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Abstract: Routine visual inspection is fundamental to the preventive maintenance of power equip-
ment. Convolutional neural networks (CNNs) substantially reduce the number of parameters and
efficiently extract image features for classification tasks. In the actual production and operation
process of substations, due to the limitation of safety distance, camera monitoring, inspection robots,
etc., cannot be very close to the target. The operational environment of power equipment leads to
scale variations in the main target and thus compromises the performance of conventional models.
To address the challenges posed by scale fluctuations in power equipment image datasets, while
adhering to the requirements for model efficiency and enhanced inter-channel communication, this
paper proposed the ResNet Cross-Layer Parameter Sharing (ResNetCPS) framework. The core idea
is that the network output should remain consistent for the same object at different scales. The
proposed framework facilitates weight sharing across different layers within the convolutional net-
work, establishing connections between pertinent channels across layers and leveraging the scale
invariance inherent in image datasets. Additionally, for substation image processing mainly based
on edge devices, smaller models must be used to reduce the expenditure of computing power. The
Cross-Layer Parameter Sharing framework not only reduces the overall number of model parameters
but also decreases training time. To further enhance the representation of critical features while
suppressing less important or redundant ones, an Inserting and Adjacency Attention (IAA) module
is designed. This mechanism improves the model’s overall performance by dynamically adjusting
the importance of different channels. Experimental results demonstrate that the proposed method
significantly enhances network efficiency, reduces the total parameter storage space, and improves
training efficiency without sacrificing accuracy. Specifically, models incorporating the Cross-Layer
Parameter Sharing module achieved a reduction in the number of parameters and model size by 10%
to 30% compared to the baseline models.

Keywords: power system; substation; ResNet; cross-layer parameter sharing

1. Introduction

During the long-term operation of power equipment, various factors such as environ-
mental and load changes may cause scratches, deformations, cracks, rusting, overheating,
discoloration, cracking, and other problems on the appearance of the equipment. These
issues may be external manifestations of internal equipment failures. By inspecting the
appearance of the equipment, these problems can be detected. The faulty equipment could
be repaired or replaced in a timely manner to avoid production safety losses caused by the
expansion of the fault. Relying on various monitoring and inspection equipment instead of
artificial vision to identify safety hazards is the key to intelligent substations [1–5].

In recent years, with the rapid development of computer vision technology, deep
learning has made significant progress in visual applications in the electrical engineering

Appl. Sci. 2024, 14, 10578. https://doi.org/10.3390/app142210578 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app142210578
https://doi.org/10.3390/app142210578
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3734-0995
https://orcid.org/0000-0002-7623-0051
https://orcid.org/0000-0003-3301-2713
https://doi.org/10.3390/app142210578
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app142210578?type=check_update&version=1


Appl. Sci. 2024, 14, 10578 2 of 18

industry. Deep learning can automatically learn and extract feature information from
images by constructing deep neural network models, thereby achieving efficient process-
ing and analysis of images. In the electrical engineering industry, deep learning visual
applications are mainly focused on equipment fault diagnosis, intelligent inspection, safety
monitoring, and other aspects, providing strong support for improving the safety and
reliability of power systems, such as insulators [6,7], bird nests [8], and dials [9,10]. Ref. [11]
proposed an effective multi-task defect classifier. By constructing a CNN model, automatic
extraction and recognition of fault features can be achieved. Compared with traditional
fault diagnosis methods, deep learning-based image recognition methods have higher ac-
curacy and efficiency, and can quickly locate the fault location and provide corresponding
repair suggestions.

Reviewing early developments of image recognition, we found that cleverly utilizing
image properties for parameter sharing is the core of the development of convolutional
neural networks. With the continuous improvement of computing power, the convolu-
tional neural network gradually develops into a super-extensive network with deeper
layers and more parameters. The ViT model based on attention mechanism transformer
architecture provides a solution to the depth vision problem other than convolutional
neural networks [12]. Aside from that, vision models based on transformer have emerged
endlessly, including Swin Transformer [13], Deit [14], crossvit [15], DaViT [16], PVT [17],
CaiT [18], Focal transformer [19], etc. Swin Transformer is a modified version of Vision
Transformer using shifted windows (SWs) [13]. It divides the fixed-size sampling block
in Vision Transformer into different-sized blocks (windows) according to the hierarchy,
and the information between each block is not shared. DaViT proposed a dual attention
architecture, which includes spatial attention, and proposes channel tokens to introduce
channel attention [16]. The Multi-Layer Perceptron (MLP) Mixer model, which uses MLP
to replace Conv in traditional CNN and self-attention in the transformer, is proposed [20].
It uses the most traditional MLP as the underlying architecture and obtains results without
input from the transformer. Recently, networks based on MLP architecture have been
proposed, including gMLP [21], ResMLP [22], and cycleMLP [23]. Compared with CNN,
the ViT model ignores two basic properties of the image: translation invariance and rotation
invariance. It learns and trains through more data to obtain the correlation between the
blocks in the image, which is called self-attention.

