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Abstract: The growth of photosynthetic organisms requires specific ranges of temperature and
photosynthetically active radiation. Monitoring and maintaining these conditions is technically
difficult, especially in outdoor cultures. In such cases, a typical meteorological sequence can be
a useful tool for estimating the growth of photosynthetic organisms. This study proposes a new
methodology based on long-term meteorological sequences to simulate the growth of photosynthetic
organisms. This case study addresses microalgae growth simulation (Chlorella vulgaris) in Riosequillo
in the north of the Madrid region (Spain) for the four seasons of the year. Then, these estimates are
compared with the observed results of an experimental culture of microalgae in domestic wastewater.
The results also show strong agreement with the probability distribution function of the daily biomass
concentration, giving the best results for typical summer and spring meteorological sequences. The
methodology seems to confirm the representativeness of typical meteorological sequences, allows for
the identification of the most likely production scenarios for project feasibility analyses, and may be
applied to decision-making processes.

Keywords: long-term meteorological sequences; simulation; photosynthetic organisms; wastewater
treatment; high-rate algae pond; microalgae; Chlorella vulgaris

1. Introduction

The use of algae for the removal, biotransformation, or mineralization of various
nutrients and heavy metals from wastewater is an environmentally friendly process, as no
secondary pollution occurs if the biomass produced is used as feedstock and the treated
wastewater is reused. According to [1,2], research in this field is not new and has demon-
strated the ability of microalgae to efficiently use nitrogen, phosphorus, and other im-
purities in wastewater to promote their growth [3–5]. In addition to these nutrients that
come with wastewater, microalgae also depend on other external parameters, such as light,
which is absorbed and used in the photosynthesis process [6], and temperature, which
has an effect on photosynthesis and cell division [7]. Furthermore, since microalgae are
autotrophic microorganisms, they contribute to reducing the concentration of greenhouse
gases by fixing CO2 during their growth [8]. These efforts over the years allowed for an
advanced level of mastery of this technology, which has led to its implementation in a rural
community of 300 people [9].

A considerable number of research organizations [10,11] have studied the effects of
temperature and solar irradiance on the growth of many different strains of microalgae
grown in open or closed systems. A study of the impact of temperature on microalgae
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showed a decrease in viable cells at high temperatures and an increase from 20 ◦C to 28 ◦C,
the optimal temperature range [12]. This optimal temperature range varies depending
on the strain of microalgae [11]. Regarding incident light, three different levels of solar
irradiance (6213, 2741, and 3799 Wh m−2 d−1) were investigated to understand the influence
of solar irradiance on a microalgae–bacteria consortium grown in 80 L domestic wastewater
in an outdoor high-rate algae pond (HRAP) [13]. Similarly, the effect of both parameters
on microalgae growth was studied in [14] by modeling and validating the variation in the
growth rate as a function of temperature at different light intensity levels. In addition to
the importance of light intensity, its quality and photoperiodicity also play a key role in
the metabolism of microalgae. For example, the work presented in [15] showed a faster
growth rate and a higher lipid content in algae biomass when the medium received white
light instead of red light.

Large-scale outdoor microalgae cultivations under natural daily or seasonal solar
irradiance and temperature produced satisfactory results for understanding the impact of
both culture parameters [16–18]. However, it is important to know the long-term temporal
variability in these parameters when planning the installation of an HRAP system at a
given site. To consider climatic variability in outdoor mass cultures, typical meteorological
sequences (TMSs) have been developed as a preliminary step to evaluate the effects of
temperature and solar irradiance on the growth of microalgae in HRAPs, as in [19]. This
allows for the consideration of the extreme conditions of these variables when assessing
the long-term viability of a proposed project.

