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Featured Application: This work shows that it is possible to predict the fatty acid profile of
Iberian ham, which is one of the most important quality characteristics of these premium prod-
ucts, by using miniaturized devices. This article also identifies the most suitable equipment
and the optimal area for spectral recording, which depends on the device, to achieve optimal
analytical performance.

Abstract: Iberian ham is a highly valued product, and considerable efforts have been made to
characterize it quickly and accurately. In this scenario, portable NIR devices could provide an effective
solution for the assessment of its attributes. However, the calibration quality of NIR equipment is
directly influenced by the relevance of the used spectral region. Therefore, this study aims to evaluate
the suitability of different NIR spectrometers, including four portable and one benchtop instrument,
with varying spectral working ranges for quantifying the fatty acid composition of Iberian ham.
Spectral measurements were carried out on both the muscle and the fat of the ham slices. The results
showed that 24 equations with an RSQ > 0.5 were obtained for both the muscle and fat for the NIRFlex
N-500 benchtop instrument, while 19 and 14 equations were obtained in the muscle and 16 and
10 equations in the fat for the Enterprise Sensor and MicroNIR, respectively. In general, more fatty
acids could be calibrated when the spectra were taken from lean meat, except with the SCiO Sensor.
Measurements performed in the lean and fat zones delivered complementary information. These
initial findings indicate the suitability of using miniaturized NIR sensors, which are faster, are less
expensive, and enable on-site measurements, for analyzing fatty acids in Iberian ham.

Keywords: Near Infrared spectroscopy; benchtop device; portable device; fat spectra; meat spectra;
optimizing forecast; fast analysis

1. Introduction

Near Infrared (NIR) spectroscopy has emerged as an extremely useful tool in the meat
and meat product industry, equally for the analysis of raw meat and the products derived
from it [1]. Factors contributing to this include its high speed of analysis, minimal or no
sample preparation, and its non-destructive, non-invasive methodology [2]. Its ability to
perform non-destructive measurements means less product waste, which not only reduces
costs but also contributes to more sustainable practices in the food industry [3]. Another
important aspect is the versatility of this equipment, which can be adapted to various types
of meat, meat derivatives, and processing conditions [4]. NIR spectroscopy equipment has
been successfully applied to the quantitative determination of the main constituents of
meat and meat products such as moisture, fat, and protein [5–7], being approved by the
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Association of Analytical Chemists (AOAC) as a method for the commercial analysis of
these parameters in meat and meat products [8].

Recently developed portable NIR spectroscopy equipment plays a crucial role in
offering an efficient and versatile solution for the rapid and accurate assessment of various
meat attributes [9]. However, as reported by Kademi et al. [10], the results obtained with
these instruments in meat and meat products are unrealistic in some applications and
exhibit higher detection limits and lower sensitivity compared to benchtop equipment.
Difficulties in using portable equipment may be related to the significant influence of the
spectral region on the predictive ability of this technology [11]. In addition, some spectral
regions may be particularly subject to interference due to the presence of other substances
in the sample [12]; therefore, choosing the correct spectral region can minimize interference
and improve the selectivity of the analysis. For this reason, the quality of calibration and
modeling of NIR equipment is directly related to the spectral region used.

As part of the meat industry, the pork meat sector is of significant importance world-
wide, both from an economic and food point of view. Pork is an essential source of
protein and nutrients, and its production and consumption have grown steadily in recent
decades [13]. In the specific case of the pork sector, NIR spectroscopy has been success-
fully applied for the prediction of meat composition parameters such as protein, fat, and
moisture [14]; intramuscular fat [15] and Warner–Bratzler shear force [16]; and pH and
color values [17]. However, it has not proved useful for the prediction of drip loss on
intact carcasses [15]. In pork meat derivatives, this technology has been applied to predict
fat, moisture, and protein in chopped pork sausage mixes [18] and sodium content in
commercial meat products [19] among other applications.