The essence of the convolutional neural network is a parameter-sharing strategy based
on image properties. The principle of parameter sharing is based on the assumptions of
neural networks for specific problems. The training efficiency is improved by changing
the model structure. A large number of parameters are reduced without restricting the
generalization ability of the model. Effective parameter sharing limits the number of pa-
rameters and improves the training efficiency of the model. Therefore, convolutional neural
networks can efficiently train to obtain good accuracy in the case of limited datasets and
computing power. These parameters are often shared within the same layer. According to
the development track of deep learning, the fewer restrictions on neural network structure,
the more accurate the model. For example, the transformer model only assumes that there
is self-attention between windows. The MLP model will further improve the model’s
accuracy, and it does not use parameter sharing. However, these models often require more
accurate datasets and higher computing power.

For most public datasets, objects in the image are clear and distinguishable, occupying
the center of the image with their boundaries exactly at the edges of the image. For images of
power equipment, due to limitations such as working environment and shooting angle, the
captured object may not be accurately located at the center of the image. It may only occupy
a small part of the image. For such images, the model should perform the same operation
on objects of different scales. This is the scale invariance of datasets. This article proposes a
ResNet variant named ResNet with Cross-Layer Parameter Sharing (ResnetCPS) based on
the scale invariance of image datasets. For parameter modules with the same number of
channels and high repetition rate, they share some parameters to reduce parameter coupling
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and parameter count. Cross-Layer Parameter Sharing utilizes information from multiple
convolutional neural network layers to optimize model performance. The difference
between this method and traditional cellular neural networks is that weights are shared
between different network layers. It encourages layers to learn from each other instead of
focusing on optimizing individual layers, resulting in more efficient models. It also makes
the network more robust to changes in training data, as it is more resilient to the effects
of random perturbations. Cross-Layer Parameter Sharing can improve the accuracy of
processing power equipment datasets. Meanwhile, parameter sharing without changing
the structure reduces the total number of parameters and decreases the storage space for
parameters. Shared parameters during training are trained multiple times in the same
backpropagation process, resulting in higher training efficiency. In addition, increasing the
information exchange between shared and non-shared parameters, enhancing the ability to
represent important features, and using channel self-attention mechanism could improve
the overall performance of the model are important.

The main contributions of this paper are as follows:
(1) A Cross-Layer Parameter Sharing mechanism was designed to address the issue of

non-prominent data subjects in power equipment image data.
(2) An Inserting and Adjacency Attention Module was designed based on the sharing

mechanism. The “inserting” action augments the communication among fragmented
channels, and simultaneously, this action curtails the size of the model and enhances
the efficiency.

(3) The overall architecture of the ResNetCPS model was designed and its effectiveness
on an original substation dataset was validated.

The rest of this article is organized as follows. Section 2 introduces related work. The
details of the proposed methods are presented in Section 3. The execution details of the
experiment, analysis of the results, and the design and results of the ablation experiment
are given in Section 4. Finally, Section 5 concludes this article.

2. Related Work
2.1. ResNet

Residual Neural Network (ResNet) solves the problem of gradient vanishing and
exploding during the training process of deep neural networks by introducing the concept
of residual learning, enabling deeper networks to be trained and optimized [24]. Its ideas
have been applied to more network designs. Based on ResNet, there are many improved
networks. ResNet-B/C/D replaces some original convolutional kernels, reducing the com-
putational and parameter burden of models while maintaining high accuracy [25]. Among
them, ResNet-b shifts the downsampling in the residual difference to avoid information
loss. ResNet-c replaces the original 7 × 7 convolutional kernel with three 3 × 3 convolu-
tional kernels, reducing the number of parameters. ResNet-d adopts group convolution
based on ResNet-b. Wide ResNet (WRN) is a variant that enhances network width by
increasing the number of ResNet channels (i.e., increasing the number of output channels
per convolutional layer) [26]. It improves the feature extraction ability of the network.
ResNeXt introduced the concept of “cardinality”, using group convolution to control the
number of packets by introducing cardinality [27]. In the Split Transform Merge strategy,
1 × 1 convolution achieves low-dimensional embedding, such as by converting 256 chan-
nels into 4 channels, with 32 branches (cardinality = 4). This grouping convolution can
effectively reduce the number of model parameters and accelerate model training. This
structure can replace the method of increasing network depth to a certain extent. NFNet is
a ResNet-based network that does not require Batch Normalization, and its core is AGC
(Adaptive Gradient Clipping) technology [28]. AGC technology dynamically adjusts thresh-
olds based on gradient information during network training that can train non-normalized
networks with larger batches and large-scale data augmentation to achieve more effective
gradient clipping. It can avoid the limitation of fixed thresholds in Batch Normalization
and improve the performance and training speed of the model. Res2Net has modified
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the block in ResNet to extract multiscale features further [29]. Resnetrs has improved its
expansion strategy by expanding depth in settings where overfitting occurs and gradually
increasing image resolution [30]. This strategy increases training speed.

2.2. Channel Self-Attention Module

SENet (Squeeze and Extraction Network) introduces an attention mechanism on the
output of each ResNet block, explicitly modeling the interdependence between feature
channels [31]. The Squeeze operation compresses each two-dimensional feature channel
into an actual number with a global receptive field. The Extraction operation adjusts the
importance of each feature channel through a learnable weight. By learning the weights
of different channels, the network’s attention to essential features has been improved.
ECANet (Efficient Channel Attention Network) adopts a more efficient method to learn
channel attention [32]. It uses a 1D convolutional layer to convolve the features of each
channel and then uses the sigmoid function to learn channel attention. It can significantly
reduce computational complexity and improve model performance to a certain extent.