However, the economic viability of an open pond cultivation system in a given location
is strictly related to climatic variability. When microalgae are grown in an open pond,
meteorological parameters, among others, are beyond our control. Daily and seasonal
fluctuations in culture weather parameters significantly affect microalgae metabolism [18].
In some cases, this could have negative effects on the productivity of these microorganisms
and therefore on the quality of the recycling of water, energy, and fertilizer nutrients.
In an open-pond system for a microalgae culture, temperature and photosynthetically
active radiation (PAR) are the most relevant meteorological parameters. In the case of
solar radiation, assuming the representativeness of the period covered by the available
meteorological database, the corresponding empirical probability distribution function [20]
allows for the characterization of its long-term temporal variability. Previous works in the
field of solar thermal power generation [21,22] have presented, from the point of view of
economic viability, probabilistic analyses of different production scenarios.

This work presents the average daily productivities (in terms of microalgae concen-
tration) corresponding to n-growth meteorological sequences (1204 in our case study)
simulated from hourly PAR and temperature measurements recorded in situ using a sim-
plified production model. This series of ‘biomass productivities’ for a given season was
compared with the productivity corresponding to the representative TMS for the same
period of the year [19]. This manuscript is structured as follows. Section 2 introduces
the case study and describes the measured data set used, the growth model proposed in
this work, and the simulation model utilized. Section 3 presents the main results and a
discussion of them. Finally, Section 4 presents the conclusions and future work.

2. Materials and Methods

The growth of photosynthetic organisms (plants, protists, and bacteria) requires condi-
tions that are difficult to achieve, especially when this bioprocess is carried out in a device
exposed to weathering. In this case, crop yield would be significantly affected by envi-
ronmental impacts that change throughout the year. However, optimal crop development
depends on many factors, some of which directly influence growth characteristics. This is
the case with temperature and light or photosynthetically active radiation (PAR) in massive
outdoor cultivation. In this situation, a representation of the long-term variability in these
two parameters at a given site may be advantageous when using growth simulation tools
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on photosynthetic organisms or conducting laboratory-scale studies for application at
that site.

A growth meteorological sequence (GMS) corresponds to a sequence of consecutive
days at a given site and in a given season; the number of consecutive days of each GMS
can be adapted by taking into account the growth period of the photosynthetic species
under study. This adaptive tool has been designed to obtain input data for simulating
different crop types that have a growth period of a few days to a few weeks. Therefore, the
cultivation of microalgae or other plant species could be a case study.

On the other hand, it provides a general representation of long-term variability in
solar irradiance and temperature over a period corresponding to the time needed for the
crop species to reach harvest. The simulation of microalgae productivity from long-term
meteorological data sets offers an opportunity to explore crop profitability in different
scenarios before application on-site. In this framework, the cultivation of microalgae,
tomatoes, or any other crops could be an example of a numerical simulation case study that
includes PAR and temperature as input data.

2.1. Case of Study

A microalgae-based wastewater treatment model is the focus of our case study. Model-
ing such a system can be beneficial in anticipating potential obstacles and making decisions
regarding its implementation.

According to [23], more than 80% of total nitrogen and 70% of total phosphorus in
wastewater are removed in 5 days, with a biomass productivity equal to 0.64 gL−1d−1

for batch culture. In addition, Zou et al. obtained a significant result of 1.72 gL−1d−1

of microalgal biomass produced during batch treatment and proposed that a hydraulic
retention time of 7 to 9 days could be efficient for nutrient removal and microalgal biomass
production during continuous treatment [24]. In our case study, long-term climate vari-
ability of air temperature and PAR was taken into account by generating a set of n-GMS
consisting of seven consecutive days generated according to the methodology proposed
in [19]. The methodology offers a significant number of seven-day sequences for every
season of the year, with 1204 for spring, 1204 for summer, 1190 for autumn, and 1184 for
winter, taking the following approach.

EA = {d1, d2, d3, . . . dn}
S1 = {d1, d2, . . . d7}, S2 = {d2, d3, . . . d8} . . . Sm = {dn−6, dn−5, . . . dn}

where EA corresponds to all the days available (n) for a given season and Sm is a set of a
sequence of 7 consecutive days (with m = n − 6).