In the Spanish meat sector, Iberian pork is known for its distinctive quality and flavor,
influenced by factors such as genetics, rearing systems, and especially feed, which may be
based on fodder or the montanera system, i.e., free grazing with the consumption of acorns
and grass [20]. This combination makes Iberian ham a product highly appreciated by
consumers, 100% Iberian acorn-fed being the most preferred [21]. Portable NIR instruments
have been used in Iberian pork to classify individual carcasses by feeding regime [2], to
discriminate animals by fat content and fatty acid profile [22], to classify animals according
to legal standards and requirements [23] and for the analysis of the fatty acid content of
individual carcasses of Iberian pigs [24,25]. Among the meat derivatives of the Iberian pig,
Iberian ham is highly valued both nationally and internationally. The portable equipment
has already been applied to classify Iberian ham according to commercial categories [26],
pig breed [27], and NaCl content [28]. The determination of the fatty acid composition
is commonly used to assess both the quality and authenticity of Iberian ham [29]. This
determination is usually carried out by gas chromatography, which is a slow method
and involves the use of chemical reagents. The application of NIR technology in the
determination of this parameter would be particularly interesting to reduce the time and
cost of analysis.

The present work aims to evaluate the suitability of different portable NIR spectrome-
ters for the quantification of fatty acid composition in Iberian pork hams. For this purpose,
four different portable devices and one benchtop instrument, differentiated by the im-
plemented optical solutions and distinct spectral working ranges, have been evaluated
and compared based on their analytical performance in this application. The spectral
measurements have been carried out on both the muscle and fat of the ham, with both
used separately for the development of predictive models. The hypothesis of this study is
that miniaturized NIR devices can perform comparably to benchtop models in fatty acid
prediction. The identification of the most suitable equipment for this analysis is of great
importance not only from a research point of view, pushing the frontier of the applica-
tion of modern miniaturized sensors combined with artificial intelligence, but also for the
production sector itself. On-site NIR technology is already being adapted as an in-line
analysis tool; the method for the determination of fatty acids as proposed in this work is
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readily suited to be easily implemented to deliver additional important quality parameters
in routine industrial analysis.

2. Materials and Methods
2.1. Samples

A total of 60 Iberian ham samples, consisting of 24 acorn-fed 100% Iberian purebred
and 36 acorn-fed crossbred (Iberian × Duroc) hams, were analyzed. All animals were
raised in the same geographical area, adhering to the RD 10/2014 certificate [30]. During
the latter part of the fattening period, their diet exclusively consisted of pasture and acorns.
The industry itself, situated in Guijuelo, Salamanca, undertook the production and curing
of the Iberian hams following traditional practices [31].

After 36 months of maturation, the sampling process was carried out as follows: once
the bone had been removed, a total of 100 g of sample was taken (in slices 1 mm thick) from
each of the 60 hams. The samples were cut in the central area of the ham piece along its
entire transverse profile. The cut was taken perpendicular to the ham bone at the same
depth from the front of each ham. The cuts included the Biceps femoris, Semimembranosus,
and Semitendinosus muscles and had a similar lean/fat muscle ratio. The ham slices were
vacuum-packed and kept at 6–8 ◦C until analysis for a maximum of 4–6 months.

2.2. Reference Analysis

The analysis of the lipid profile was carried out by extracting the intramuscular fat
of the Biceps femoris muscle after removing the adjacent intermuscular fat. The extraction
was carried out on 25 g of the muscle using the method of Folch et al. (1957) [32], and the
quantification of fatty acids (FAs) was carried out on 0.1 g of extracted fat. Afterwards,
methylation and gas chromatography analysis were carried out according to the method
described by Hernández-Jiménez et al. [33]. Briefly, methylation using methanolic KOH
was performed on 0.1 g of extracted fat. A GC 6890 N (Agilent Technologies, Santa Clara,
CA, USA) chromatograph equipped with an automatic injector 7683 (Agilent Technologies)
and a fused silica capillary column (100 m × 0.25 mm; 0.20 µm) (SP-2560, Supelco, Inc.,
Bellefonte, PA, USA) were used. The injector and detector were maintained at 250 ◦C. The
column oven temperature was 150 ◦C, and the temperature was increased 1 ◦C/min to
165 ◦C, then 0.20 ◦C/min to 167 ◦C, and finally increased 1.50 ◦C/min to 225 ◦C over 15 min.
The carrier gas was helium, supplied at a flow rate of 1 mL/min. The injection volume
was 1 µL in splitless mode. The different fatty acids were identified by their retention
times using a mixture of fatty acid standards (47885-U Supelco, Sigma-Aldrich, Steinheim,
Germany). Fatty acid content was calculated using the peak areas of the chromatograms
and expressed as grams per 100 g of total fatty acid methyl esters.

