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Abstract: The seismic assessment of historical masonry bell towers is of significant interest, particu-
larly in Italy, due to their widespread presence and inherent vulnerability given by their slenderness.
According to technical codes and standard practice, the seismic evaluation of masonry bell towers can
be conducted using a range of methodologies that vary in their level of detail. This paper presents
a case study of a historical masonry bell tower located in the Caserta Province (Italy). Extensive
investigative efforts were undertaken to determine the tower’s key geometric and structural charac-
teristics, as well as to document ongoing damage phenomena. The dynamic behavior of the tower
was assessed through ambient vibration testing, which enabled the identification of the principal
modal shapes and corresponding frequencies, also highlighting peculiar dynamical characteristics
caused by the damage conditions. Subsequently, the seismic assessment was carried out using both
Level 1 (simplified mechanical) and Level 2 (kinematic limit analysis) methodologies. This assessment
helped identify the most probable collapse mechanisms and laid the foundation for employing more
advanced methodologies to design necessary retrofitting interventions. The study emphasizes the
importance of Level 2 analyses for structures where out-of-plane failure mechanisms are likely due to
pre-existing cracking. Both approaches provide less-than-unity acceleration factors, ranging from
0.45 for Level 1 (assuming non-ductile behavior) to 0.59 for Level 2, in this case specifically using the
information available about existing cracking pattern.

Keywords: ambient vibration testing; limit analysis; kinematic approach; material testing; geometrical
survey; cultural heritage

1. Introduction

Italy, renowned for its rich cultural heritage, is home to an extraordinary number of
historical bell towers, built over the past centuries and predominantly constructed from
masonry, and often so important as to shape the country’s identity and landscape.

The historical importance of these bell towers cannot be overstated. Many of them date
back to medieval times, representing the architectural style and construction techniques of
their respective eras. They were often built to signify the presence of a church or a cathedral,
serving both religious and communal purposes. Over the centuries, these bell towers have
witnessed several historical events and have become integral parts of their communities.
However, their historical and cultural significance is juxtaposed with their structural and
seismic vulnerabilities, particularly during seismic events.

Past seismic events provide valuable insights into the behavior of masonry bell towers
under earthquake loading. Reconnaissance performed on masonry churches in the after-
math of the last Italian earthquakes (e.g., L’Aquila 2009, Emilia-Romagna 2012 and Central
Italy 2016–2017) testified that bell towers may experience severe damage during seismic
events [1,2].

Appl. Sci. 2024, 14, 10604. https://doi.org/10.3390/app142210604 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app142210604
https://doi.org/10.3390/app142210604
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1638-8017
https://orcid.org/0000-0002-1476-5763
https://orcid.org/0000-0001-7413-6769
https://doi.org/10.3390/app142210604
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app142210604?type=check_update&version=1


Appl. Sci. 2024, 14, 10604 2 of 21

Historical records and modern case studies of seismic damage to these structures
reveal common patterns of failure and highlight the most vulnerable aspects of their design
and construction. For this reason, similarly to churches [3], and as suggested in Ministe-
rial Italian Guidelines for Cultural Heritage [4], the seismic assessment of masonry bell
towers can be performed at different evaluation Levels (ELs), from simplified mechanical
approaches (EL1) to more accurate and sophisticated analyses (EL2, EL3).

In particular, according to EL1 [5–7], the tower is represented as a variable-cross-
section vertical beam subjected to lateral forces simulating seismic forces. A simplified yet
realistic representation of the plan view at each floor is required, along with the definition
of a very limited number of homogeneous material properties (compression strength).
EL2 [5,7–10] needs an accurate geometric representation of the bell tower and the vulnera-
bility estimate is given by the results of analyses at collapse, which are performed for the
most representative mechanisms. Finally, EL3 [5,7,11–15] is based on accurate numerical
modeling of the structure, requiring detailed surveying, material characterization and geo-
metrical representation. Although it is not included in the Italian Guidelines, the existence
of a lower-detailed level EL0 should be also mentioned [16–18]. Such methodologies, in
which the bell tower is identified by very few typological parameters, allow for defining a
vulnerability ranking rather than an estimate of safety.