2.3. Lightweight Model

Through more robust sharing and connection mechanisms, networks can be cleverly
constructed and lightweight models can be designed, such as MobileNets [33–35], Shuf-
fleNets [36,37], ChannelNet [38], FBNet [39], GhostNet [40], MicroNet [41], TinyNet [42],
TVConv [43], and Fasternet [44]. The core of Mobilenet is depthwise-separable convolu-
tion, which decomposes traditional convolution by first using a depthwise convolution
for spatial convolution and then a pointwise convolution for channel convolution [33].
The core of ShuffleNet is channel shuffling [36]. The feature maps of different groups are
rearranged, thereby increasing the information interaction between different groups. Chan-
nelNets include channelwise group convolutions, channelwise-based depthwise-separable
convolutions, and unweighted convolution classification layers [38]. The three compo-
nents are used to compress different parts of the network. FBNet adopts the JointNAS
method, using both hyperparameters and training strategies as the search space, making
the network design more comprehensive and optimized [39]. In GhostNet [40], “Ghost
Module” uses a small number of convolution kernels to generate some original feature
maps and then causes more “ghost” feature maps through simple linear transformations.
These ghost feature maps have similar characteristics to the original ones, but the computa-
tional complexity is significantly reduced. MicroNet redesigns the network structure of the
convolutional layer, reducing the connectivity between network nodes without reducing
the width of the network. Micro-factorized convolution combines pointwise convolution
in MobileNet with depthwise convolution, decomposed into a low-rank matrix, thereby
achieving a good balance between the number of channels and the connectivity of input
and output [41]. TVConv proposes Affinity Maps to distinguish multiple different local
features [43]. It can implicitly capture the semantic features of different spatial regions.
Fasternet proposes a new partial convolution (PConv) that can extract spatial features more
efficiently by simultaneously reducing redundant computation and memory access [44]. It
runs significantly faster than other networks on a variety of devices. Ref. [45] proposed an
improved lightweight convolutional neural network based on U-Net.

3. Method
3.1. Overview

The structure of ResnetCPS152 with a ratio of 1/4 is illustrated in Figure 1. The model
initially employs multiple 3 × 3 convolution processes, transforming 3-channel images
into 64-channel feature maps. Subsequently, the model comprises four stages. Within
each stage, there are two paths. One path traverses a bottleneck comprising 1 × 1, 3 × 3,
and 1 × 1 convolutional layers, followed by an Inserting and Adjacency Attention (IAA)
module. The first convolutional layer features a stride of 2. The other path includes a 2 × 2
average pooling layer and a 1 × 1 convolutional layer. The values from both paths are
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summed before being fed into the repeating blocks. Each block includes both a shortcut
and a bottleneck. Unlike the bottleneck in earlier stages, all convolutional layers within
this block have a stride of 1. In stages two and three, the repeating blocks incorporate
shared layers. The shared and normal layers process the preceding feature maps, which
are then concatenated. The sharing mechanism is centered around repeating blocks as its
fundamental unit.

3 ×3 Conv
(64)

1 ×1 Conv
(64)

1 ×1 Conv
(256)

IAA module
(256)

3 ×3 Conv
(64 stride 2)

3 ×3 Conv
(64)

1 ×1 Conv
(64 stride 2)

1 ×1 Conv
(256)

IAA module
(256)

3 ×3 Conv
(32 stride 2)

3 ×3 Conv
(64)

3 ×3 Conv
(64)

2×2 AvgPool
(64)

1 ×1 Conv
(256)

3 ×3 Conv
(128)

1 ×1 Conv
(128 stride 2)

1 ×1 Conv
(512)

IAA module
(512)

3 ×3 Conv
(96)

1 ×1 Conv
(96)

1 ×1 Conv
(384)

IAA module
(512)

2×2 AvgPool
(256)

1 ×1 Conv
(512)

3 ×3 Conv
(32 Shared)

1 ×1 Conv
(32 Shared)

1 ×1 Conv
(128 Shared)

Concat

Concat

Concat

3 ×3 Conv
(256)

1 ×1 Conv
(2556 stride 2)

1 ×1 Conv
(1024)

IAA module
(1024)

3 ×3 Conv
(192)

1 ×1 Conv
(192)

1 ×1 Conv
(768)

IAA module
(1024)

2×2 AvgPool
(512)

1 ×1 Conv
(1024)

3 ×3 Conv
(64 Shared)

1 ×1 Conv
(64 Shared)

1 ×1 Conv
(256 Shared)

Concat

Concat

Concat 3 ×3 Conv
(512)

1 ×1 Conv
(512)

1 ×1 Conv
(2048)

IAA module
(2048)

3 ×3 Conv
(512)

1 ×1 Conv
(512 stride 2)

1 ×1 Conv
(2048)

IAA module
(2048)

2×2 AvgPool
(256)

1 ×1 Conv
(2048)

Avg global pool
(2048)

Fully connected
(1)

1 ×1 kernel 2 ×2 kernel

3 ×3 kernel global kernel

IAA module Fully connected

Concat module Shortcut

Figure 1. The structure of ResnetCPS152 with ratio = 1/4.