2.3. Spectroscopy Measurements

The measurement protocol involved pre-conditioning the samples for two hours prior
to analysis, ensuring they reached a room temperature of 20 ± 2 ◦C, to guarantee the quality
and repeatability of the recorded spectra [1]. Subsequently, four slices from each package
were segregated and stacked in alignment. The samples subjected to NIR spectroscopy
were placed on a black cardboard covered with a PVC plastic film to make the background
uniform for analysis.

The measurements were taken using four portable NIR spectrometers: MicroNIR
1700 ES (VIAVI, Milpitas, CA, USA), Enterprise Sensor (TellSpec, Toronto, ON, Canada),
SCiO Sensor (Consumer Physics, Tel Aviv, Israel), and microPHAZIR (Thermo Fisher
Scientific, Waltham, MA, USA). A benchtop spectrometer, the NIRFlex N-500 (Büchi, Flawil,
Switzerland), chosen for its robustness and good performance in various applications,
was also used as a reference for the evaluation of the portable devices [34–36]. Each
instrument features distinct technical specifications, levels of portability, and key functional
elements. From the optical point of view, predominantly they have different wavelength
selectors, which largely define the operational spectral ranges and overall sizes of the



Appl. Sci. 2024, 14, 10680 4 of 18

sensors. It should be noted that all the instruments used are equipped with a tungsten
halogen lamp and InGaAs detector except the SCiO Sensor, which features an LED lamp
and Si photodiode detector. The recording configurations used were those recommended
for each device as reported by Hernández-Jiménez et al. [27], who also provide detailed
characteristics of the key attributes of these instruments.

For all the devices, the detector window was applied directly to the surface of the same
slice for static recording. To avoid the possible evaporation of water in the samples, the
measurements were taken consecutively with all the equipment. Spectra were measured at
six points on the lean muscle and four points on the fat for each slice. For each recording
area, the mean of all replicates was calculated to obtain an average spectrum of the fat and
an average spectrum of the lean meat for each of the 60 sliced ham samples.

2.4. Statistical Analyses
2.4.1. Spectra Pre-Treatment

To compare the predictive performance of the different instruments, quantitative
models were developed by applying the same spectral treatments to the sets of spectra
obtained by all of the evaluated spectrometers. The spectra obtained in lean muscle and
those obtained in fat were processed and compared independently. The spectra were
expressed in absorbance values by calculating log(1/R) with R being the reflectance values.
The software used to develop all the models was WinISI 4.10.

The wavelength range of each of the five evaluated instruments is different; the
full measurement range that each instrument can record was used in this study. The
replicate spectra recorded for each sample were averaged to obtain a single spectrum
per sample and instrument. Different combinations of spectra pre-treatments aimed at
the suppression of scattering effects (Standard Normal Variate (SNV), DeTrend (DT), and
SNV + DT, and effective resolution enhancement combined with smoothing (first- and
second-order derivatives by the Savitzky–Golay algorithm) were applied to the spectra
included in the calibration set. These pre-treatments reduce anomalies and noise and thus
improve the predictive capability of the model, neutralize wavelength-dependent trends,
and better expose the analytical information present in the spectra [37,38].

The mathematical treatments applied with WinISI software are described by four
digits (a,b,c,d), where a is the derivative order, b is the derivative gap, c is the smoothing
segment, and d is a second smoothing segment. In this study, the mathematical treatments
applied were the following: without derivative (0,0,1,1), with a first derivative (1,5,5,1)
and two second derivatives with different segments (2,5,5,1) and (2,10,10,1), based on the
results obtained in previous research [39,40].