It is clear that the evaluation level selected for a specific case primarily depends
on two key factors: the available information regarding the structure and the objective
of the analysis (with global interventions requiring an EL3 assessment). However, the
reliability of these methodologies should also be linked to the actual behavior of the
structure under investigation, including any degradation or cracking phenomena. The use
of more detailed levels of assessment is not always the optimal solution, particularly when
significant uncertainties are associated with mechanical properties and strength parameters
in numerical models.

In the present study, a case study of the bell tower of St. Lucia Church in Cellole
(Caserta Province) is addressed. Based on wide preliminary investigation activity, including
a geometrical survey, tests on materials and dynamical characterization, the main structural
features of the tower were identified. Given the presence of a significant cracking pattern,
the assessment of the tower was performed by adopting EL1 and EL2 methodologies for
in-plane and out-of-plane collapse modes, respectively. The final results are provided in
terms of acceleration factors, and the paper as a whole aims at showing the complex and
multifaceted methodology involved in the structural analysis and vulnerability assessment
of material Cultural Heritage.

2. The Case Study: The Bell Tower of the St. Lucia Church in Cellole (CE)
2.1. Geometrical Survey

The structure under investigation (Figure 1) is the bell tower of the Church of St. Lucia
in Cellole (Caserta Province, Italy). The tower is adjacent to the homonymous church, with
which shares the ground floor rooms.

A complete laser-scanner 3d survey of the church and the tower was performed in
order to define the main geometrical characteristics. The instrument was Leica BLK360
Imaging Laser Scanner (Wetzlar, Germany), while the raw data were then processed by
Cyclone Registrer 360 software. The whole complex including the church and the bell
tower was shot from 60 points. In Figure 2 the global view of the 3d laser scanner survey
is shown.

The tower has a rectangular base and can be geometrically divided into five sectors.
The first sector extends vertically to approximately 5.30 m, with external dimensions of
4.75 × 3.80 m. The second and third sectors have the same external dimensions as the first
one, but with slightly chamfered corners on the southern side. Both sectors have a vertical
extension of about 3.50 m, while the fourth sector (constituting the belfry of the tower)
is 2.80 m high, with a smaller in-plane dimension of 3 m. The final sector is a reduced
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extension of the tower, approximately 2.40 m high, probably added at a later time, and also
presents an external bell.

In plan, the tower can be divided into two parts along its major dimension throughout
its height. Specifically, it features a transversal wall that defines two sections: a cave-like
section on the southern side and a complex system of flying buttresses that support an
internal staircase, allowing access from the ground level to the top sector.

The complete geometrical survey of the tower, including the plan views at the different
sectors and two sections, is provided in Figure 3.
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2.2. Structural Features, Material Characteristics and State of Conservation

To define the main structural features of the tower and to mechanically characterize
the existing materials, a series of non-destructive and minimally destructive tests were
conducted. The material used for the construction of the tower is gray tuff masonry, a
soft volcanic stone typical of this geographical area. Its compressive strength is generally
quite low compared to other stones and materials (e.g., clay bricks) used across the Italian
peninsula for masonry structures. This condition was confirmed by sclerometer tests
performed on the masonry units, which returned an average compressive strength of
0.7 MPa.

The quality of mortar, particularly its compressive strength, was also assessed through
non-invasive tests (i.e., penetrometer). The instrument used had a lower threshold of ad-
missible strength range of 0.4 MPa. All tests returned strength values below this threshold,
indicating very poor mortar quality.

The bad quality of masonry was confirmed by compressive tests on tuff samples and
double flat jack tests, which returned compressive strengths of 0.86 MPa and 0.65 MPa,
respectively.

Beyond the mechanical characteristics of the existing material, the tower is in a poor
state of conservation, with visible signs of degradation and cracking. Specifically, the visual
inspection revealed that many of the squared gray tuff blocks showed signs of detachment,
especially around the openings. In the bell chamber, many blocks appeared displaced,
disconnected and infested with weeds due to the disrepair affecting the structure. The
natural deterioration of the masonry, plaster and roof, combined with lack of maintenance,
has resulted in a structure with serious conservation and stability issues.

