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Abstract: Structural components with curved edges are common in many engineering designs.
Fatigue cracks, corrosion and other types of defects and mechanical damage often initiate from (or are
located close to) edges. Damage and defect detection in the presence of complex geometry represents
a significant challenge for non-destructive testing (NDT). To address this challenge, this paper
investigates the fundamental mode of the quasi-symmetric edge-guided wave (QES0) propagating
along a curved edge, as well as its scattering characteristics in the presence of different types of edge
defects. The finite element (FE) approach is used to investigate the propagation and mode shapes
of the QES0. It was found that the wave attenuation dramatically increases when the radius-to-
thickness ratio is less than 20. Moreover, the mode shapes are significantly affected by the waveguide
curvature as well as the excitation frequency. Additionally, to evaluate the sensitivity of QES0 to edge
defects, different sizes of edge defects were investigated with the FE model, which validated against
experimental results. The validated FE model was further employed to quantify the dependence of
the amplitude of scattered waves for different types of edge defects. These studies indicate that the
amplitude of scattered wave is very sensitive to the presence of edge defects. The main outcome of
this work is the demonstrated ability of the QES0 wave mode to propagate over long distances and a
high sensitivity of this mode to different types of edge defects, which manifest its great potential for
detecting and characterising damage near the curved edges of structural components.

Keywords: edge-guided wave; curved structures; defect detection; scattering; non-destructive testing

1. Introduction

Free edges are common features in various engineering components, and these struc-
tural features are often subjected to residual stress and are prone to manufacturing defects.
As a result, fatigue cracks and other mechanical damage are predominantly initiated and
propagate from free edges. Therefore, the defect monitoring of these structural features is
of great practical interest.

Ultrasonic-guided waves (UGWs) are considered one of the most effective techniques
in non-destructive testing (NDT) and structural health monitoring (SHM). Over the past
several decades, the application of UGWs has attracted significant attention to damage and
defect detection and monitoring. One main advantage of UGWs is that these waves can
propagate in various materials over long distances without significant decay and inspect
large areas with a limited number of sensors, which is a prerequisite for SHM systems. In
addition, it has been well documented that UGWs can effectively detect various types of
damage, such as crack [1–3], corrosion [4–6] and delamination [7–9].

Most studies of UGWs are performed on relatively simple geometries, whereas real
structures normally contain many structural features, such as edges, holes, weld seams
and other geometric discontinuities, which represent a challenge for defect detection
and monitoring. These structure features are normally associated with scattering and
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reflection, which induce extra difficulty in the interpretation of the damage signatures. In
recent years, several studies indicated that some structural features can also be utilised as a
waveguide for NDT or SHM purposes [10–12]. Ultrasonic waves that propagate along those
structural features are known as feature-guided waves (FGWs). One main characteristic of
FGWs is the concentration of wave energy in the vicinity of the waveguide or structural
feature [13–15]. This concentration phenomenon (energy trapping effect) often results
in almost lossless signal amplitude, enabling long propagation distance inspection and
monitoring, e.g., inaccessible locations. Moreover, it also allows guided waves to inspect
specific parts of the structure instead of the entire area to achieve a cost-effective structural
integrity inspection [13]. The feasibility of the application of FGWs in damage and defect
detection has been widely demonstrated. Fan et al. [14] and Yu et al. [13] investigated the
propagation of FGWs along the stiffer, which bonded with an aluminium and composite
plate, respectively. Their experimental results demonstrated that the feature-guided shear
horizontal wave propagates along a stiffener can be utilised for monitoring the integrity of
the bond. Lan et al. [16] theoretically and numerically studied the generation of combined
harmonic using an FGW mode propagating in a weld seam. They reported that the
generation of a cumulative combined harmonic can be observed in the wave mixing zone,
and this phenomenon can be utilised to monitor the progression of material degradation.

Edge-guided waves (EGWs) are a type of FGWs, which are analogous to conventional
Rayleigh waves. EGWs propagate along the surface of free edges and are guided by the
apex of the plate structure, with a relatively low effective depth of penetration, and hence,
they are less affected by the internal features of plate and shell components. In the literature,
it has been found that two fundamental wave modes can propagate along these waveguides
in an elastic material, namely extensional (ES0)- and flexural (EA0)-mode edge-guided
waves [17,18]. Wilde et al. [19] proposed a semi-analytical method to obtain the dispersion
curve and mode shapes of EGWs propagated in isotropic materials. Hughes et al. [12]
conducted an experimental and numerical study on the propagation of ES0. They found
that the ES0 is suitable for long-distance inspections in the low range of the frequency to
thickness value (FTV < 5), while a strong amplitude modulation phenomenon due to the
interaction with other wave modes was observed in the high FTV range, FTV = 2π f H / CT ,
where f is the linear frequency, H is the thickness of the waveguide (plate) and CT is the
shear wave speed in the material. In recent publications, the semi-analytical finite element
(SAFE) approach has been widely utilised to acquire the propagation characteristics of
EGWs in isotropic [20] and anisotropic materials [21]. However, past studies of EGWs were
conducted on flat or quasi-flat edge geometries. The effect of the waveguide curvature on
the propagation characteristics of EGWs has not been investigated so far. Indeed, analytical
approaches or SAFE are currently not available or suitable for the investigation of the
characteristics of EGWs that propagate along curved edges due to the complexity of the
geometry and associated boundary conditions.