2.4.2. Development of Calibration Models

The predictive model used was partial least squares (MPLS) regression, a supervised
dimensionality reduction technique for solving regression problems. It extracts latent
variables that capture joint variation between the data (X) and a target variable (y). These
latent variables are maximally predictive of y, allowing for efficient analysis with reduced
dimensions. The involved dimensionality reduction step itself is similar to the principal
component analysis (PCA) as the samples are projected on the score space; the difference is
that the relationship between the data (independent variables) and a target variable during
dimension reduction is considered [41]. This also enables the detection of outliers according
to the Mahalanobis distance (H) of each sample from the population center [42]. In the
present study, the spectra with an H-distance > 3.5 were considered outliers. Outlying
samples were also eliminated for chemical reasons under the T-criterion, i.e., those samples
that showed significant differences between the reference value and the predicted value for
a T-value ≥ 2.5 [43].

The number of latent variables was chosen to minimize calibration and cross-validation
errors and was different depending on the constituent to be calibrated. For this work,
a maximum of 9 latent variables were prefixed for the generation of the models, and
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a maximum of two passes were carried out to eliminate spectral and chemical outliers
using the H- and T-criteria, respectively. The predictive ability of the model was tested by
cross-validation. In analytical problems with the number samples similar to those available
in this study (n ≤ 60), leave-one-out cross-validation (LOO CV) is often recommended [44]
without the need for external validation. However, LOO CV is computationally heavy
in the processing of large data sets (i.e., large number of data points per spectrum), such
as those delivered by the NIRFlex N-500 [45]. Alternatively, the k-fold CV approach is
less computationally expensive than LOO CV and even more robust against overfitting
when each sample is represented by one observable (averaged spectra). As demonstrated
by Turgut et al. [45], k-fold cross-validation delivers consistent results; however, the se-
lected number of folds might be meaningful when different spectrometers are evaluated.
Therefore, a more sophisticated approach was employed in this study with the model
internally validated using a 6-fold CV, as the processed spectral data did not present any
major problems given the sample size and relative homogeneity of the data set. The choice
of the cross-validation method—within a reasonable range of folds considering the sample
count (e.g., 4 to 7 folds)—should not affect the final estimate of the optimal model com-
plexity and, consequently, the choice of a 6-fold CV grants proper validity to the results.
Additionally, calibration was carried out six times, according to the number of groups, and
internal validation was performed each time by a group of samples that was not taken into
account in the model. The resulting performance of the predictions was compared by the
highest multiple correlation coefficient (R-squared, RSQ) and the lowest standard error of
calibration and cross-validation (SEC and SECV).

3. Results and Discussion
3.1. Spectral Characteristics

Figure 1 shows the average of the raw spectra measured both on the lean muscle
and on the fat for each piece of equipment. The spectral interval ranged from 740 nm
(shortest wavelength acquired by SCiO Sensor) to 2500 nm (longest wavelength acquired
by NIRFlex N-500). Within the overlapping wavelength range (1000 to 1700 nm) where
most devices collected spectra, a general similarity in the absorption line shapes can be
observed (Figure 1). Higher absorbance values are seen in the regions associated with
C-H groups from fatty acids (around 1200 nm, 1700–1750 nm, and 2300–2350 nm, as
highlighted in yellow in Figure 1) and O-H groups linked to moisture (around 1000 nm,
1400–1450 nm, and 1950 nm, as highlighted in blue in Figure 1) [46,47]. These features are
particularly strong in the case of the NIRFlex N-500 benchtop spectrometer, followed by
the Enterprise Sensor.

Regarding the spectra of fat, higher spectral intensities are observed around 1200 nm,
a wavelength related to absorption in the second overtone of the C-H stretching vibration,
associated with intramuscular fat [48,49], and at 1700–1750 nm, corresponding to the
region of CH2 stretching first overtones and binary combination bands, i.e., the signal
highly indicative of fat and saturated fatty acids. Further characteristic features can be
identified between the 2300 and 2350 nm region measured by the NIRFlex N-500. The
bands corresponding to absorption of the C-H combinations associated with unsaturated
fatty acid content are observed there [50]. Differences associated with moisture are clearly
observable in the 1400–1450 nm and 1950–2000 nm bands with markedly higher intensity in
the lean muscle spectra than in the fat spectra due to the third, second, and first overtones
of the O-H stretching mode [51]. The absorption at around 1000 nm is also indicative
of O-H bonds, and it can be concluded that the spectra of lean meat showed stronger
absorption than the spectra of fat; this behavior manifests a relatively stronger magnitude
for the SCiO Sensor. Previous studies [52,53] on Iberian ham have shown that different
fatty acids exhibit similar absorption bands due to the high number of shared absorbing
molecular groups (-CH2-), a similarity that is particularly reflected in regression models.
Nevertheless, the absorption bands at 1696 and 1720 nm have been related to the particular
case of linoleic acid [54].
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3.2. Fatty Acid Composition