Furthermore, significant vertical cracking was observed on the east and west façades,
affecting the external walls of the second, third and fourth levels. The presence of cracks
on the west façade was clearly confirmed through thermographic inspections conducted
on-site from the ground level and with the support of a drone (Figure 4). On the other
hand, the situation was even more severe on the opposite wall (east façade), where the
cracks were visible to the naked eye and further confirmed by thermal imaging (Figure 5).
The presence of these vertical cracks may be connected to the configuration of the last
sector, whose construction clearly took place in a latter phase compared to the remaining
bell tower. The abrupt change in the plan section may be responsible for the non-uniform
distribution of vertical stresses on the masonry below. Furthermore, as shown in Figure 3,
the tower is configured as the juxtaposition of two hollow sections, whose connection is far
from perfect. This, together with the possible presence of settlements, out-of-plumb and
past horizontal forces, may explain the detachment of the south façade from the north part.
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3. Dynamical Identification

An Ambient Vibration Testing program was carried out on the tower to investigate
the dynamical behavior under environmental sources. This approach is largely used to
investigate the dynamical behavior of masonry bell towers [19,20]. The experimental setup
consisted of 4 triaxial and 2 biaxial force-balanced accelerometers, with 2.5 V/g sensitivity
and bandwidth 0–200 Hz, range ±2g, damping 0.707. The triaxial sensors were kept in
the same position in all stages of the test: two sensors (T2, T3) were placed at 8.75 m
height and the remaining two (T1 and T4) were placed at 12.25 m height (Figure 6). The
biaxial sensors (B5, B6) were alternately placed at 5.25 m (setup I) and 8.75 m (setup II),
and 15.00 and 17.80 m, respectively (setup III). This multi-setup testing program allowed
for the estimation of the modal shapes along the height of the tower, according to the
procedure shown in the following and implemented with in-house software developed at
the University of Campania “Luigi Vanvitelli”.

Each setup acquisition lasted 900 s; the first setup was taken at 200 Hz sampling
frequency, while setups II and III were applied at 100 Hz to reduce the amount of data.
All signals were then corrected to zero average and decimation was applied up to a
Nyquist frequency equal to 25 Hz (double decimation for setup I, single decimation for
setup II and III).

The Fast Fourier Transforms (FFTs) of the signals (Figure 7) consistently show two
peaks in two orthogonal directions at about 2.6 Hz and 3.1 Hz. Another lower peak is also
recognized for some signals at about 5.9 Hz, while strong power density is also observed for
accelerometer B6 in setup III for many frequencies between 6 and 12 Hz. Since this sensor
was placed on the top of a wall not significantly constrained out of its plane (Figure 6), it
seems clear that these frequencies are related to local modes of the top floor walls.

Frequencies and mode shapes were obtained by means of Frequency Domain Decom-
position (FDD) [21], applying the procedure proposed by Amador and Brincker [22] to
merge multiple setups having reference and roving sensors. In Figure 8, the first singular
value (SVD 1) of the merged signals is plotted against frequencies. Three clear peaks are
recognizable at 2.59 Hz, 3.08 Hz and 4.15 Hz. Some help in recognizing real modes when
using FDD is offered by the analysis of the Modal Complexity Factor (MCF) for a given
mode shape ψr, defined as in [23]

MCF = 1 −
(
Sxx − Syy

)2
+ 4S2

xy(
Sxx + Syy

)2 (1)
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where

Sxx = Re{ψr}T Re{ψr}, Syy = Im{ψr}T Im{ψr}, Sxy = Re{ψr}T Im{ψr} (2)

The MCF is a measure of how complex a mode is, and ranges from 0 (real mode) to
1 (imaginary mode). Since at each frequency f of the SVD plot it is possible to estimate a
corresponding modal shape ψr( f ), MCF(ψr) can be seen as a function of f . In Figure 8, the
value 1-MCF(f ) is plotted at each frequency level: it is possible to see that the maximum
values of 1-MCF, i.e., real modes, are observed corresponding to the SVD peaks. Real
modes are also observed at two additional frequencies equal to 5.81 Hz and 6.15 Hz where
PSD peaks are not evident. Thanks to this approach, these additional modal shapes and
frequencies can be identified as modes of the structure.