The Filkenstein–Schafer statistic (FS) and a persistence criterion were applied to
determine the most typical sequence in the series:

FS =
1
N

N

∑
i=1

δi (1)

where N is the number of days in a week (N = 7). δi = |CDFe(xi)− CDFe,s(xi)|, with CDFe
and CDFe,s as the long-term and short-term CDFs for each weather parameter x. For each
sequence, Equation (2) was calculated for all seasons and all weather parameters studied.
According to the FS statistics, the CDF of each parameter x with n observations and then
arranged in ascending order x1, x2, . . . , xk−1, xk is given by a function Sk(x) defined by:

Sn(x) =


0 f or x < x1

(k − 1/2)/n f or xk ≤ x ≤ xk+1
1 f or x > xn

(2)
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The weighted sum (WS) of the FS statistics corresponding to each parameter FSi was
calculated by applying a weight factor w f i.

WS =
m

∑
i=1

w f i·FSi (3)

The persistence is evaluated by determining the number of occurrences of a given
sequence. In this case study, each of these sequences was used to obtain algal biomass
production and evaluate the variability of productivity. This approach is described in more
detail in Sections 2.3 and 2.4.

In addition, a seven-day PAR and temperature variation data set was obtained from
15-year remote sensing data, with a spatial resolution of 0.125◦ × 0.125◦. PAR data were
obtained from Kato bands, provided by the spectral resolved irradiance (SRI) of the Satellite
Application Facility on Climate Monitoring (CMSAF), which belongs to the European
Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). The temper-
ature values were sourced from the Copernicus Climate Change Service (2023): ERA5
hourly data.

2.2. Microalgae Growth Model

In this study, a high-rate algae pond (reactor) model was just simplified to focus on
microalgae growth as a function of air temperature (T), photosynthetically active radiation
(PAR), and a reduced number of impurities present in the cultivation medium. Phosphorus
(P) and nitrogen (N) are two of the impurities in wastewater (cultivation medium) that
microalgae can remove for their growth. Wastewater contains a number of nitrogen
compounds, such as ammonium, organic nitrogen, nitrate, and nitrite. In this study, total
nitrogen is considered equal to the sum of total Kjeldahl nitrogen, nitrite, and nitrate.
Similarly, wastewater is relatively rich in phosphorus compounds, including phosphate
ions, inorganic forms (ortho and polyphosphates), and organic forms (organically bound
phosphates). Therefore, total phosphorus is given here as a combination of these different
phosphorus compounds. These parameters were taken as limiting substrates for the growth
of these photosynthetic microorganisms.

In addition, the initial concentrations of nitrogen and phosphorus in the culture
medium are favorable to the growth of microorganisms. These substrates are consumed
exclusively by microalgae. Only PAR and temperature are beyond our control and can
sometimes act as inhibitors. This simplification has made it possible to reduce the complex-
ity of the model and study biomass productivity including climatic variability.

The remaining micropollutants, heavy metals, other nutrients, and organic pollutants
are considered non-limiting nutrients. The model does not include the population of bacte-
ria or the maintenance of microalgae. The energy balance [25] and the gas exchange [8,26]
between the system and its environment were also neglected. Finally, the depth of the pond
was the only geometric parameter of the system included in the model and was equal to
10 cm. This was used to calculate the mean PAR value in the culture medium.