On the other hand, there has been a significant interest in using EGWs for non-
destructive damage and defect detection. Chu and Courtney [22] demonstrated the feasi-
bility of ES0 for the detection of impact damage at the edge of a carbon–fibre-reinforced
polymer (CFRP) plate. Zhu et al. [23] studied the effect of sharp and rounded corners
on the propagation of ES0. They demonstrated that ES0 can propagate through sharp
and rounded corners of plate- and shell-like structures, and that the nonlinear features
of the ES0 wave mode can be used for locating defects and damage. All these features
make the ES0 wave mode very suitable for inspecting inaccessible areas of the structure.
Vien et al. [24] investigated the scattering characteristics of ES0 in the presence of edge
cracks located near a racecourse-shaped hole in a flat aluminium plate, which revealed that
the amplitude of scattered waves can be utilised for detecting and quantifying edge defects.
Despite these promising findings, relatively few studies have focused on damage detection
in curved edges. Moreover, the potential of the EGWs in detecting defects along curved
edges has not yet been explored despite the fact that these curved edges are often found in
many designs, such as in the leading edge of an aircraft’s engine inlet.
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To improve the understanding of EGWs in detecting damages in curved structural
edges, this study aims to investigate the propagation of the fundamental mode of quasi-
edge waves (QES0) along curved edges and explore the scattering characteristics of the
QES0 at notch-like edge defects. In contrast to previous studies on damage or defect
detection using EGWs, this study not only focuses on the reflected and transmitted signals
but also investigates scattered waves on the curved surface in various directions using the
scatter directivity pattern (SDP) approach. Therefore, the outcome of this investigation can
also be helpful for the selection and optimisation of sensor configuration for future NDT
and SHM systems utilising the QES0 wave mode.

This paper first presents a 3D FE approach for investigating the effect of waveguide
curvature on the propagation characteristics of the QES0 wave mode in Section 2.1 and is
followed by selected simulation results, which are described in Section 2.2. The details of
the 3D FE model for investigating the scattering characteristic of QES0 at different edge
defects are presented in Section 2.3. Section 3 is devoted to an experimental study, which is
used to validate the developed FE model. The simulation results of the scattering study
using the experimentally verified FE model are presented in Section 4. The conclusion and
main findings are drawn in Section 5.

2. Numerical Study

In this section, a 3D FE approach for investigating the effect of the waveguide curvature
on the propagation characteristic of QES0 is presented in Section 2.1, followed by the
corresponding simulation results in Section 2.2. Section 2.3 details the 3D FE model for
investigating the scattering characteristics of the QES0 wave mode at an edge defect.

2.1. Three-Dimensional FE Model for Investigating Propagation Characteristics of QES0

The propagation of QES0 along circular edges was modelled using ABAQUS 2017,
and the simulations were performed with the Explicit solver. The configuration of 3D FE
models is schematically illustrated in Figure 1. The height and wall thickness were fixed at
200 and 5 mm, respectively. To investigate the effect of curvature on the propagation of
QES0, FE models were modelled in various radius-to-thickness (R/T) ratios, ranging from
10 to 25 in steps of 5, and from 25 to 100 in steps of 25. It should be noted that the curvature
of the edge is inversely proportional to the R/T ratio.
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Figure 1. Schematic of the configuration of 3D FE models.

The FE models were meshed with eight-node three-dimensional solid elements with
reduced integration (C3D8R), and the meshing technique option was ‘structure’, similar
to that in previous studies [20,23]. Due to the non-/minor dispersive nature of EGWs,
the wave speeds were very similar in the interested FTV (frequency) range. Hence, the
mesh size was selected as 1 mm3. This mesh size ensures that at least 15 elements exist
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per wavelength for the highest frequency of interest (300 kHz or FTV = 3). The time
steps of simulations were automatically determined by the Explicit solver, which em-
ployed the central difference method. To maximise the transfer of input energy to the
QES0 mode while minimising the influence of other generated wave modes, wedge ex-
citation was used. The angel of the wedge was determined by Snell’s law, as follows:
θwedge = sin−1

(
CL(wedge)/CEW

)
, where θwedge is the wedge angle, CL(wedge) is the lon-

gitudinal wave speed of the wedge material and CEw is the wave speed of the excited
EGW mode. In this study, the longitudinal wave speed of the wedge is around 2300 m/s,
and the wave speed of ES0 is about 2870 m/s. Hence, the wedge angle is determined as
53◦. The interaction between the wedge and specimen was defined as a surface-based ‘Tie’
constraint to enable the transmission of input energy to the specimen. The incident wave
in the wedge was generated by applying a pressure of 10 MPa perpendicular to the circular
excitation area, which is located on the wedge slope. The excitation area has a diameter
of 22 mm (the same size as the actual transducer used in the experimental study). The
excitation signals are Hanning-window-modulated eight-cycle sinusoidal tone bursts. The
material properties of different components of the models are listed in Table 1.

Table 1. Material properties of the FE model.