The five identified modes are depicted in Figure 9. While the first two modes are
translational modes, mainly along the two principal directions, with little effect of the
interaction with the church, the fourth mode rather clearly appears as a torsional mode.
Interestingly, similarities between modes 2 and 3 (translational along x), and 4 and 5 (tor-
sional), respectively, seem to emerge from the analysis of the modal shapes and associated
Modal Assurance Criterion (MAC) value (Figure 10). The presence of two modes of the
same type at different frequencies, according to the authors, can only be explained by the
alteration in the dynamical behavior generated by the physical discontinuity represented
by the vertical crack observed in the two parallel walls (Figures 4 and 5).
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4. Seismic Assessment
4.1. Methodology

The observations collected during the survey and testing phases have direct conse-
quences for the most suitable analysis approaches to use in the safety assessment. Firstly,
the very low compressive strength detected through experimental testing directly leads
to EL1 approach, where compression strength is the only significant material property.
In addition, the significant cracking pattern observed in the tower makes it paramount
to investigate the influence of local mechanisms and out-of-plane collapse modes on the
safety of the bell tower, i.e., to use EL2 methodologies. Conversely, the use of sophisti-
cated modeling approaches such as Finite Element Modeling (EL3) does not appear fully
justified for two main reasons. On one hand, previous research [24] has clearly shown
that the use of detailed material models that include softening and damage evolution
may provide unreliable results if not coupled with extensive material characterization
estimating less understood parameters, e.g., tensile strength, fracture energy, dilatancy
parameters, etc., which is very difficult to perform in situ. On the other hand, the presence
of pre-existing damage in the structure poses extraordinary challenges, especially in the
context of macroscale modeling of masonry structures, and no established methods are
available in the literature yet to determine realistically the effect of this damage on the final
capacity. For all these reasons, lower detail levels (i.e., EL1 and EL2) were considered more
suitable in this work to estimate the seismic vulnerability of the case under study.

In particular, according to EL1 approach, the tower is considered as a cantilever,
variable-cross-section member subjected to its own weight, as well as a system of horizontal
forces generated by the earthquake, assumed proportional to mass and height (linear
acceleration profile). In addition to this code-compliant force system, a second one with
accelerations proportional to the experimental mode shapes has been considered in this
work. The collapse is due to combined compression and bending in a generic section, which
provoke masonry crushing in the compressed area, as a result of partialization caused by
the lack of tensile strength.

In the EL2 methodology, conversely, the seismic safety of the structure is evaluated by
determining the ground acceleration that transforms the entire structure, or its significant
individual parts (i.e., macro-elements), into a mechanism. This assessment can be conducted
through linear kinematic analysis. The application of this method requires the analysis of
the local mechanisms considered significant for the structure. These can be hypothesized
based on the knowledge of the seismic behavior of and damage to similar structures, as
observed in previous earthquakes or identified by the presence of specific crack patterns,
even if non-seismic in nature. Additionally, in studying the local mechanisms, other
aspects must also be considered: the quality of the connection between the masonry
walls, the texture and arrangement of the masonry, the presence and efficiency of tie
rods, the interactions with other structural elements or adjacent buildings, and phases of
transformation that may be identifiable through construction details (e.g., heterogeneity of
the masonry, juxtaposition of different types of walls, etc.).

4.2. EL1 Assessment

According to EL1 methodology, the structural check against combined compression
and bending in a generic section is performed under the following hypotheses:

• conservation of plane sections;
• zero tensile strength of masonry;
• distribution of compressive forces according to a stress-block model.

The structural check is carried out along the two principal directions of inertia of
the section, in both directions, and at different heights, considering the roof only as a
superimposed load. The design moment can be evaluated by considering a system of
forces distributed along the height of the structure, assuming either a linear or a mode-
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proportional acceleration profile. The force to be applied at the centroid of each block is
given by

Fi =
Wi · ξi

∑n
k=1 Wk · ξk

Fh (3)

where the following apply:

• Fh is the total shear base determined according to Equation (4);
• Wi and Wk are the weights of sectors i and k, respectively;
• ξi = zi|φ̂i is either zi the height of the centroid of sector i with respect to the foun-

dations (linear acceleration profile) or φ̂i the normalized modal displacements at the
centroid along the considered principal direction (mode-proportional acceleration
profile).

Fh =
0.85·Se(T1)·S·W

q·g (4)

In Equation (4), the following apply:

• Se(T1) is the ordinate of the elastic response spectrum, a function of the first period T1
of the structure in the considered direction;

• S is the amplification factor due to soil and topographic conditions;
• W is the total weight of the tower;
• q is the behavior factor;
• g is the gravity acceleration.

The resultant of the seismic forces Fhi acting on the i-th section is given by Equation (5),
while the relative height zFi at which Fhi is applied is calculated as per Equation (6).