The cell mass concentration of the microalgae in the culture medium was determined
using the material balance approach. For a batch culture model, the influent and effluent
of the materials in the medium are null, that is, it does not add nutrients to the culture
medium, and the volume is considered constant. Furthermore, assuming that all cells have
the same mass, the growth kinetics of microalgae is proportional to its specific growth rate
(µ) which depends on the availability of a limiting substrate. A proportion of microalgae
that die during the cultivation period was added to the model formulation and represented
by the specific mortality rate (µD).

dX
dt

= µ(P, N, PAR, T)·X − µD·X (4)

µ(PAR, T, P, N) = µmax·µ(P)·µ(N)· µ(PAR)·µ(T)
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where X(mg /L) is microalgae concentration, µmax, in day−1, is the maximum specific
growth rate of microalgae. To calculate the specific growth rate, these factors µ(P) and µ(N)
were estimated from the Monod model [27], µ(PAR) from modified Monod model [28,29],
and µ(T) from the so-called cardinal temperature model [14,30]. The empirical Monod
model, which is easy to calibrate and links growth with a culture parameter, is widely
used to simulate wastewater treatment using microorganisms [31]. For PAR, Monod’s
modified model involved adding a term to the denominator to account for inhibition when
the substrate (PAR) is highly above the optimal limit. The same consideration was included
in the cardinal temperature model.

Equation (5) gives the expression of the factors µ(P) and µ(N), where S represents
the concentration of phosphorus (P) or nitrogen (N). KS is a constant, expressed in mg/L,
which represents the half-saturation concentration of the limiting nutrients (P and N).

µ(S) =
S

KS + S
(5)

For Equations (6) and (7), an intermediate calculation was performed to find the mean
values for the available PAR and the medium temperature of cultivation, respectively.
Regarding the photosynthesis rate (Equation (6)), the Lambert–Beer law was applied to
obtain the average value of PAR

(
µE·m−2·s−1). This value represents the intensity of light

to which cells are exposed in culture medium and was estimated as proposed in [32,33].

µ(PAR) =
PAR

KI + PAR + PAR2

Ki

(6)

Ki and KI (in µE·m−2·s−1) are inhibition constant and saturation PAR intensity at
which the specific growth rate is half the maximum, respectively.

Figure 1 shows the experience of growing Chlorella vulgaris in the laboratory from an
open container representative of a pond. The type of wastewater selected for this study
came from a secondary wastewater treatment plant in a municipality in the Madrid region
and was therefore domestic. Air was injected into the bottom of the container to ensure
that the water remained in movement, preventing the possible eutrophication of the latter.
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The experimental conditions are established to ensure that the light received by the
culture is primarily obtained from an adjustable lamp. This calibrated lamp was connected
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to an electronic device programmed to manage the photoperiod and PAR values corre-
sponding to the TMS of each season. The temperature of the culture medium was not
controlled. However, the experiments were carried out at periods of the year that offered
ranges that were not too far from the values obtained with the TMYs.

For data acquisition, full-spectrum PAR sensors from Apogee Instruments and ap-
propriate temperature sensors were used, respectively, to measure the light intensity and
temperature inside and outside the medium. From these measurements, the average of
the extinction coefficient found in the Lambert–Beer equation was estimated by relating
the absorbance to the transmittance of light. This extinction coefficient was experimen-
tally estimated for each season. A calibrated lamp was programmed with PAR values
corresponding to the TMS for each season.

The productivity of microalgae is also affected by outdoor temperature. The remaining
factor (Equation (7)) models the growth kinetics of the microalgae as a function of the
culture temperature (T). Having an open system, this temperature is influenced by the
recorded surrounding air temperature. Furthermore, the water that makes up the culture
system is constantly in motion. The idea is to obtain the temperature of the culture
medium from that of the air using the function established in [34] that associates these two
parameters. Equation (7) also includes minimum (Tmin), maximum (Tmax), and optimum
(Topt) temperature values that are specific to the selected microalgae (Chlorella vulgaris).

