 85.45 ± 2.43 90.36 ± 0.33 89.31 ± 0.38 99.20 ± 0.39 99.42 ± 0.36 99.64 ± 0.08
AA 78.33 ± 3.11 88.62 ± 0.92 91.68 ± 0.55 98.85 ± 0.54 98.93 ± 0.41 99.26 ± 0.32
κ 83.21 ± 2.51 89.92 ± 0.59 87.82 ± 0.53 99.1 ± 0.47 99.36 ± 0.35 99.59 ± 0.09
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Table 8. Classification accuracy results on PU dataset.

Class SVM 2D CNN 3D CNN SSRN HybridSN Proposed Model

1 95.31 99.77 98.04 99.85 100 99.98
2 96.64 100 97.03 99.98 99.95 99.99
3 83.5 99.75 95.08 99.93 100 100
4 95.36 100 99.67 99.91 99.91 99.91
5 99.43 51.93 100 100 100 100
6 89.69 99.80 99.63 100 100 100
7 88.23 99.25 96.72 100 99.68 100
8 87.39 95.93 92.22 98.81 99.92 99.92
9 99.81 100 99.65 99.55 99.55 99.85
OA 95.01 ± 0.21 96.63 ± 0.21 97.27 ± 0.13 99.85 ± 0.09 99.92 ± 0.04 99.97 ± 0.02
AA 93.41 ± 0.53 95.56 ± 0.36 96.22 ± 1.23 99.76 ± 0.33 99.80 ± 0.14 99.92 ± 0.04
κ 92.86 ± 0.39 95.40 ± 0.51 96.36 ± 0.21 99.79 ± 0.15 99.90 ± 0.05 99.96 ± 0.02

Table 9. Classification precision results on My Dataset.

Class SVM 2D CNN 3D CNN SSRN HybridSN Proposed Model

1 79.38 100 95.48 100 100 100
2 97.41 68.23 99.26 97.65 98.54 99.37
3 95.43 99.89 97.38 99.59 99.42 99.45
4 99.10 100 99.84 99.79 100 100
5 95.59 100 99.92 100 99.98 100
6 95.36 100 99.24 100 100 100
7 99.5 100 100 100 100 100
OA 95.43 ± 0.55 96.92 ± 0.24 98.79 ± 0.21 99.78 ± 0.13 99.81 ± 0.04 99.84 ± 0.03
AA 93.21 ± 2.63 97.52 ± 0.45 98.50 ± 0.53 99.64 ± 0.28 99.67 ± 0.1 99.70 ± 0.05
κ 95.29 ± 0.63 97.52 ± 0.24 98.52 ± 0.43 99.72 ± 0.25 99.76 ± 0.07 99.81 ± 0.04

As seen in Table 10, the SVM, which has a simple structure, takes less time than the
other classification methods, which use neural networks. Compared with the 3D CNN, the
2D CNN requires less time to train or test data. Unlike the 3D CNN, My Net uses both 3D
and 2D convolutional layers to reduce model complexity. Compared with HybridSN, My
Net needs a slightly shorter training time on IP and My Dataset but requires slightly more
time on PU.

Table 10. Model training and testing times.

Dataset Time IP PU My Dataset

SVM Train(s) 2.11 5.32 3.94
Test(s) 1.03 2.31 1.84

2D CNN Train(m) 1.12 1.31 1.53
Test(s) 0.9 1.52 1.61

3D CNN Train(m) 3.21 8.17 16.63
Test(s) 8.51 13.04 30.26

SSRN Train(m) 4.73 6.93 14.11
Test(s) 5.89 11.36 25.13

HybridSN Train(m) 2.98 3.65 7.43
Test(s) 1.98 2.06 4.92

My Net Train(m) 2.64 3.99 6.56
Test(s) 1.23 1.63 2.91

4. Conclusions
In this paper, we propose a hyperspectral image classification method that combines

convolutional neural networks (CNNs), depth‑separable convolution (DSC), multiscale con‑
volution, residual connections, attention mechanisms, and max pooling (MP). By employ‑
ing multiscale feature extraction and splicing hyperspectral data after PCA dimensionality
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reduction, the model is capable of simultaneously extracting spectral and spatial features,
thereby enhancing classification accuracy. The introduced attention mechanism effectively
models the interdependencies between different channels, further improving network per‑
formance. The use of residual connections anddropout layers effectivelymitigates the issues
of gradient vanishing and overfitting, thereby enhancing the model’s generalization ability.

The experimental results on three real datasets demonstrate that the proposed method
achieves excellent classification accuracy. However, the model exhibits high computational
complexity, and there remains a risk of overfitting in certain cases, particularly with small
sample datasets. Future research could focus on improving the model’s performance and
applicability by simplifying the network architecture, optimizing computational efficiency,
and expanding to additional datasets.
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