Fhi =
∑n

k=i Wk ξk

∑n
k=1 Wk ξk

Fh (5)

zFi =
∑n

k=i Wk ξk zk

∑n
k=i Wk ξk

− z∗i (6)

where in the above equations zi* is the height of the i-th verification section relative to
the base.

By imposing the equality between the resisting bending moment Mu,i and the design
bending moment Med,i:

Mu,i = FhizFi (7)

it is possible to derive the value of the ordinate of the elastic response spectrum correspond-
ing to the achievement of the Ultimate Limit State (ULS) in the i-th section (taking into
account the confidence factor FC):

Se,ULS,i(T1) =
q·g·Mu,i∑n

k=1 Wk ξk

0.85W
(
∑n

k=i Wk ξk zk − z∗i ∑n
k=i Wk ξk

)
FC

(8)

Based on this value, the corresponding Peak Ground Acceleration (PGA) aULS is
evaluated by considering the parameters of the design spectrum at the ULS and the
fundamental period of the structure.

In cases of hollow rectangular sections, such as the ones typical of the tower under
consideration, the ultimate moment of resistance at the base of the i-th sector can be
calculated as per Equation (9):

Mu,i =
σ0i Ai

2

(
bi −

σ0i Ai
0.85ai fd

)
(9)

where the following apply:
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• ai is the length of the side perpendicular to the direction of the considered seismic
action for the i-th section, excluding any openings;

• bi is the length of the side parallel to the direction of the considered seismic action for
the section under analysis;

• Ai is the total area of the section under analysis, excluding any openings;
• σ0i is the average normal stress in the section under analysis (W/Ai, where W is the

weight of the structure above the section under analysis);
• fd is the design compressive strength of the masonry.

Next, it is possible to calculate the acceleration factor fa,ULS as the ratio between the
collapse acceleration and the maximum expected peak ground acceleration at the site
(ag,ULS):

fa,ULS =
aULS

ag,ULS
(10)

Given the exposure characteristics of the tower (nominal life of 50 years and use class
III), the return period of the seismic action at the Ultimate Limit State is assumed to be
712 years. The elastic response spectrum (ULS) adopted for the EL1 structural check is
shown in Figure 11 (soil type C, flat soil), and it is characterized by ag,ULS = 0.103 g.
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The fundamental period (T1) was determined according to the AVT results. In this
sense, it should be remarked that both first and second vibration periods (0.39 s and 0.32 s,
respectively), which correspond to translational modes in the two principal directions of
the tower, are included in the constant branch of the design response spectrum.

In the presence of limited tests on materials, the Italian code [25] suggests a procedure
that, starting from some typology-based ranges for mechanical properties, updates their
median values accounting for the results of the tests. Applying this methodology to the
type of masonry under consideration, an average compressive strength fm = 1.23 MPa
was obtained. Nonetheless, given that the tests consistently returned lower compressive
strength values, in the next calculation, fm = 0.7 MPa was assumed, based on the results
obtained from the sclerometer, double flat jack test and compressive test on masonry sample.
This value was then reduced due to the partial safety factor for masonry for seismic actions
(γM = 2.0) and a confidence factor FC = 1.20, with the latter defined according to the
performed investigation activity. Thus, fd = 0.29 MPa was adopted.

As specified in equation (3), both a linear displacement and mode-proportional force
distributions along the height of the bell tower were considered. The mode-proportional
distributions were defined according to the AVT results. In particular, the profiles of
normalized modal displacements (φ̂ =φi/φmax) related to the 1st (y-direction) and 2nd
(x-direction) vibrational modes shown in Figure 12 were adopted.
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For the EL1 analysis, the tower was thus divided into sectors, whose base sections
were considered for the structural checks, according to the scheme proposed in Figure 13.
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The seismic weight of each sector was estimated by assuming a density of the masonry
γ = 1600 kg/m3, as returned by laboratory tests. The summary of the weight estimation is
reported in Table 1.

Table 1. Seismic weight estimation.

Sector Volume
[m3]

zk
(m)

γ

(kg/m3)
Wk

(kN)

1 43.12 2.63 1600 620.9
2 38.85 7.00 1600 559.4
3 33.87 10.46 1600 487.7
4 20.56 13.61 1600 296.1
5 10.21 16.20 1600 147.0
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Based on the total weight of the tower (W = 2111.18 kN), the base shear Fh was
determined by assuming S = 1.5 (due to the soil type and topographic conditions) and a
behavior factor q = 2.8, according to the minimum value of the range proposed in [4]. The
calculation returned Fh = 269 kN.