µ(T) =
(T − Tmax)(T − Tmin)

2(
Topt − Tmin

)[(
Topt − Tmin

)(
T − Topt

)
−

(
Topt − Tmax

)(
Topt + Tmin − 2T

)] (7)

2.3. Simulation Process

The computational implementation of the modeling described above was prepared
using MATLAB and Simulink. This allowed us to combine textual and graphical program-
ming in the same environment to perform a multitude of parallel simulations (Figure 2) [35].
Therefore, for a given meteorological season (spring, summer, autumn, or winter) in the
Madrid region, batch production was simulated for all GMS generated during this period.
In our case, as indicated previously, a GMS corresponds to a sequence of seven consecutive
days formed by the PAR and T data. According to previous calculations [19], there were
1204 GMS for the spring season, 1204 GMS for the summer, 1190 GMS for the autumn and
1184 GMS for the winter. Therefore, the average daily concentration of microalgae was
determined in each of them. The average daily PAR and T data of these GMSs were taken
as input parameters for the microalgae production simulation. These are the external pa-
rameters involved in the growth of microalgae that characterize environmental conditions.
The simulations were run in parallel with this 7-day package workflow, considering the
other input data as initialization parameters of the process.

Figure 2 shows the block diagram model of microalgae growth (single microalgae cells,
initial process) in a wastewater container without the addition of another product: where X,
N and P represent the concentrations of microalgae, nitrogen and phosphorus, respectively.
µ and µD are the specific growth and mortality rates, respectively. The nitrogen and
phosphorus removal coefficients are given by YN and YP. T and PAR are the temperature
and photosynthetically active radiation.

The initialization of the simulation process was based on the concentration of mi-
croalgae inoculum and nutrients initially present in the wastewater sample used for the
cultivation experiment (Figure 1). To achieve this, it is necessary to know the characteristics
of the aqueous medium, a wastewater sample, and microalgae species. The type of wastew-
ater selected for this study came from a wastewater treatment plant in a municipality in the
Madrid region and was therefore domestic. Its overall nitrogen and phosphorus composi-
tions are given in Table 1. Chlorella vulgaris is the microalgae strain inoculated in the culture
medium, and its concentration is also shown in Table 1. Other specific parameters are
also given in Table 1. In addition, YS,a, which are constants for all seasons, were obtained
after adjusting the proposed model. The results of this model were compared with those
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obtained in the study presented by Eze et al. [27]. The minimum temperature corresponds
to the apparent threshold for any microalgae growth, which is approximately 8 ◦C [36].
The optimum and maximum temperatures were taken from [12]. The mortality rate was
arbitrarily chosen to be low compared to the growth rate. The same value proposed by [27]
was adopted, although it worked with a different type of microalgae. Finally, inhibition
and half-saturation coefficients were estimated to be constant throughout the simulation.
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Table 1. Parameter values to perform the simulation.

Parameter Value References

Initial total nitrogen (N) 224 mg/L This study
Initial total phosphorus (P) 16.1 mg/L This study
Microalgae inoculum 100 mg/L This study
Minimum temperature 8 ◦C

[12,36]Optimal temperature 23.3 ◦C
Maximum temperature 35 ◦C
Maximum-specific growth rate ( µmax) 0.948 day−1 [5]
Nitrogen removal coefficient YN,a 0.71 This study
Phosphorus removal coefficient YP,a 0.035 This study
Mortality rate (µD) 0.004 day−1 [27]
Inhibition constant (Ki) 2400 µE m−2s−1 [11]
Half-saturation constant for light (KI) 124.115 µE m−2s−1 [37]
Half-saturation constant for Nitrogen (KN) 31.5 mg/L

[38]Half-saturation constant for Phosphorus (KP) 10.5 mg/L

2.4. Dataset for Statistical Analysis

Having the biomass concentration for each day of the GMS that makes up a season,
the next step was to concatenate the daily production per day. Building the data set per
day allows statistical analysis by calculating the probability distribution function (PDF)
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of the biomass concentration of each data group per day (D2, D3, D4, D5, D6, or D7). For
example, the biomass concentration is put together for all days 2 (D2) of those GMSs, and
the same for days 3 (D3), etc. Day 1 (D1) was not taken as it corresponds to initialization.
The idea was to calculate the PDF of the microalgae concentration for each of these datasets,
grouped by day. The final step of the methodology consists of observing whether the
biomass concentration on a given day (D2, D3, D4, D5, D6, or D7) of the TMS selected
in [19] is, for the same day, in the bin with the largest PDF.