The results of the lipid profile for the 28 fatty acids that could be quantified in at least
80% of the ham samples and the sums by functional groups (SFAs: total saturated fatty
acids, MUFAs: total monounsaturated fatty acids, PUFAs: total polyunsaturated fatty acids,
n3: total n3 PUFAs, n6: total n6 PUFAs) are shown in Table 1. It can be seen that both
the values of the individual fatty acids and the sums show a wide range of variability.
This is due to the fact that the hams come from animals reared in three different farms
with different times in the fattening stage (montanera) and of different genetic purity (100%
Iberian and 50% Iberian). As reported in other studies, the time in montanera influences the
lipid profile of the animals [33]. In addition, genetic purity also affects the fatty acid profile,
with significantly higher percentages of monounsaturated fatty acids and significantly
lower percentages of polyunsaturated fatty acids being observed in 100% Iberian pigs [55].
The values of the different fatty acids and summates are within the values previously
described for the Biceps femoris muscle of 100% Iberian and 50% Iberian animals raised in
fattening systems similar to that of the present study [56,57].

Table 1. Fatty acids analyzed in Iberian hams, expressed as % by weight of total FAs.

Fatty Acid Mean Min Max SD CV

C12:0 0.09 0.07 0.20 0.02 20.88
C13:0 0.00 0.00 0.04 0.01 247.33
C14:0 1.34 1.03 2.06 0.15 11.36

C14:1 n5 0.03 0.01 0.10 0.01 36.45
C15:0 0.03 0.02 0.08 0.01 26.90
C15:1 0.00 0.00 0.07 0.01 613.80
C16:0 21.91 19.05 24.91 1.26 5.74
C16:1 4.53 3.15 5.68 0.58 12.86
C17:0 0.18 0.14 0.24 0.02 12.68
C17:1 0.19 0.12 0.27 0.03 14.75
C18:0 8.23 6.27 10.77 0.97 11.74

C18:1 n9t 0.23 0.13 0.34 0.04 18.69
C18:1 50.68 46.38 53.61 1.61 3.17

C18:1 n7 4.66 3.43 5.48 0.48 10.27
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Table 1. Cont.

Fatty Acid Mean Min Max SD CV

C18:2 n6t 0.02 0.00 0.17 0.02 98.91
C18:2 n6 5.38 3.81 7.20 0.90 16.73

C20:0 0.17 0.12 0.48 0.04 26.96
C18:3 n6 0.02 0.01 0.12 0.01 66.45
C20:1 n9 0.05 0.00 0.11 0.03 72.91
C18:3 n3 1.33 1.10 1.54 0.12 8.92

C21:0 0.07 0.04 0.12 0.01 18.78
C20:2 n6 0.25 0.19 0.32 0.04 14.57

C22:0 0.03 0.02 0.05 0.01 19.42
C20:3 n6 0.06 0.04 0.08 0.01 15.77
C22:1 n9 0.10 0.07 0.28 0.03 28.39
C20:3 n3 0.25 0.00 0.34 0.05 22.10
C20:4 n6 0.08 0.02 0.18 0.03 45.21

C23:0 0.00 0.00 0.04 0.01 187.08
C22:2 n6 0.04 0.00 1.32 0.17 463.49

C24:0 0.02 0.00 0.05 0.01 44.39
C20:5 n3 0.00 0.00 0.03 0.00 464.18
C24:1 n9 0.01 0.00 0.23 0.03 387.71
C22:6 n3 0.06 0.00 0.13 0.02 24.89

SFAs 32.06 28.38 37.25 2.10 6.54
MUFAs 60.47 56.39 62.91 1.53 2.53
PUFAs 7.45 5.72 10.16 1.10 14.74

n3 1.64 1.35 1.93 0.15 9.17
n6 5.81 4.22 8.33 0.97 16.67

Min: minimum value, Max: maximum value, SD: standard deviation, CV: coefficient of variation, SFAs: total
saturated fatty acids, MUFAs: total monounsaturated fatty acids, PUFAs: total polyunsaturated fatty acids,
n3: total n3 PUFAs, n6: total n6 PUFAs.