3.2. Convolution Operations with Cross-Layer Parameter Sharing

The equation for the convolution operation can be expressed as follows:

c(l)i,j,k =
F

∑
m=1

F

∑
n=1

w(l)
m,n,ka(l−1)

(i− F+1
2 )×s+m,(j− F+1

2 )×s+n
(1)

where c(l)i,j,k is the convolution result of the i-th row and j-th column and k-th kernel in

the l-th layer, w(l)
m,n,k is the weight of the k-th convolution kernel’s m-th row and n-th

column, and a(l−1)
(i− F+1

2 )×s+m,(j− F+1
2 )×s+n,k

is the value of the k-th feature map at position

((i− F+1
2 )× s+m, (j− F+1

2 )× s+ n) in the (l − 1)-th layer. F is the size of the convolutional
kernel, and s is the stride size, representing the step size at which the convolutional kernel
slides on the input feature map. Consider bias and concatenate the outputs to obtain the
output of that layer.

z(l)i,j = b(l) +
K(l)

∑
k=1

c(l)i,j,k (2)

where z(l)i,j is the convolution result of the i-th row and j-th column in the l-th layer, b(l) is

the bias term, and K(l) is the number of convolution kernels in the l-th layer.
We define shared convolution as the partial convolution kernels between duplicate

layers or blocks being the same, with the same parameters.
The resulting output is also concatenated from the individual outputs of each convolu-

tional kernel. Equation (1) has been rewritten as follows:
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z(l)i,j = b(l)

+
K(l)

∑
k=1

F

∑
m=1

F

∑
n=1

w(l)
m,n,ka(l−1)

(i− F+1
2 )×s+m,(j− F+1

2 )×s+n

+
K(d)

∑
k=K(l)

F

∑
m=1

F

∑
n=1

w(d)
m,n,ka(l−1)

(i− F+1
2 )×s+m,(j− F+1

2 )×s+n

(3)

where K(d) is the number of convolution kernels in the d-th layer of the duplicate blocks,
and w(d)

m,n,k is the weight of the k-th convolution kernel’s m-th row and n-th column in the
d-th layer of the duplicate blocks.

Figure 2 shows the repetitive structure of the 4th stage of the 152-layer ResnetCPS. It
contains a bottleneck block repeated 35 times, marked as a black dashed rounded box. Each
block is composed of a repeated three-layer network, labeled as a gray solid line rounded
box, consisting of a 1× 1 convolutional layer for 256 channels, a 3× 3 convolutional layer for
256 channels, and a 1 × 1 convolutional layer for 1024 channels. When the sharing ratio is
1/4, each layer corresponds to 64, 64, and 256 channel convolutions as shared convolutions,
marked with green rounded boxes. These convolution parameters distributed in different
blocks correspond to the same channel, and they calculate a common gradient during
training while being modified. The remaining convolution parameters are labeled with
rounded boxes of different colors, and their respective gradients are computed during
training. In forward calculation, the convolutional kernels of each layer are combined
and calculated forward on a layer-by-layer basis. Each layer of its repeating structure has
a portion of the shared parameter part that shares parameters. In forward propagation,
the shared parameter part can participate in the calculation repeatedly. Shared parameter
parts distributed in different layers will be simultaneously calculated and updated when
calculating gradients in reverse. The proportion of this part is set as hyperparameter r in
the article. The remaining components are unique convolutional kernels for each structure,
which generally participate in gradient calculations.

Conv 1×1, 192 1×1, 64

Conv 3×3, 192 3×3, 64

Conv 1×1, 768 1×1, 
256

Conv 1×1, 240 1×1, 64

Conv 3×3, 240 3×3, 64

Conv 1×1, 768 1×1, 
256

Conv 1×1, 240 1×1, 64

Conv 3×3, 240 3×3, 64

Conv 1×1, 768 1×1, 
256

Repeat 35 times

Shared parameter part

Figure 2. The 4th stage of the 152-layer ResnetCPS.

3.3. Shared Layer Complexity

The time complexity of repeating blocks can be represented as follows:

TIME ∼ O(N × M2 × K2 × C2) (4)

where N is the number of repetitions in the convolution blocks, M is the size of the feature
map, K is the size of the convolution kernel, and C is the number of convolution kernels in
each layer, which is also the number of channels in the feature map. This formula represents
the number of convolution operations in each layer.
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If no shared units are added to the repeated blocks, its spatial complexity can be
represented as follows:

SPACE ∼ O(N × K2 × C2) (5)

This equation represents the number of parameters for each convolutional kernel layer.
We use time complexity divided by spatial complexity to represent the number of

calculations a single parameter participates in during each forward propagation of the
model. The number of calculations without adding shared units is as follows:

If a shared unit is added to a repeated block, its spatial complexity can be represented
by the following equation:

SPACE∗ ∼ O(N × K2 × (C − Cshare)
2 + K2 × C2

share) (6)

where Cshare is the number of shared convolution kernels in each layer.

Cshare = αC (7)

In repeated blocks, regardless of whether shared units are added or not, the time
complexity remains unchanged, that is, the number of convolution operations in each layer
remains unchanged. According to the definition, the time complexity of the convolutional
layer divided by the spatial complexity can calculate the average number of times the
convolutional kernel participates in convolution operations during forward propagation.