For a given season, the determination of the average daily biomass concentration was
carried out for all GMS generated. The model outputs for identical days (D2, D3, D4, D5, D6
or D7) were used to calculate their daily PDFs. The PDFs of biomass concentrations obtained
from all D2 of the GMS for the representative summer TMS used as input data are plotted
and discussed in Section 3.2. The same was applied to the other TMS days. Beyond showing
the range of probable results for a given day in terms of their frequency of occurrence, this
graphical representation includes the graphic concordance of the biomass concentration for
the corresponding day of the same day in the TMS. Therefore, it was possible to compare
whether this biomass concentration position belonged to the concentration bin with the
highest PDF value. For greater precision, the length of the biomass concentration bin is
reduced to 2 mg/L.

3. Results and Discussion
3.1. Seasonal Biomass Production

Microalgae growth is not only affected by solar irradiance, temperature, phosphorus,
and nitrogen but also depends on other parameters such as pH, dissolved carbon dioxide,
bacteria, etc. These parameters not mentioned in this work are each maintained at their
optimum value, which corresponds to a specific growth rate equal to unity. In summary,
the focus was exclusively on the influence of these physical parameters on the variation in
microalgal growth. Furthermore, this disregards the interactions between microorganisms
and the various components of the culture system, which are essential for model fidelity.

Figure 3 illustrates the typical meteorological sequences (TMSs) for each season,
detailing the PAR and temperature estimates for each day of the sequence.
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Figure 4. Seasonal variation in the concentration of algal biomass as a function of meteorological
parameters (typical meteorological sequence, TMS) from the northern region of Madrid (Riosequillo).
These curves were derived by applying, as input data to the model, the average daily temperature
(Tme) and PAR values of selected TMS, Figure 3 [2].

Figure 4 shows the growth curves for the four meteorological seasons of the year using
selected TMS from a site in the north of the Madrid region (Riosequillo). The result in
Figure 4 reveals the difference in the production of algal biomass between the four seasons
of the year, with a higher concentration in summer. This may be explained by the fact that
the growth of these microorganisms is intrinsically dependent on the intensity of these two
physical parameters. Figure 4 also shows that biomass production is higher in the autumn
than in the spring. This difference in production between these two periods of the year
appears to be mainly due to the temperature, which is higher in the autumn (Figure 3). A
comparison of the PAR over these two periods shows that it is higher in spring. In spring
and winter, the microalgae concentration varies very little, even decreasing to 98.5 mg/L on
the seventh day in the lowest temperature period (winter). However, in Figure 4, it appears
stationary for these two seasons due to the relatively large variation obtained in summer.
Furthermore, a general analysis of the curves in all seasonal figures (Figures 5 and A1–A3)
also shows the biomass concentrations that are the most likely to be obtained throughout
the day of cultivation.

The approach of this case study produced statistically acceptable results. By comparing
the results with those obtained by [27], although the latter worked with a different species
of algae, the order of magnitude of the final concentration of microalgae produced for the
summer season was 400 mg/L. Furthermore, the study carried out by [39] on Chlorella
vulgaris growth under four culture conditions with different physicochemical properties
gave approximate results in the same range. However, these results were obtained over a
period ranging from 8 to 14 days.