Part Material Density
(kg/m3)

Elastic Modulus
(GPa)

Poisson’s
Ratio α Damping

Specimen Aluminium 2704.00 70.00 0.30 N/A
Wedge Polystone 351.40 0.90 0.40 28,783.30

Figure 2a,b show the wedge excitation and the propagation of QES0 in a curved edge,
respectively. Most of the input energy was concentrated and propagated along the curved
edge in the clockwise direction. Meanwhile, a backward EGW, which has a much smaller
magnitude, was generated and propagated along the anticlockwise direction.
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Figure 2. Snapshot of the 3D FE model’s (R/T = 20) simulation results of (a) the wedge excitation and
(b) propagation of QES0.

Since wave motion can be largely affected by the geometric of the propagation medium,
it is necessary to separate the QES0 wave mode from other guided and bulk wave modes.
To identify the wave mode of generated and measured signals, a frequency–wavenumber
analysis was conducted using a two-dimensional fast Fourier transform (2D FFT). The
simulation results obtained from the FE model with an R/T ratio of 10, which is the smallest
R/T ratio of interest, were investigated. The normal displacement of the top edge (Uz) was
extracted from 35 continuous nodes (starting from measurement point 1) along the wave
propagation direction, with intervals of around 1 mm.
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The same modelling procedure outlined in Section 2.1 was also applied to another
3D FE plate model (R/T = ∞), which simulates the propagation of ES0 in a 5 mm thick
flat plate with the same material properties, for comparison purposes. The simulation
results from this FE model can be considered as a benchmark as they are not affected by the
effect of the curvature (straight edge). This particular 3D model has been analytically and
experimentally well validated in previous work [12]. It should be noted that the distance
between measurement points and the wedge in this model is approximately the same as
the corresponding curved edge model. The excitation frequency is 200 kHz, which has
a corresponding FTV of 2. Then, the 2D FFT results were compared with the dispersion
curve of ES0 propagates in an ideal waveguide with the same thickness [20].

Figure 3a,b show the 2D FFT results for the propagation of ES0 in a flat plate and
QES0 in a curved edge, respectively. The results indicate that the only propagating wave
mode at 200 kHz in curved edge is QES0, which is very similar to the propagation of the
ES0 wave mode in terms of wavenumber.
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2.2. Effect of the Curvature on the Propagation Characteristics of QES0
2.2.1. Attenuation

In this section, the effect of the radius of curvature on the attenuation of the QES0
wave mode is discussed. To quantify the attenuation of QES0 for different curvatures, a
coefficient of attenuation (µ) was introduced and defined as follows:

µ =
AMP1 − AMP2

d
(1)

where AMP1 and AMP1 are the amplitudes of measurement points (MP) 1 and 2, respectively,
and d is the propagation distance that is half the perimeter of the corresponding model. It
should be noted that the amplitudes were normalised by the corresponding AMP1 in the
calculation of µ.

Figure 4 presents the relationship between µ and the R/T ratio. It can be observed
that the value of µ increases with the FTV in the case of the same R/T ratio. On the other
hand, it can also be observed that the value of µ is highly correlative to the R/T ratio. At
the stage of the R/T ratio ranging from 100 to 20, the value of µ is similar, while the value
of µ dramatically increases when the R/T ratio changes from 20 to 10. This phenomenon
aligns with the corresponding 2D FFT results shown in Figure 3a,b, which indicate a lower
energy concentration within the bandwidth of excitation frequency as the R/T ratio of the
waveguide decreases.
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To better describe the correlation between µ and the R/T ratio across various FTVs, a
curve-fitting analysis was conducted using the FE simulation results. The establishment
of algebraic expression for fitting can help to predict the effect of waveguide curvature on
the propagation of QES0. The procedure for establishing this algebraic expression of the
curve-fitting analysis is as follows:

(a) By observing the relationship between µ and R/T ratio in Figure 4, it was found that
the function of y = A·e(−Bx) + C has a good correlation to the simulated data, where
A, B and C are parameters related to FTV, and x is the ratio of R/T.

(b) The nonlinear least-squares optimisation was employed to find the values of A, B
and C parameters using an iteration procedure, which minimises the residual sum of
squares (RSSs) between predicted values and the corresponding FE simulation results.

(c) To generalise the fitting between µ and R/T ratio across different FTVs, the parameters
of A, B and C in different FTV cases were presented as linear.

Finally, the relationship between µ and the R/T ratio for different FTVs can be ex-
pressed as

µ = Ae−B· R
T + C (2)

where A = 0.0029FTV + 0.0004, B = −0.0224FTV − 0.1955 and C = 0.0003FTV − 0.003,
respectively. Figure 4 also shows a comparison between the FE simulation results and
the predicted value (solid line) using Equation (2). It can be observed that there is a good
agreement between Equation (2) and the simulation results.

2.2.2. Mode Shapes

To investigate the effect of the curvature of a waveguide on mode shapes of the QES0
wave mode, the normal displacement of nodes along lines 1 (Uz) and 2 (Uy) was extracted
(see Figure 5). Figure 5a,b illustrate the location of lines 1 and 2, respectively, where line
1 is located on the top of the surface of the edge and line 2 is on the outer surface of
the specimen. The simulation results from the present models were compared with the
corresponding simulation results for ES0, which were validated with analytical results [12].