Count =
TIME
SPACE

∼ O(
N × M2 × K2 × C2

N × K2 × C2 ) ∼ O(M2)

(8)

If a shared unit is added to a repeated block, the number of times a single parameter
participates in the forward propagation of the model is as follows:

Count∗ =
TIME

SPACE∗

∼ O(
N × M2 × K2 × C2

N × K2 × C2 × (1 − α)2 + K2 × α2C2 )

∼ O(
N × M2

(1 − α)2N + α2 )

(9)

Parameters can affect the size of memory occupied by the model. The more parameters
there are, the larger the final model will be. It can be seen that adding shared units reduces
the complexity of the model space. The number of times α parameter participates in forward
propagation of the model will affect the updating intensity of the parameter during error
backpropagation. In other words, the more calculations it participates in, the stronger the
error backpropagation. Through comparison, it can be seen that adding a shared unit will
increase the number of calculations that a single parameter of the model participates in.
Therefore, the average number of updates for each parameter will be more frequent. This
is different from simply increasing the training step size, which can effectively improve
training efficiency. The formula indicates that two parameters will have an impact on the
scale and efficiency of the model. The impact of normalization layer, activation layer, short
links, etc., on model performance is not coupled with shared units, so they are ignored
when analyzing complexity. They also participate in training and computation, which
weakens the effectiveness of parameter participation in training.
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3.4. Inserting and Adjacency Attention Module

The IAA module is a channel self-attention module, as shown in Figure 3. The blue
part in the feature map represents the output of the normal convolution kernel, and the red
part represents the output of the shared convolution kernel. After a global average pooling,
the feature map is compressed into a 1 × 1 × C channel feature vector. The shared channel
feature vector is inserted into the normal channel feature vector with an interval of the
reciprocal of the sharing ratio α. If α = 1/4, then a shared feature value is inserted into every
three normal channel feature vectors. Then, adjacency convolution is performed, which is a
one-dimensional convolution with a kernel length of 1/α + 1. After a layer of convolution,
the inserted channel is extracted to the initial position. During this process, keeping the
dimension of the channel feature vector unchanged, channel-based self-attention is formed.
Finally, the self-attention weight is multiplied by the initial feature map to scale the feature
map and form the final output. The smaller the sharing ratio, the longer the kernel length.
In extreme cases, the sharing ratio is zero, the one-dimensional convolution layer becomes
a fully connected layer, and the IAA module degenerates into an SE module.

Scale

inserting

adjacency

global avg pool

extracting

H×W×C

H×W×C

1×1×C

1×1×C

1×1×C

1×1×C

Figure 3. IAA module structure and operation flowchart.

4. Experiment
4.1. Implementation Details

The experiment was performed on a server with Intel® Xeon® gold 6136 CPU and
NVIDIA Corporation GP102 [TITAN Xp]. The equipment was sourced from Synology,
Shanghai, China.The experiment was validated on the embedded development platform,
NVIDIA Jetson TX2, with an NVIDIA Denver dual-core 64-bit CPU and 256 NVIDIA®

CUDA® core Pascal™ Architecture. The equipment was sourced from NVIDIA, Santa
Clara, U.S.A. The system version is Ubuntu 18.04, the CUDA version is 11.1, the Python
version is 3.8.1, and the Pytorch version is 1.7.0.

The optimizer is set to Momentum with a 0.9 coefficient. There are 200 training epochs
with 10 warm-up epochs. During the experiment, when the number of training epochs was
set to 200, the model could reach a relatively stable convergence state within a reasonable
time in most cases, that is, the loss value no longer decreased significantly and the accuracy
also tended to be stable. The choice of batch size was mainly based on two principles.
First, the batch size should be as large as possible. Second, it should not exceed the video
memory capacity. For example, for smaller models (such as resnetcps50 and resnetcps101),



Appl. Sci. 2024, 14, 10578 9 of 18

we set the batch size to 64, which could fully utilize the computing resources and improve
the training efficiency. For larger models (such as resnetcps200 and resnetcps270), in order
to avoid memory problems, we adjusted the batch size to 32. In this way, we could find a
better balance between memory usage and computing efficiency in the training of different
models, ensuring that the models could be trained smoothly and achieve good performance.
And according to the different batch sizes, the learning rate was adjusted. The larger the
batch size, the larger the learning rate. For the coefficient of the Momentum optimizer, we
adjusted it through experiments. The larger the coefficient value, the more information
from the previous gradients can be retained, but it may also lead to overly aggressive
updates and the optimal solution being missed. We tried different coefficient values from
0.1 to 0.99. When the coefficient was set to 0.1, the model converged slowly and required
more training epochs to achieve good performance. When the coefficient increased to 0.9,
the model could quickly reduce the loss value in the early stage of training and showed
good stability throughout the training process.

4.2. Dataset

As shown in Figure 4, the dataset consists of pictures of redundant objects or equip-
ment states commonly found in substations. This article refers to it as a substation dataset.
The dataset contains various objects, including 2787 dials, 728 nests, 941 oil pollution,
5209 press plates, 7290 insulators, 1717 silica gels, and 988 tanks. Dials are helpful for
monitoring the operating parameters of equipment, and any abnormality can affect fault
judgment. Press plates are related to the reliability of electrical connections. The failure of
silica gel affects the humidity inside the equipment. Problems with tanks affect insulation
and heat dissipation. Oil pollution reduces insulation and corrodes equipment. Nests are
prone to causing short-circuit faults. Object classification in substations is essential for the
smart grid because it allows faster and more efficient detection of faults in the power grid.
It helps reduce downtime on the grid and helps increase the reliability of the energy supply.
It can help maximize energy efficiency by detecting potential inefficiencies before they
become problematic. Currently, there is no similar public dataset for substation or power
equipment defect classification dataset.