3.2. Comparative Analysis of Algae Production

In this section, the PDF of the microalgal productivity for each day that forms each
GMS for the summer season is represented for the study location. The spring, autumn, and
winter figures are in Appendix A. In Figure 5 (and the figures included in Appendix A),
the asterisk symbol represents the biomass concentration obtained for each day of TMS
and was placed in the middle of the corresponding biomass concentration bin.
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Figure 5. Probability distribution function (PDF) of the sequence of day-by-day biomass concentra-
tions using PAR and temperature data from each GMS input for the model of the summer season
at Riosequillo (Madrid). (a–f) Represent the PDF of the biomass concentration of each dataset from
days D2, D3, D4, D5, D6, and D7, respectively.
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In summer, the biomass concentration estimates by TMS coincide with the most
probable values obtained with the proposed methodology, as Figure 5 shows. The same
was observed with data from the spring season, except for the case of days D2 and D7,
Figure A1. The position of the biomass concentration, for D5 in the summer (Figure 5) and
for D2 and D7 in the spring TMS (Figure A1), is in the concentration bin with a relatively
high probability and is directly preceded or followed by the bin with the highest PDF value.
The methodology seems to confirm the representativeness of the TMS for the summer and
spring seasons in the location studied. In fact, in these two seasons, almost all of the days
of TMS already selected are in one of the ranges of biomass concentration that have the
highest PDFs.

However, the PDF is more distributed for the autumn season (see Figure A2). In this
case, the biomass concentration position of each of the TMS days is not within the bin
with the highest PDFs or within the bins near the latter. In Figure A3, in addition to day
D2, the biomass concentration for each of the other days of TMS representing winter is
far from being among those with the highest probability of distribution, despite the low
dispersion of the results. Furthermore, the concentration hardly increases during this period.
Consequently, most of the concentrations with the highest probability of distribution are
below the initial biomass concentration. The non-growth of the biomass concentration can
be explained by the fact that the PAR and temperature values are relatively low during
these periods of the year and are unfavorable to the proliferation of these microorganisms.
For example, according to Figure 3, average daily temperatures are below the minimum
required for the growth of Chlorella vulgaris.

The best results, in terms of productivity, were obtained for the summer and spring. The
explanation may lie in the fact that certain values of the model parameter were taken from
references that worked in conditions with the presence of light and an adequate temperature
almost similar to those of these two periods of the year. As Figures 2 and 3 show, the other
two seasons, autumn and winter, offer unsuitable conditions for microalgae cultivation.

Figure 6 shows four box plots for the different seasons, grouping the daily average
biomass concentrations obtained from the simulation by day. This allows one to evaluate
the ranges within which daily biomass production is recorded. It can be observed that
the results are almost similar in spring and autumn with more spread boxes between the
25th and 75th percentiles for the latter. However, daily production is less dispersed during
summer and winter, clearly showing optimal performance during summer and negligible
production levels during winter.
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4. Conclusions

In this article, we present a simulation and assessment methodology for plant growth
and productivity that can be adapted to all types of crops. The application of this method-
ology using long-term meteorological data sets makes it possible to identify the most
probable production scenarios, which is of great help in decision-making processes (project
feasibility analysis, site selection, planning, and management, etc.). The results obtained
for our case study confirm the representativeness of typical meteorological sequences, very
close to the 50th percentile, for use with more complex simulation programs.
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Figure A1. Probability distribution function (PDF) of the sequence of day-by-day biomass concen-
trations using as model input PAR and temperature data from each GMS of the spring season at
Riosequillo (Madrid). (a–f) represent the PDF of the biomass concentration of each dataset from days
D2, D3, D4, D5, D6, and D7, respectively.
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Figure A2. Probability distribution function (PDF) of the sequence of day-by-day biomass concen-
trations using as model input PAR and temperature data from each GMS of the autumn season at
Riosequillo (Madrid). (a–f) represent the PDF of the biomass concentration of each dataset from days
D2, D3, D4, D5, D6, and D7, respectively.
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Figure A3. Probability distribution function (PDF) of the sequence of day-by-day biomass concen-
trations using as model input PAR and temperature data from each GMS of the winter season at
Riosequillo (Madrid). (a–f) Represent the PDF of the biomass concentration of each dataset from days
D2, D3, D4, D5, D6, and D7, respectively.
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