Figure 6a–c show the normal displacement (Uz) of the top edge extracted from line 1.
The data were normalised with the corresponding maximum value. The mode shape
of ES0 (marked by the green line) can be seen to be the baseline. It can be observed
that the mode shape of ES0 was symmetric about the mid-plane of the top edge surface,
and that the amplitudes increased from the mid-plane toward both the outer and inner
sides. Meanwhile, it can also be observed that the symmetricity of the QES0 was largely
affected by the waveguide curvature. With the decrease in the R/T ratio, the difference in
amplitudes between the outer and inner sides of the curved edge increased. In addition, it
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can also be noted that the mode shape of QES0 was more affected by the change in the R/T
ratio in the case of high frequencies.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 19 
 

  
(a) (b) 

Figure 5. Schematic of the location of measurement points for extracting mode shapes: (a) top view 
and (b) zoom-in view. 

Figure 6a–c show the normal displacement (𝑈௭) of the top edge extracted from line 1. 
The data were normalised with the corresponding maximum value. The mode shape of 𝐸𝑆଴ (marked by the green line) can be seen to be the baseline. It can be observed that the 
mode shape of 𝐸𝑆଴ was symmetric about the mid-plane of the top edge surface, and that 
the amplitudes increased from the mid-plane toward both the outer and inner sides. 
Meanwhile, it can also be observed that the symmetricity of the 𝑄𝐸𝑆଴ was largely affected 
by the waveguide curvature. With the decrease in the R/T ratio, the difference in ampli-
tudes between the outer and inner sides of the curved edge increased. In addition, it can 
also be noted that the mode shape of 𝑄𝐸𝑆଴ was more affected by the change in the R/T 
ratio in the case of high frequencies. 

   

(a) (b) (c) 

Figure 6. Normal displacement (𝑈௭) of line 1 with different R/T ratios: (a) FTV = 2.0, (b) 2.5, and (c) 
3.0. 

Figure 7a–c show the normal displacements (𝑈௬) of the side surface, which are ex-
tracted from line 2. It can be observed that the amplitudes of 𝐸𝑆଴ and 𝑄𝐸𝑆଴ waves rap-
idly decayed with the depth from the top edge surface. With the increase in excitation 
frequency, the effective depths of 𝐸𝑆଴  and 𝑄𝐸𝑆଴  were closer to the surface of the top 
edge. This behaviour is similar to the classical Rayleigh wave mode, where energy is more 
concentrated on the surface with the increase in the excitation frequency [25]. In addition, 
it can also be observed that the amplitudes of leaky waves from 𝑄𝐸𝑆଴ is highly correlated 
to the waveguide curvature. With the decrease in the R/T ratio (larger curvature), more 

Figure 5. Schematic of the location of measurement points for extracting mode shapes: (a) top view
and (b) zoom-in view.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 19 
 

  
(a) (b) 

Figure 5. Schematic of the location of measurement points for extracting mode shapes: (a) top view 
and (b) zoom-in view. 

Figure 6a–c show the normal displacement (𝑈௭) of the top edge extracted from line 1. 
The data were normalised with the corresponding maximum value. The mode shape of 𝐸𝑆଴ (marked by the green line) can be seen to be the baseline. It can be observed that the 
mode shape of 𝐸𝑆଴ was symmetric about the mid-plane of the top edge surface, and that 
the amplitudes increased from the mid-plane toward both the outer and inner sides. 
Meanwhile, it can also be observed that the symmetricity of the 𝑄𝐸𝑆଴ was largely affected 
by the waveguide curvature. With the decrease in the R/T ratio, the difference in ampli-
tudes between the outer and inner sides of the curved edge increased. In addition, it can 
also be noted that the mode shape of 𝑄𝐸𝑆଴ was more affected by the change in the R/T 
ratio in the case of high frequencies. 

   

(a) (b) (c) 

Figure 6. Normal displacement (𝑈௭) of line 1 with different R/T ratios: (a) FTV = 2.0, (b) 2.5, and (c) 
3.0. 

Figure 7a–c show the normal displacements (𝑈௬) of the side surface, which are ex-
tracted from line 2. It can be observed that the amplitudes of 𝐸𝑆଴ and 𝑄𝐸𝑆଴ waves rap-
idly decayed with the depth from the top edge surface. With the increase in excitation 
frequency, the effective depths of 𝐸𝑆଴  and 𝑄𝐸𝑆଴  were closer to the surface of the top 
edge. This behaviour is similar to the classical Rayleigh wave mode, where energy is more 
concentrated on the surface with the increase in the excitation frequency [25]. In addition, 
it can also be observed that the amplitudes of leaky waves from 𝑄𝐸𝑆଴ is highly correlated 
to the waveguide curvature. With the decrease in the R/T ratio (larger curvature), more 

Figure 6. Normal displacement (Uz) of line 1 with different R/T ratios: (a) FTV = 2.0, (b) 2.5, and
(c) 3.0.