Figure 4. Substation object dataset.

Target labeling calculates the proportion of the corresponding target to the image. The
ratio is divided into 10 levels. Each 10% is a gear, and the ratio from 0 to 100% is used
for statistics. The statistical histogram of the proportion of the target object is shown in
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Figure 5. For some high outdoor targets, such as bird’s nests and some dials, most of the
pictures are taken from a distance, and the proportion is often lower. In contrast, for some
oversized or indoor equipment, most pictures are taken at close range, and the proportion
is often higher. Overall, most of the image targets are concentrated in 20–80%. There are
even some images with a target ratio of 10–15%. Most of the target objects are not the main
body of the pictures.
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Figure 5. Histogram of the proportion of the target object in the image.

4.3. Training Process

The training process of the resnetcps model is set as the experimental subject to
evaluate the Cross-Layer Parameter Sharing module. Five models with increasing layers of
resnetcps are trained, including resnetcps50, resnetcps101, resnetcps152, resnetcps200, and
resnetcps270. As shown in Figure 6, the fluctuation line represents the training curve of the
model, with blue representing the resnetrs model and orange representing the resnetcps.
The sharing ratio in this experiment was set to 1/4. We mainly measure whether the model
training has a faster convergence speed and the lowest loss value. The last training epoch
is zoomed in for easy observation. The lowest value is marked. Due to the high volatility
of the training process, a value 5% higher than the minimum value is set as the sign of
the training entering the final steady state, represented by the dashed line in the enlarged
image. The position is recorded below the dashed line for the first time, indicating that the
training process has entered a steady state.

In the experiment, the resnetcps series models (50, 101, 152, 200, 270) are compared
with the resnetrs series models. In terms of convergence speed, the resnetcps series is faster.
For example, resnetcps50 reaches a minimum value of 1.161 at 203 training epochs, while
resnetrs50 reaches a minimum value of 1.162 at 209 training epochs. Resnetcps200 reaches a
minimum value of 1.123 at 177 training epochs, while resnetrs200 reaches a minimum value
of 1.144 at 198 training epochs. In terms of the number of training epochs required to enter
the steady state, the resnetcps series is earlier. For instance, resnetcps50 enters the steady
state at 128 training epochs, while resnetrs50 enters the steady state at 138 training epochs.
Resnetcps270 enters the steady state at 113 training epochs, while resnetrs270 enters the
steady state at 150 training epochs. In terms of the minimum loss value, the difference
between the two is not significant, but the resnetcps series is generally slightly smaller.
For example, the minimum loss value of resnetcps270 is 1.127, while that of resnetrs270
is 1.138. Because the parameters in the shared part of the model are repeatedly trained,
the model, with the addition of the Cross-Layer Parameter Sharing module, has a faster
convergence speed and enters the steady-state interval faster. The minimum loss value
of the resnetcps with the reserve of the Cross-Layer Parameter Sharing module is smaller
than the minimum loss value of the resnetrs model. At the end of the training phase, the
loss value of the resnetrs model continues to decline.
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Figure 6. Train loss reduction curve. (a) resnetrs50 and resnetcps50. (b) resnetrs101 and resnetcps101.
(c) resnetrs152 and resnetcps152. (d) resnetrs200 and resnetcps200. (e) resnetrs270 and resnetcps270.

4.4. Comparison Between Models

As shown in Table 1, some important ResNet variant frameworks were tested, includ-
ing WRN, ResNeXt, ECAResNets, NFNet, Res2Net, ResNetv2, SENet, and RexNet model
architectures. The number and accuracy of parameters are used as evaluation indicators.
Representative models from various frameworks with the addition of Cross-Layer Param-
eter Sharing modules are compared. Resnet200 and Resnetrs200, with a sharing ratio of
1/4 and 1/8, were added as representatives for comparison in this article. The selected
models are similar to the model in this paper regarding parameter quantity or accuracy. A
comparison model with an equal number of parameters to the model in this article will
have lower accuracy than the model in this article. The comparison model with similar
accuracy to the model in this article has a much larger number of parameters than the
model in this article. Therefore, while the model accuracy maintains SOTA, the parameters
can remain relatively small.
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Table 1. Comparison of parameter quantity and accuracy of ResNet variant models.

Model Params (M) Top-1 Acc (%)

wide_resnet50 [26] 68.88 81.46
wide_resnet101 [26] 126.89 78.85

resnetv2_101×1_bitm [46] 44.54 82.33
resnetv2_101×3_bitm [46] 387.93 84.44

nfnet_l0 [28] 35.07 82.75
seresnet152 [31] 66.82 78.65
res2net50 [29] 48.4 78.95

ecaresnet101 [32] 44.57 82.17
ecaresnet269 [32] 102.09 87.97
resnest200 [47] 70.2 83.83
resnest101 [47] 48.28 82.89

resnetcps200 ratio=1/16 125.84 88.36
resnetcps350 ratio=1/8 153.02 89.33

Table 2 shows some classification models with parameters similar to resnetcps200.
resnetcps200 can achieve state-of-the-art performance with similar model sizes.