Thus, the seismic forces to be applied at the centroid of each tower sector were
determined according to equation (3). The results are shown in Tables 2 and 3 for the linear
displacement and mode-proportional acceleration profiles, respectively.

Table 2. Estimation of seismic forces (linear acceleration profile).

Sector zk
(m)

Wk
(kN)

zk·Wk/∑(zk·Wk)
(-)

Fi
(kN)

5 16.20 163.36 0.140 37.6
4 13.61 328.96 0.236 63.6
3 10.46 669.92 0.299 80.6
2 7.00 653.60 0.230 61.8
1 2.63 935.68 0.096 25.8

Table 3. Estimation of seismic forces (mode-proportional acceleration profiles).

Sector φ̂i (1st
Mode-y)

φ̂i (2nd
Mode-x)

Wk
[kN]

φ̂i·Wi/∑(φ̂k·Wk)
(1st Mode-y)

φ̂i·Wi/∑(φ̂k·Wk)
(2nd Mode-x)

Fi,y
[kN]

Fi,x
[kN]

5 0.77 0.69 163.36 0.204 0.198 55.0 53.3
4 0.59 0.53 328.96 0.315 0.307 84.9 82.7
3 0.36 0.31 669.92 0.319 0.300 85.9 80.9
2 0.11 0.13 653.60 0.115 0.138 31.0 37.3
1 0.04 0.05 935.68 0.047 0.057 12.5 15.3

By applying the procedure above described, it was possible to estimate the acting
bending moments at the base of each sector of the tower and compare them with the bend-
ing capacities (determined as the minimum among both positive and negative along the
two directions). The results in terms of minimum acceleration factors f a,ULS for each sector
obtained with a linear acceleration profile are summarized in Table 4, while in Figure 14 the
comparison among acting and resisting bending moments for the two principal directions
is graphically shown. Similarly, the results obtained by assuming mode-proportional accel-
eration profiles are summarized in Tables 5 and 6 for 1st and 2nd modes, respectively—and
shown in Figure 15.
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Table 4. Structural check of relevant sections according to EL1 procedure (linear acceleration profile).

Section zi*
(m)

Med.i
(kNm)

Mu.i
(kNm)

Se.ULS,i
(m/s2)

aULS,i
(m/s2)

fa.ULS
(-)

0 0.00 2818.7 2639.9 3.86 0.95 0.94
1 5.26 1469.3 1911.3 5.36 1.31 1.30
2 8.77 723.6 1413.1 8.05 1.97 1.95
3 12.25 235.1 302.8 5.31 1.30 1.29
4 15.00 45.1 184.4 16.85 4.13 4.09

Table 5. Structural check of relevant sections according to EL1 procedure (1st mode-proportional).

Section Medy.i [kNm] Muy.i [kNm] Se.ULS,i
[m/s2] aULS,i [m/s2]

fa.ULS
[-]

0 3196.15 4002.7 5.16 1.27 1.25
1 1811.95 1911.3 4.35 1.07 1.05
2 965.13 1413.1 6.04 1.48 1.46
3 332.85 302.8 3.75 0.92 0.91
4 66.03 211.7 13.23 3.24 3.21

Table 6. Structural check of relevant sections according to EL1 procedure (2nd mode-proportional).

Section Medx.i [kNm] Mux.i [kNm] Se.ULS,i
[m/s2] aULS,i [m/s2]

fa.ULS
[-]

0 3135.84 2639.9 3.47 0.85 0.84
1 1758.90 2396.6 5.62 1.38 1.36
2 932.92 1771.9 7.83 1.92 1.90
3 323.05 833.6 10.64 2.61 2.58
4 63.99 184.4 11.89 2.91 2.88
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According to EL1 methodology, which allows for performing a simplified structural
check neglecting out-of-plane and shear failures, the bell tower under investigation presents
a safety factor of less than unity for design seismic loads at the ULS, and thus cannot be
considered safe. In particular, by assuming a linear displacement and 2nd mode propor-
tional load distributions (along x-direction), the base section returned a safety index in
terms of acceleration equal to 0.94 and 0.84, respectively. On the other hand, when a 1st
mode proportional load pattern was considered, the section at the base of the 3rd sector
was the sole returning a negative outcome of the structural checks. This can be related to
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the significant openings the tower presents at this level. In the other cases, the analyzed sec-
tions were verified with a safety index in terms of acceleration ranging from 1.05 (section 1,
1st mode proportional) and 4.09 (section 4, linear distribution).