Figure 7a–c show the normal displacements (Uy) of the side surface, which are ex-
tracted from line 2. It can be observed that the amplitudes of ES0 and QES0 waves rapidly
decayed with the depth from the top edge surface. With the increase in excitation frequency,
the effective depths of ES0 and QES0 were closer to the surface of the top edge. This be-
haviour is similar to the classical Rayleigh wave mode, where energy is more concentrated
on the surface with the increase in the excitation frequency [25]. In addition, it can also
be observed that the amplitudes of leaky waves from QES0 is highly correlated to the
waveguide curvature. With the decrease in the R/T ratio (larger curvature), more energy
was transferred from QES0 to leaky waves that propagated on the side surfaces of the edge.

The results from this numerical case study of QES0, propagated along curved edges,
provide potential guidelines for optimising sensor numbers and locations to maximise the
signal-to-noise ratio. From a practical application perspective, when inspecting a relatively
thick curved edge of a structural component, a higher wave magnitude can be measured
from a location on the top edge surface that is close to the outer side, compared to the inner
surface or mid-plane (see Figure 6a–c).
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2.3. A 3D FE Model for Investigating Scattering Characteristics of the QES0 Wave Mode at an
Edge Defect

In this section, the R/T ratio of the 3D FE model is fixed at 20. The modelling approach
is largely the same as that which was described in Section 2.1. To investigate the scattering
characteristic of QES0 at edge defects, a narrow notch-like edge defect was modelled by
removing elements from the model as shown in Figure 8. The location of the edge defect
is in 45◦ direction, as illustrated in Figure 8a. The edge defect was modelled as 1 mm
thick (along the wave propagation direction), which avoids the possible contact between
the surfaces of the edge defect. To investigate the dependence of amplitudes of scattered
waves and the size of the edge defect, the depth of the through-thickness edge defect was
modelled, ranging from 2 to 14 mm with increments of 3 mm. Figure 8b presents a snapshot
of an 8 mm long through-thickness edge defect in the FE model. To study the scattering
characteristics of QES0 at partially through-thickness edge defects, two types of partially
through-thickness edge defects with a depth of 8 mm were investigated with the developed
FE model. Types I and II of partially through-thickness edge defects were located in the
inner- and outer-side surfaces of the edge, respectively, as illustrated in Figure 8c,d. The
width of the partially through-thickness edge ranged from 1 to 4 mm with increments of
1 mm.

The reflected and transmitted waves were obtained from MP1 and MP2, respectively,
whose locations are also illustrated in Figure 8a. In addition, to investigate the amplitude
of scattered waves in different directions, nine measurement points, centred at the base
of the edge defect, were assigned on the side surface of the edge ranging from 0 to −180◦

in steps of −22.5◦, as shown in Figure 9a,b. It should be noted that the distance between
these measurement points and the base of the edge defects was fixed at 50 mm. To allow
for a direct comparison between the amplitudes of scattered waves collected in different
measurement points, the Ux displacement of each measurement point was converted to the
corresponding normal displacement (unormal) of the side surface, as illustrated in Figure 9c.

Figure 10a–c and Figure 10d–f present the typical contour plots of FE simulation
results for QES0 before and after encountering through-thickness edge defects with depths
of 2, 8, and 14 mm, respectively. The central frequency of the input signal was 200 kHz.
Figure 10d–f illustrate that the magnitudes of scattered waves are highly correlated to
the depth of the edge defect, which also reveals the mode conversion between QES0 and
scattered waves.
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3. Experimental Study

This section presents an experimental study for the verification of the 3D FE approach
described in Section 2.3. The specimen details and experimental setup for generating and
sensing the QES0 wave mode is presented in Sections 3.1 and 3.2, respectively. Finally, in
Section 3.3, a comparison between the experimentally measured and the corresponding FE
simulation results is presented.
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3.1. Specimen

The tested specimen was an aluminium tube that had an outer diameter of 200 mm,
a wall thickness of 5 mm, and a height of 200 mm. These were the same dimensions as
those of the FE model described in Section 2.3. A 1 mm thick through-thickness edge
defect was manually created on the top edge of the specimen in a 45◦ direction. During the
experiment, the depth of the through-thickness edge defect was increased from 2 to 14 mm
with intervals of 3 mm.

3.2. Experimental Setup

The experimental setup for generating and sensing QES0 is presented in Figure 11a.
The input signal, an eight-cycle Hann-windowed tone burst, was generated using a signal
generator (National Instrument PXle-5412). The central frequency of the input signal was
200 kHz. Then, a signal amplifier (Ciprian HVA-800-A) was used to amplify the input
signal to ±200 V. The amplified signal was then sent to a transducer (ULTRAN-GC200),
which could generate a longitudinal wave. The transducer was installed on a 53◦ wedge,
which was made of ‘Polystone’, as shown in Figure 11b. The wedge was clamped to the
top edge of an aluminium tube-like specimen. A coupling gel (Dow corning high-vacuum
grease) was applied on the interface between the wedge and the top edge of the specimen
to ensure the effective transmission of the longitudinal wave from the wedge into the
specimen, thereby generating the QES0 mode. The locations of the two measurement
points for measuring reflected and transmitted waves were defined as consistent with the
configuration of the FE model described in Section 2.3. The normal displacement of the
measurement points located on the top edge was collected by a one-dimensional (1D) laser
Doppler vibrometer (Polytech PSV-400-M2-20). The measurement distance was fixed at
1 m. The sampling frequency was set to 25.6 MHz, and each measurement was averaged by
200 acquisitions. To improve the signal-to-noise ratio, the edge was coated with reflective
paint, and a low-pass filter with a cut-off frequency of 1 MHz was applied to the laser
Doppler vibrometer.
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3.3. Reflection and Transmission at Edge Defects

In this section, the experimental results were compared with the corresponding FE
simulation results for validation purposes. The reflected and transmitted waves were
collected at MP1 and 2, respectively, which was the same as the FE configuration shown in
Section 2.3.