3.3. Regression Models

The calibration equations for the different fatty acids were calculated using the fatty
acid profile of the intramuscular fat determined by gas chromatography (GC) as a reference
analysis and the spectra recorded either in the lean meat or in the fat of the slice as
a predictor variable, in order to evaluate which sampling area is more appropriate for pre-
diction. The development of the equations was carried out both using the raw spectra and
using the spectra treated with different methods as described in Section 2.4.1. Systematic
evaluation of different combinations of pre-treatments is desirable in order to optimize the
method used in a specific application and efficiently evaluate different validation sets [39].
In total, 16 combinations of spectral pre-treatments were performed for each fatty acid or
summation, sampling area, and piece of equipment.

After the optimization of the pre-treatment, it was possible to calibrate 24 individual
fatty acids and the summates for any of the five devices used with an RSQ > 0.5. When
analyzing which treatment provided the best statistical parameters for obtaining the pre-
diction equation for each fatty acid, piece of equipment, and place of recording of the
spectra (Supplementary Materials, Table S1), it is observed that the application of the
second derivative, specifically the variant denoted as (2,5,5,1), provided the best calibration
results in 61 out of the 145 equations obtained in this work, followed by the variant de-
noted as (1,5,5,1), with a first derivative, which allowed obtaining acceptable equations for
48 out of the 145 equations. As for the scatter treatments, the DT treatment was the most
suitable as it allowed the obtainment of 46 equations fulfilling the criteria, followed by the
SNV treatment, which was successful for 39 equations. Finally, the combination of smooth-
ing and scatter treatments that yielded the highest number of acceptable equations was
DeTrend (2,5,5,1) with a second derivative, with 25 equations out of the total 145, and the
first derivative without scatter treatment (i.e., ‘None’) (1,5,5,1) with 20 equations out of 145.

Other studies have also reported the best approaches to obtaining fatty acid equations
from subcutaneous fat with second derivative and smoothing treatments [29], in agree-
ment with the results observed for other products derived from Iberian pork (chorizo and
salchichón) [58]. In Iberian pork loins, González-Martín et al. [59] also obtained almost all
the calibration equations for the prediction of fatty acids with the spectra treated with
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a second derivative combined with DeTrend. The application of the second derivative to
NIR spectra has been shown to be particularly suitable for the prediction of many meat
constituents [60]. On the one hand, it minimizes the differences between the maximum and
minimum absorbances of different samples by reducing scattering effects and increasing
the resolution of the peaks of the spectra [61]. On the other hand, its application on the
spectra reveals different peaks that would be related to fat (962–968 nm) and that would
improve the prediction of fatty acids [52].

3.4. Fatty Acid Profile Prediction Using Fat Spectra

Table 2 shows the main statistical descriptors of the best regression equations obtained
for each of the fatty acids predicted by any of the five NIR spectrometers evaluated here,
using the spectra recorded in the fatty part of the Iberian ham slices. The number of outliers
removed during calibration ranged from 0 to 5, representing between 0% and 8% of the
initial calibration set, which is an acceptable range of values [58].