It must be pointed out that the above calculations were performed by rigorously
following the prescriptions reported in [4]. With reference to the behavior factor, past
studies demonstrated that the assumption of q between 2.8 (for towers with abrupt changes
in stiffness along the height or for bounded towers) to 3.6 (for structures that are regular
in elevation), which is derived from the extrapolation of values for palaces and buildings,
is possibly overestimated due to the lack of structural redundancy of the bell tower static
scheme [11,12,16]. Moreover, the behavior factor is intended as a synthetic index about the
capacity of a structure to dissipate energy due to ductile behavior, and it should also be
related to the actual stress rate of the material under permanent load conditions. Based
on this, and given the very poor quality of the masonry at hand, the calculations were
performed again by considering non-dissipative behavior of the tower (q = 1.5). This
led to a reduction in the acceleration factors fa,ULS reported in Tables 4–6 by a coefficient
of 1.87 (i.e., 2.8/1.5), which, thus, under this assumption, ranges between 0.45 (section
1, 2nd mode-proportional profile) and 2.19 (section 4, linear profile), with most of the
relevant sections having an unsatisfactory safety check. The new comparison among acting
and resisting bending moments for the two principal directions is graphically shown in
Figures 16 and 17, for linear and mode-proportional acceleration profiles, respectively.
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4.3. EL2 Assessment

In order to estimate the load multiplier α0 provoking the activation of the local damage
mechanism according to the EL2 methodology, the following forces acting on the rigid
blocks of the kinematic chain must be considered:

• the self-weight of the blocks applied at their centroid and other carried vertical loads
(self-weight and superimposed loads from floors and roofing, and other masonry
elements not considered in the structural model);

• horizontal forces proportional to the carried vertical loads, if these are not effectively
transferred to other parts of the building;

• any external forces (e.g., those transmitted by tie roads);
• any internal forces (e.g., actions related to the interlocking between masonry blocks).

Given a virtual rotation to the generic k block, based on the geometry of the structure,
the displacements related to each considered load are calculated. Thus, by applying the
Principle of Virtual Works, the value of α0 can be calculated according to Equation (11):

α0

(
n

∑
i=1

Pi · δx,i +
n+m

∑
j=n+1

Pj · δx,j

)
−

n

∑
i=1

Pi · δy,i +
o

∑
k=1

Fk · δk = L f i (11)

where the following apply:

• n is the number of all weight forces Pi applied at the centroid of the different blocks of
the kinematic chain;

• m is the number of weight forces Pj not directly acting on the blocks, whose masses
generate horizontal forces on the elements of the kinematic chain due to the seismic
action, as they are not effectively transferred to other parts of the building;

• o is the number of external forces Fk, not associated with masses, applied to the various
blocks;

• δx,i (resp. δy,i) is the virtual horizontal (resp. vertical) displacement of the point of
application of the i-th weight Pi, assuming the positive direction as the seismic action
activating the mechanism acts (resp. upward);

• δk is the virtual displacement of the point where the h-th external force is applied
parallel to and with the same sign as the force;

• Lfi is the work of the internal forces.

To perform the safety checks, the horizontal multiplier α0 activating the mechanism
is transformed into spectral acceleration a0* according to Equation (12), in order to have
consistency with the demand measure.

a∗0 =
α0·g
e∗Fc

(12)

In Equation (12), e* is the portion of the participating mass in the considered mecha-
nism, which is estimated according to Equation (13).

e∗ =

(
∑n+m

i=1 Pi · δx,i
)2

∑n+m
i=1 Pi·∑n+m

i=1

(
Pi · δ2

x,i

) (13)

If the considered collapse mechanism includes an isolated element or a portion of the
construction supported on the ground, the safety check (ULS) is fulfilled if the spectral
acceleration a0* satisfies the following condition:

q·a∗0 ≥ ag,ULS · S (14)

where S is the amplification due to the soil conditions (1.5 for the case under consideration)
and the behavior factor is assumed as q = 2.0 [25].
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Conversely, if the local mechanism affects a portion of the building located at a certain
height, it is necessary to account for amplifying effects according to Equation (15):

q·a∗0 ≥ Se(T1) · ψ(Z) · γ (15)

where the following apply:

• ψ(Z) is the first mode of vibration in the considered direction, normalized to one at the
top of the building (in the absence of more accurate assessments, ψ(Z) = Z/H, with H
the height of the structure relative to the foundation);

• Z is the height, relative to the foundation of the building, of the centroid of the
boundary lines between the blocks affected by the mechanism and the rest of the
structure;

• γ is the corresponding modal participation factor, equal to 3N/(2N + 1).

The described procedure was adopted by considering four collapse mechanisms,
defined according to typical failure modes of masonry towers and the observed cracking
phenomena. In particular, the following were considered:

1. overturning of the portion of sector 4 due to the presence of vertical cracks (Figure 18a);
2. overturning of the portion of sectors 3 and 4 due to the presence of vertical cracks

(Figure 18b);
3. overturning of the last sector of the tower characterized by different material features

(Figure 18c);
4. overturning of sectors 4 and 5 due to the presence of vertical cracks (Figure 18d).
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Figure 18. The considered collapse mechanisms for the EL2 assessment: (a) overturning of part of
sector 4, (b) overturning of part of sectors 3 and 4, (c) overturning of sector 5, (d) overturning of
sectors 4 and 5.

Again, the structural checks were performed by providing the acceleration factor,
fa,ULS defined as per Equation (10). The EL2 assessment results are summarized in Table 7.
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Table 7. Structural check of collapse mechanisms relevant to EL2 procedure.

Mechanism Se(T1)ψ(Z)γ/q
(m/s2)

a0*
(m/s2)

fa,ULS
(-)

1 1.94 1.15 0.59
2 1.39 1.96 1.41
3 2.37 11.92 5.02
4 1.94 4.00 2.06

The results show that the minimum value of the safety index in terms of acceleration
is 0.59. This minimum safety index value is associated with the collapse mechanism 1 of
the masonry section in sector 4, which, in its current state (characterized by cracks where it
connects with the remaining part of the masonry in the sector), behaves like a monolithic
wall. The other mechanisms considered returned positive outcomes, with safety indexes in
the range of 1.41 (mechanism 2) to about 5 (mechanism 3).

5. Conclusions

In this paper, the safety vulnerability assessment of a historical masonry bell tower
is described. In a first phase, a detailed survey was carried out by means of internal and
external laser-scanning, thermography and visual inspection. Subsequently, materials
were characterized through non- and semi-destructive testing, including sclerometer and
penetrometer tests, single and double flat-jacks and tests on stone cores. The outcome of
this phase was the picture of a structure made of low-quality materials and characterized
by extensive cracking particularly vertically on the external walls.

To characterize the global dynamic behavior, AVTs were performed. The results,
post-processed using Frequency Domain Decomposition enhanced by the examination of
the Modal Complexity Factor, indicated fundamental frequencies ranging in the constant
branch of the design spectrum, and, more interestingly, the presence of similar modes
associated with well separated frequencies. This was explained as a result of the physical
separation of the structure due to the presence of the vertical cracks, thus indicating a
significant effect of the damage state on the dynamic behavior.

Motivated by these results, the final vulnerability assessment was carried out by
means of EL1 and EL2 methodologies. Both approaches provided safety factors less than
unity, thus indicating the need for seismic retrofitting. In particular, in the case of the EL1
approach the bottom section failure was estimated at a PGA less than that corresponding to
the design spectrum at the Ultimate Limit State, as well as considering, in the authors’ view,
the rather optimistic behavior factor q = 2.8. In the case of EL2, a mechanism triggered by
the observed vertical cracks provided activation ground acceleration equal to less than 60%
of the design PGA at the ULS.

This paper shows the information that can be obtained from documental research
survey and experimental activities with the aim of vulnerability assessment of historical
masonry towers. It also points out some limitations of current practice that need to be
investigated in the future, such as for instance a more realistic behavior factor estimation.
Further research will focus on effective and compatible retrofitting actions for the specific
bell tower; more generally, embedding pre-existing damage in a detailed modeling frame-
work will also be investigated, as this represents an important topic with critical relevance
in the application of detailed modeling to historical heritage.
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