Figure 12a shows a comparison between numerical and experimental time domain
signals in intact conditions, while Figure 12b compares the FE and experimental time
domain signals in the presence of a 2 mm deep edge defect. Both experimental and numeral
data were normalised by the corresponding maximum absolute amplitude in the time
domain. The arrival time of the incident wave and reflected wave was precisely predicted
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by the FE simulation, as shown in Figure 12b. The minor phase shift in the incident and
reflected wave can be attributed to the slight misalignment of the wedge in the experiment.
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and (b) presence of a 2 mm deep through-thickness edge defect.

Figure 13a,b present the ratio of amplitudes of reflected (Ar) and transmitted (At)
waves from the edge defect to the amplitude of the incident wave (Ai), respectively. The
amplitudes of reflected and transmitted waves were normalised by the amplitude incident
wave at MP1. The reflection (Rr)-and-transmission (Rt) ratio was defined as Rr = Ar/Ai
and Rt = At/Ai, respectively. It can be observed that the 3D FE model well predicted the
trend of reflection-and-transmission ratio with the change in defect depth-to-wavelength
ratio. The discrepancy can be attributed to the misalignment of the laser beam. In the
experiment, it is not pragmatic to ensure that the laser beam is perfectly perpendicular
to the mid-plane of the edge due to the thin edge thickness of the specimen, which con-
sequently causes differences between amplitudes of experimentally measured signal and
corresponding numerical data; the reason for this phenomenon is discussed in Section 2.2.2.
Overall, there is good agreement between FE simulated results and the experimental data,
which means that the developed 3D FE approach is adequate and capable of investigating
the interaction between the incident QES0 wave mode and the narrow edge defect in the
curved edge.
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4. Directivity Pattern of Scattered Waves

In this section, the experimental validated FE model was employed to investigate
the scattering characteristics of QES0 at a defect in the curved edge. The configuration of
measurement points for calculating the scattering directivity pattern (SDP) is presented
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in Figure 9. To isolate scattered waves from the incident wave, the baseline subtraction
method was employed. The normal displacement of scattered waves US is defined as

US = UD − UI (3)

where UI and UD are the normal displacements of the measurement point in intact and
damaged conditions, respectively. It should be noted that all SDPs in this study are
normalised by the maximum absolute amplitude of the incident wave at the measurement
point of 0◦ direction.

4.1. Influence of the Size of Through-Thickness Edge Defect

The SDPs of defect depths at 2, 8 and 14 mm were investigated. The corresponding
defect depth-to-wavelength ratios were 0.08, 0.32 and 0.56, respectively. Figure 14a–c
present the SDPs of edge defects with depths of 2, 8 and 14 mm, respectively. The results
indicate that the maximum amplitude of scattered waves increased with the defect size.
The energy of scattered waves was mainly located in the forward direction as well as
directions that were perpendicular to the wave propagation direction, while the energy of
backward scattered waves in the 0◦ direction was relatively weak. Meanwhile, the forward
components of scattered waves have a relatively larger amplitude. It can also be observed
that the amplitudes of backward scattered waves in the direction of −67.5◦ significantly
increased with the defect depth-to-wavelength ratio.
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Figure 14. Polar plot of normalised maximum amplitudes of scattered waves at the through-thickness
edge defects with depths of (a) 2, (b) 8 and (c) 14 mm.

4.2. Influence of Location and Size of Partially Through-Thickness Edge Defect

Figure 15a–d show the comparison between the 8 mm deep (defect depth-to-wavelength
ratios = 0.32) types I (located on the inner side) and II (located on the outer side) of partially
through-thickness edge defects with widths of 1, 2, 3 and 4 mm, respectively. All the SDPs
in Figure 15 show that the energy of scattered waves are concentrated in forward and
normal directions relative to the incident wave propagation direction, which is similar to
the case of the through-thickness edge defect. In Figure 15, the SDPs of type I are similar to
the SDPs of type II in the corresponding dimension. Compared to type I, the amplitudes of
scattered waves of type II in the −135◦ direction are relatively stronger.



Appl. Sci. 2024, 14, 10672 14 of 18

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 19 
 

  
(a) (b) 

 
(c) 

Figure 14. Polar plot of normalised maximum amplitudes of scattered waves at the through-thick-
ness edge defects with depths of (a) 2, (b) 8 and (c) 14 mm. 

4.2. Influence of Location and Size of Partially Through-Thickness Edge Defect 
Figure 15a–d show the comparison between the 8 mm deep (defect depth-to-wave-

length ratios = 0.32) types I (located on the inner side) and II (located on the outer side) of 
partially through-thickness edge defects with widths of 1, 2, 3 and 4 mm, respectively. All 
the SDPs in Figure 15 show that the energy of scattered waves are concentrated in forward 
and normal directions relative to the incident wave propagation direction, which is similar 
to the case of the through-thickness edge defect. In Figure 15, the SDPs of type I are similar 
to the SDPs of type II in the corresponding dimension. Compared to type I, the amplitudes 
of scattered waves of type II in the −135° direction are relatively stronger. 