The number of fatty acids that could be successfully calibrated strongly depended on
the particular NIR instrument used. Thus, with the benchtop spectrometer NIRFlex N-500,
which is the most robust and offers the widest wavelength range, 24 fatty acids could
be calibrated with RSQ values higher than 0.5 (0.54–0.99). However, the RSQs in cross-
validation only exceed 0.5 in five of the equations. Another parameter that can be used to
evaluate and compare the calibration performance between devices is RPD = SD/SEC. For
the benchtop instrument, 10 of the 24 equations could be classified as good for calibration
by obtaining an RPD > 2. These include the following fatty acids: lauric acid (C12:0), myris-
toleic acid (C14:1), palmitoleic acid (C16:1), oleic acid (C18:1), trans-vaccenic acid (C18:1n7),
linoleic acid (C18:2n6), arachidic acid (C20:0), cis-8,11,14-eicosadienoic acid (C20:2n6), the
summation of saturated fatty acids (SFAs), and the summation of monounsaturated fatty
acids (MUFAs) with RPD values between 2.03 and 2.98. Another 10 equations were consid-
ered suitable for analytical purposes as they had an RPD > 3; in fact, they were between
3.13 and 8.75. These included palmitic acid (C16:0), heptadecenoic acid (C17:1), stearic
acid (C18:0), α-linolenic acid (C18:3n3), heneicosanoic acid (C21:0), erucic acid (C22:1n9),
lignoceric acid (C24:0), the summation of polyunsaturated fatty acids (PUFAs), n3 PUFAs,
and n6 PUFAs [16,62].

The Enterprise Sensor (TellSpec) allowed the second highest number of successful
prediction equations to be obtained, with 16 predicted fatty acids or summations. All of
them could also be calibrated with the NIRFlex N-500, except behenic acid (C22:0), which
could only be predicted with this portable device. Comparing the predictive performance
of this miniaturized spectrometer with that of the benchtop instrument, a lower value of
the RSQ and RPD statistics and higher calibration errors can be observed. The RSQ values
were between 0.51 and 0.86 with RPD values > 2 for 5 out of the 16 equations, i.e., those
corresponding to C16:1, C18:2 n6, C22:0, MUFAs, and n6 fatty acids.

Regarding the SCiO Sensor and MicroNIR devices, calibration equations with an
RSQ > 0.5 could be obtained for 12 and 10 fatty acids (or summations), respectively,
10 of which were common to both devices: C16:0, sC18:0, C18:2 n6, C18:3 n3, C20:n6,
SFAs, MUFAs, PUFAs, n3, and n6. C20:0 and C24:0 acids could only be predicted by the
SCiO Sensor and not by MicroNIR. As far as the parameters related to predictive perfor-
mance are concerned, the SCiO Sensor obtained RSQs between 0.55 and 0.81, with six of
the equations presenting an RSQ > 0.7, and RPDs between 1.50 and 2.32. In the case of
MicroNIR, the RSQ values were between 0.51 and 0.72, but only one equation presented
a value >0.7, and the RPDs were slightly lower than those obtained with the SCiO, between
1.43 and 1.90. Therefore, both devices were able to calibrate a lower number of fatty acids
and achieved lower statistical parameter values compared to the benchtop instrument.
A comparison between the SCiO Sensor and Enterprise Sensor shows that, although fewer
fatty acids can be calibrated with the SCiO Sensor, there were six with an RSQ > 0.7 in both
cases, obtaining RPD > 2 values for three components (SFAs, PUFAs, and n6) with the SCiO
Sensor instead of the five (C16:1, C18 n:6, C22:0, PUFAs, and n6) shown by the Enterprise
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Sensor. However, it is worth noting that the MicroNIR device was the only portable device
to show RSQ values in cross-validation equal or higher than 0.5 for individual fatty acids.
But for the fatty acid summates, RSQcv values > 0.5 were obtained for the total n6 fatty
acids with the Enterprise Sensor device and for the SFAs and MUFAs summates for the
MicroNIR device.

Finally, only five fatty acids could be calibrated with the microPHAZIR instrument,
including pentadecanoic acid C15:0—which was only calibrated with this device—C16:0,
C17:1, C20:0, and C24:0. The RSQ and RPD values were between 0.50 and 0.69 and between
1.14 and 1.80, respectively, with the lowest performance of all the devices compared. More-
over, while all the devices used allowed the obtainment of calibration equations for the fatty
acid summations according to their degree of unsaturation, with the microPHAZIR device,
it was not possible to calibrate any sum. It appears that the particularly narrow wavelength
region in which this handheld spectrometer operates poses a considerable limiting factor
for fatty acid prediction. The bands corresponding to fatty acids have been described to be
around 1210 nm, related to the second CH overtone; 1726 and 1760 nm, associated with the
first CH overtone; and 2308 nm, associated with the second CH overtone [58]. All these
bands are outside the recording range of this equipment.