Table 2. Comparison of parameter quantity and accuracy of each model.

Model Params (M) Top-1 Acc (%)

RepVGG-B2 [48] 80.31 81.71
Multiscale DEQ [49] 81 82.25

PVTv2-B4 [50] 82 84.65
RevBiFPN-S5 [51] 82 84.14
Conformer-B [52] 83.3 85.65

XCiT-M24 [53] 84 86.75
DeiT-B [14] 86 84.82

ConViT-B [54] 86 84.66
ViT-B @224 [55] 86.6 84.42
ViT-B @384 [55] 87 85.35
SwinV2-B [56] 88 86.68

Swin-B [56] 88 85.79
Mega [57] 90 83.36

DiNAT-Base [58] 90 85.14
Pyramid ViG-B [59] 92.6 84.84

CoE-Large [60] 95.3 83.47

resnetcps200 ratio=1/4 82.21 87.16
resnetcps200 ratio=1/8 87.71 87.69

4.5. Ablation Study

A holistic ablation experiment was used to verify the relationship between the model
architecture, sharing ratio, parameter amount, memory read and write amount, model
size, and accuracy. The number of memory reads and writes, model size, and accuracy are
compared with the parameters under different sharing ratios. The model architecture and
sharing ratio are analyzed. The experimental data are substation data. Table 3 shows the
experimental results of different models of resnetcps architecture. Because this parameter
is the denominator to participate in the shared convolution calculation, the more significant
the number, the smaller the proportion of parameters participating in the sharing. Params
represents the number of parameters. The number of parameters determines the model’s
size and the training’s complexity. The lower the number of parameters, the faster the
model training. Memr + w represents the amount of memory read and write. The amount
of memory read and write is enough to affect the response speed of the model. The smaller
the memory read and write, the faster the model responds. Model size represents the
space occupied by the storage model. Top-1 ACC represents the model’s classification
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accuracy at the maximum probability value. The optimal parameters in the table are bolded.
Figure 7 is the corresponding diagram of parameters and accuracy of each model of
resnetcps architecture. In addition, we also compared the accuracy impact of different
channel self-attention modules on resnetcps.

Table 3. Resnetcps model scale with different sharing ratios.

Model Sharing
Ratio Params Mem

R + W
Model

Size
Top-1
Acc

resnetrs50 35.69 M 273.64 M 279 M 85.52

ResNet-
cps50

1/16 35.41 M 273.02 M 277 M 85.65
1/8 35.13 M 271.81 M 275 M 86.39
1/4 34.58 M 269.39 M 271 M 86.95
1/2 33.46 M 264.56 M 262 M 86.79

resnetrs101 63.62 M 526.85 M 498 M 85.65

ResNet-
cps101

1/16 62.16 M 521.01 M 486 M 86.62
1/8 60.69 M 514.32 M 475 M 87.36
1/4 57.77 M 500.95 M 452 M 87.39
1/2 51.92 M 474.21 M 406 M 87.26

resnetrs152 86.62 M 1.0 G 678 M 84.75

ResNet-
cps152

1/16 84.15 M 1015.25 M 659 M 86.34
1/8 81.68 M 1001.51 M 639 M 87.95
1/4 76.73 M 974.03 M 601 M 86.32
1/2 66.85 M 919.06 M 523 M 85.57

resnetrs200 93.21 M 1.31 G 730 M 86.35

ResNet-
cps200

1/16 90.46 M 1.29 G 708 M 87.26
1/8 87.71 M 1.28 G 687 M 87.69
1/4 82.21 M 1.24 G 644 M 87.16
1/2 71.21 M 1.17 G 558 M 87.08

resnetrs270 129.86 M 1.72 G 1017 M 87.76

ResNet-
cps270

1/16 125.84 M 1.7 G 985 M 88.36
1/8 121.82 M 1.68 G 954 M 88.20
1/4 113.78 M 1.63 G 891 M 88.15
1/2 97.69 M 1.53 G 765 M 87.64

resnetrs350 163.96 M 2.54 G 1.284 G 87.71

ResNet-
cps350

1/16 158.49 M 2.51 G 1.241 G 88.60
1/8 153.02 M 2.48 G 1.198 G 89.33
1/4 142.09 M 2.4 G 1.113 G 88.39
1/2 120.23 M 2.26 G 942 M 88.33

resnetrs400 191.89 M 3.53 G 1.502 G 84.76

ResNet-
cps400

1/16 185.24 M 3.48 G 1.450 G 85.01
1/8 178.59 M 3.43 G 1.398 G 85.86
1/4 165.29 M 3.34 G 1.295 G 86.32
1/2 138.69 M 3.14 G 1.087 G 84.13



Appl. Sci. 2024, 14, 10578 14 of 18

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0
8 1
8 2
8 3
8 4
8 5
8 6
8 7
8 8
8 9
9 0
9 1

r s
1 / 1 6

1 / 8
1 / 41 / 2

r s
1 / 1 6

1 / 81 / 4
1 / 2

r s

1 / 1 6

1 / 8

1 / 4
1 / 2

r s

1 / 1 6
1 / 81 / 4

1 / 2
r s

1 / 1 6
1 / 81 / 4

1 / 2 r s
1 / 1 6

1 / 8
1 / 41 / 2

r s
1 / 1 6

1 / 8
1 / 4

1 / 2To
p-1

 Ac
cur

acy

N u m .  o f  P a r a m e t e r s ( M )

 r e s n e t c p s 5 0
 r e s n e t c p s 1 0 1
 r e s n e t c p s 1 5 2
 r e s n e t c p s 2 0 0
 r e s n e t c p s 2 7 0
 r e s n e t c p s 3 5 0
 r e s n e t c p s 4 2 0

Figure 7. Model parameter quantity and accuracy under different sharing ratios.