  
(a) (b) 

  
(c) (d) 

Figure 15. Polar plot of the normalised maximum amplitudes of scattered waves of type I (blue solid
line) and type II (red dashed line) edge defects with widths of (a) 1, (b) 2, (c) 3 and (d) 4 mm.

Figure 16a,b present the comparison of SDPs for the edge defects of types I and II
with different widths, respectively. The black solid line can be taken as a benchmark,
which represents the scattered waves for an 8 mm deep through-thickness edge defect.
It can be observed that the amplitude of scattered waves increased with the width of
defects. The energy of scattered waves at the type I edge defect is concentrated in the
forward and normal directions relative to the incident wave propagation direction. For
type II, the energy of scattered waves not only increased in forward and normal directions
but also in the −135◦ direction, as shown in Figure 16b. However, the amplitudes of
scattered waves significantly decreased at the dimension of 5 mm, where type II converts
to a through-thickness edge defect.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 19 
 

Figure 15. Polar plot of the normalised maximum amplitudes of scattered waves of type I (blue solid 
line) and type II (red dashed line) edge defects with widths of (a) 1, (b) 2, (c) 3 and (d) 4 mm. 

Figure 16a,b present the comparison of SDPs for the edge defects of types I and II 
with different widths, respectively. The black solid line can be taken as a benchmark, 
which represents the scattered waves for an 8 mm deep through-thickness edge defect. It 
can be observed that the amplitude of scattered waves increased with the width of defects. 
The energy of scattered waves at the type I edge defect is concentrated in the forward and 
normal directions relative to the incident wave propagation direction. For type II, the en-
ergy of scattered waves not only increased in forward and normal directions but also in 
the −135° direction, as shown in Figure 16b. However, the amplitudes of scattered waves 
significantly decreased at the dimension of 5 mm, where type II converts to a through-
thickness edge defect. 

  

(a) (b) 

Figure 16. Polar plot of the normalised maximum amplitudes of scattered waves of (a) type I (located 
on the inner side) and (b) type II (located on the outer side) partially through-thickness edge defects 
with various widths. 

To further elucidate the correlation between defect width and the amplitudes of scat-
tered waves, Figure 17 presents the dependences of the amplitudes of scattered waves in 
various directions as a function of the defect width. 

Figure 17a–c show the normalised amplitudes of forward, normal and backward 
scattered waves at the type I edge defect (see Figure 8c) with various widths. Figure 17a 
shows the normalised amplitudes of forward scattered waves in the directions of −180°, 
−157.5°, −135° and −112.5° (with respect to the incident wave direction), respectively. It can 
be observed that the amplitudes of scattered waves in the directions of −180°, −157.5° and 
−135° show an increasing trend with the defect width, while the change in amplitudes of 
scattered waves in the direction of −180° are relatively stronger than the other two direc-
tions. For forward scattered waves in the direction of −112.5°, the amplitude increases with 
the defect width in the range from 1 to 4 mm. However, when the defect geometry ap-
proaches a through-thickness geometry, the amplitude of scattered waves in the direction 
of −112.5° decreases. 

Figure 17b shows the scattered wave amplitude in the normal direction (−90°) relative 
to the incident wave propagation direction. The results indicate that the amplitude of scat-
tered waves increases proportionally with the width of the type I edge defect in the range 
between 1 and 4 mm. However, the slope becomes less steep when the width increases 
from 4 to 5 mm. 

Figure 17c shows the backward-scattered-wave amplitudes in the directions of −67.5°, 
−45°, −22.5° and 0°. For the backward scattered waves in the direction of −67.5°, the scat-
tered wave amplitudes rise with the defect width and exhibit a similar trend as normal 
scattered waves (as shown in Figure 17b), while magnitudes are relatively smaller than 
those in the normal direction. For backward scattered waves in the directions of −45° and 
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To further elucidate the correlation between defect width and the amplitudes of
scattered waves, Figure 17 presents the dependences of the amplitudes of scattered waves
in various directions as a function of the defect width.
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Figure 17a–c show the normalised amplitudes of forward, normal and backward
scattered waves at the type I edge defect (see Figure 8c) with various widths. Figure 17a
shows the normalised amplitudes of forward scattered waves in the directions of −180◦,
−157.5◦, −135◦ and −112.5◦ (with respect to the incident wave direction), respectively.
It can be observed that the amplitudes of scattered waves in the directions of −180◦,
−157.5◦ and −135◦ show an increasing trend with the defect width, while the change
in amplitudes of scattered waves in the direction of −180◦ are relatively stronger than
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the other two directions. For forward scattered waves in the direction of −112.5◦, the
amplitude increases with the defect width in the range from 1 to 4 mm. However, when
the defect geometry approaches a through-thickness geometry, the amplitude of scattered
waves in the direction of −112.5◦ decreases.

Figure 17b shows the scattered wave amplitude in the normal direction (−90◦) relative
to the incident wave propagation direction. The results indicate that the amplitude of
scattered waves increases proportionally with the width of the type I edge defect in the
range between 1 and 4 mm. However, the slope becomes less steep when the width
increases from 4 to 5 mm.

Figure 17c shows the backward-scattered-wave amplitudes in the directions of −67.5◦,
−45◦, −22.5◦ and 0◦. For the backward scattered waves in the direction of −67.5◦, the
scattered wave amplitudes rise with the defect width and exhibit a similar trend as normal
scattered waves (as shown in Figure 17b), while magnitudes are relatively smaller than
those in the normal direction. For backward scattered waves in the directions of −45◦

and −22.5◦, the wave amplitudes grow when the defect width increases from 1 to 4mm
and decreases when the defect shape approaches through-the-thickness geometry. In the
incident wave direction (0◦), the amplitudes of backward scattered waves mainly increase
with the defect size, but the dependence is quite weak for a defect width between 3 and
4 mm. Additionally, other than −180◦ direction, the magnitude of backward scattered
waves is relatively greater than for forward scattered waves, which is shown in Figure 17a.

Figure 17d–f present the normalised amplitudes of forward, normal and backward
scattered waves at the type II edge defect, with various widths (see Figure 8d). Figure 17d
shows the normalised amplitudes of forward scattered waves in the directions of −180◦,
−157.5◦, −135◦ and −112.5◦, respectively. It can be observed from Figure 17a that forward
scattered waves in the direction of −180◦ significantly increase with the defect width.
Meanwhile, the forward scattered waves in the other directions show a similar trend as for
type I edge defects.

Figure 17e presents the normal scattered waves (−90◦). The overall responses are
identical to the corresponding results of the type I edge defect (see Figure 17b), while
the change in scattering amplitude is relatively larger when the width of the edge defect
increases from 4 to 5 mm.

Figure 17f shows the backward scattering amplitudes in −67.5◦, −45◦, −22.5◦ and 0◦

directions. It can be observed that the backward scattered waves in the direction of −67.5◦

are relatively stronger than the other three different propagation angles, which is similar to
the corresponding tendency shown in Figure 17c. The aforementioned results and analysis
indicate that forward, normal and oblique backward directions are all suitable for detection
and characterising internal, outer and through-the-thickness edge defects.

5. Conclusions

An investigation of the propagation and scattering characteristics of the QES0 wave
mode in circular edges of structural components was presented in this paper. In the
first part of this article, the effect of waveguide curvature on the attenuation and mode
shapes of QES0 was investigated using the FE approach. The FE models were constructed
for a wide range of R/T ratios, ranging from 10 to 100, covering most curvatures in
practical applications. The FE simulation results indicated that the coefficient of attenuation
exponentially increased with the waveguide curvature. In addition, from the analysis of
the mode shapes, it was found that the normal displacement of QES0 at the top edge, close
to the outer-side surface, was larger than that of the corresponding location close to the
inner-side surface. This characteristic can be used for improving signal-to-noise ratio in
practical applications of the QES0 wave mode, specifically for relatively thick components.

In the second part of this study, the reflection-and-transmission ratio of QES0 at edge
defects was first experimentally and numerically investigated. The outcomes indicated
that the 3D FE approach is capable of accurately predicting the interaction between the
QES0 wave mode and different dimension’s edge defects. The experimentally validated
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3D FE model was further employed to explore the scattering characteristics of the QES0
wave mode for various geometries of edge defects, representing possible edge defects. The
results indicated that the scattered waves have relatively large amplitudes in both forward
and perpendicular directions with respect to the incident wave propagation direction.
Meanwhile, compared to the type I (inner side) partially through-thickness edge defect,
the QES0 at the type II (outer side) edge defect has a relatively strong scattered wave
component between the forward and normal directions of incident wave direction.

Although the results are promising, underlying assumptions of the developed FE
model should be considered when comparing experimental results with numerical sim-
ulations. The effect of material damping was not modelled; therefore, only the effect of
waveguide curvature on the attenuation of QES0 was revealed in the FE simulations. To
fully understand the propagation characteristics of QES0, future studies can incorporate
the effect of material damping on the propagation of the QES0 wave mode. Moreover, it is
assumed in the FE model that the surfaces of the specimen are perfectly smooth, which is
not the case for real structural components. Since EGWs are surface waves, the roughness
of surfaces could significantly affect the propagation of the QES0 wave mode, specifically
when the wavelength becomes comparable with the characteristic size of the asperities or
other structural imperfections. In addition, the contact condition between the interfaces of
the wedge and specimen in the FE model is defined as a ‘Tie’ constraint, which may differ
from the conditions in actual measurements.

In summary, this study provided fundamental insights into the propagation of QES0
in a curved waveguide, and the scattering characteristics of QES0 at various shapes of edge
defects. The main practical outcome of this work is the demonstration of the high sensitivity
of the QES0 wave mode to different types of edge defects and its ability to propagate over
long distances (at high R/T ratios, i.e., above 20). This capability can be utilised for
inspecting defects in inaccessible areas of structures. Overall, the outcomes highlight
the significant potential of this guided wave mode for future NDT and SHM systems in
detecting and characterising damage along the curved edges of structural components.
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