4.5.1. Effects of Sharing Ratio on Model Scales

As shown in Table 3, resnetcps models follow the same pattern. As the sharing ratio
changes, model parameters, memory reads and writes, and model size gradually decrease.
For the largest model, resnetcps420, the reduction in model size is even more significant. At
a ratio of 1/16, compared to the resnetcps model, the parameter count decreased by 6.65 M,
accounting for 3.47%, the memory read and write count decreased by 43.1 MB, accounting
for 1.19%, and the model size decreased by 52 M, accounting for 3.46%. At a ratio of 1/2,
compared to the resnetcps model, the parameter count decreased by 53.2 MB, accounting
for 27.72%, the memory read and write count decreased by 393.96 MB, accounting for
10.91%, and the model size decreased by 415 M, accounting for 27.63%. It can be seen
that the higher the proportion of cross-layer shared parameters, the smaller the model
size, which is also in line with the design of Cross-Layer Parameter Sharing. When the
proportion of cross-layer shared parameters is half, the model exhibits a significant decrease
in scale.

4.5.2. Channel Self-Attention Module

The most outstanding models in resnetcps are selected as the basis. We compare
different channel self-attention models. After analyzing the models and comparing their
parameters, it was found that the IAA model, which is based on Cross-Layer Parameter
Sharing, can better fit the data and achieve higher accuracy. As shown in Table 4, the first
column represents not using the channel self-attention model, SE represents the Squeeze
and Excitation Module, and ECA represents the Efficient Channel Attention Module.

Table 4. The variation in accuracy with different channel self-attention modules.

Model

Attention
SE ECA IAA

resnetcps50 ratio=1/4 84.12 85.35 86.12 86.95
resnetcps101 ratio=1/4 85.24 86.57 86.58 87.39
resnetcps152 ratio=1/8 85.41 87.40 86.66 87.95
resnetcps200 ratio=1/8 85.37 86.87 86.81 87.69
resnetcps270 ratio=1/16 86.12 88.24 87.78 88.36
resnetcps350 ratio=1/8 87.30 88.92 88.50 89.33
resnetcps400 ratio=1/4 84.83 85.16 85.67 86.32

4.5.3. Effects of Sharing Ratio on Accuracy

As shown in Figure 7, the Cross-Layer Parameter Sharing module compares the model
parameter quantity and accuracy under different sharing ratios. Each line represents a
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type of model. The horizontal axis represents the number of model parameters. The
vertical axis represents the accuracy of the model. The sharing ratio is indicated next to the
corresponding points in the graph. When the Cross-Layer Parameter Sharing module is
not added, the corresponding point of the model is at the rightmost end of the line, with
the most parameters. As the sharing ratio increases, the number of parameters decreases,
and the corresponding points move more to the left.

The resnetcps architecture includes seven types of models. As the scale of the resnetcps
model increases, the accuracy of the model also increases. The resnetcps420 series has
relatively low accuracy. It can be seen that the accuracy fluctuations of different sharing
ratios within the same type of model are relatively small. The accuracy of the resnetcps
model determines the accuracy range of the model added to the parameter-sharing module.
On this basis, the reduction in parameters is significant.

5. Discussion

Considering the starting point of the model design, ResnetCPS emerges as a unified
model capable of addressing a class of problems. Looking ahead, future research directions
could involve exploring its application in other analogous scenarios, such as anomaly
detection in nanotechnology [61,62], thereby potentially expanding its utility and impact in
the field.

6. Conclusions

This study proposes a novel approach, namely ResnetCPS, to tackle the problem of
scale fluctuations in datasets and ensure the lightweight characteristics of the model. This
paper uses images of power equipment as validation, which can be considered for use in
other fields with similar features. ResnetCPS mainly includes the following advantages:

Firstly, by leveraging the scale-invariant design of image datasets, ResNetCPS demon-
strates enhanced effectiveness in extracting features from the data. This design enables
it to better capture the inherent patterns and characteristics within the power equipment
images, regardless of variations in scale.

Secondly, the parameter-sharing mechanism of ResNetCPS plays a crucial role. It
can significantly reduce both the parameter count and the model size. This reduction not
only alleviates the computational burden during training and inference but also holds
great promise for practical industrial applications, where resources are often limited and
efficiency is of utmost importance.

Thirdly, ResNetCPS empowers the model to achieve faster convergence within a
constrained training time frame, simultaneously attaining higher accuracy.

In the experimental phase, when compared with the Resnet variant network, ResnetCPS
achieved a remarkable 10–30% reduction in both the number of parameters and the model
size. Moreover, when contrasted with networks of similar scale, its accuracy reaches the
state-of-the-art level, highlighting its superiority in performance. Codes are available at
https://github.com/wdzjs/ResnetCPS/tree/main accessed on 16 November 2024.
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