Figure 2 shows the prediction plots for the sum of the MUFAs. This parameter was
chosen because it could be successfully predicted by all instruments except the microP-
HAZIR device. In addition, a high MUFA content is characteristic of Iberian products and
is directly related to the type of feed received by the animals during the fattening period.
Monounsaturated fatty acids are also of great interest to the processing industry since their
presence plays a key role in the sensory profile. The NIRFlex N-500 instrument provided
better RSQ values than the SCiO, Enterprise, and MicroNIR devices.
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monounsaturated fatty acids with different devices using NIR spectra measured in the fat zones of
the samples.

3.5. Fatty Acid Profile Prediction Using Lean Meat Spectra

Similar to the case of fat, the calibration equations were calculated using the spectra
measured in the lean meat part of the ham slice as well; their corresponding statistical
descriptors are shown in Table 3. In this case, the number of outliers removed during
calibration ranged from 0 to 8 (in two equations) representing between 0% and 13% of the
initial calibration set.
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The benchtop spectrometer (NIRFlex N-500) again allowed the obtainment of the
highest number (a total of 24) of equations with an RSQ > 0.5, with values ranging from
0.59 to 0.99 and RPDs ranging from 1.56 to 10.40. Of the total of 24 equations, those
obtained for C12:0, C14:0, C14:1 n-5, C16:0, C18:0, C18:1, C18:2 n6, C20:0, C18:3 n3, C20:3n6,
C20:3 n3, and all sums (SFAs, MUFAs, PUFAs, n3, and n6) can be considered as suitable
for analytical purposes (RPD > 3); this means that almost all the main fatty acids can be
successfully predicted. As previously observed for the fat, the next highest number of
predictive equations was obtained for the Enterprise Sensor with a total of 19 calibrated
components, with RSQ values between 0.50 and 0.93 and RPDs between 1.42 and 3.67.
In this case, only the equations obtained for the C18:2 n6, C20:0, and the total n6 fatty
acids are classified as suitable for analytical purposes for presenting RPD > 3 [16]. Of
these calibrated constituents, all were common with the benchtop except heptadecanoic
acid (C17:0), C17:1, and elaidic acid (C18:1 n9t), which had not been possible to calibrate
with the NIRFlex N-500. As far as the other instruments are concerned, 14 equations were
successfully obtained for the MicroNIR instrument, 12 equations for the microPHAZIR
instrument, and 9 equations for the SCiO Sensor. Regarding the statistical metrics, low
calibration errors are observed in all cases, but these were slightly higher than those of the
benchtop unit in most cases.

The RSQ values obtained for the microPHAZIR equipment were between 0.52 and
0.92, and the equations obtained for the fatty acids C17:0, C17:1, C18:1 n9t, C18:1 n7, and
the sum of MUFAs presented an RPD value > 2, which means that they can be considered
as good. It should be noted that the C18:1n7 fatty acid could only be calibrated with the
PHAZIR instrument. In the case of the MicroNIR equipment, the RSQ values ranged
between 0.50 and 0.70, while for the SCiO Sensor, these values ranged between 0.52 and
0.61, and the RPD values were below 2 for both equipment in all cases.

Figure 3 shows the prediction graphs for the sum of the MUFAs. In this case, the SCiO
was the only equipment that does not allow this summation to be calibrated. The linear
regression of the calculated values against the values obtained in the calibration showed,
as previously observed for the fat recording, the good performance of the NIRFlex N-500
equipment compared to the portable equipment, followed by the microPHAZIR.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 23 
 

 

  

  
Figure 3. Linear regression plot of the measured versus predicted values within the calibration set 
for monounsaturated fatty acids with different devices using the NIR spectra measured in the lean 
meat zones in the samples. 

3.6. Comparison of Spectra Sampling Zone: Fat vs. Lean Meat 
When comparing the efficiency of the spectrometers based on the sampling zone (fat 

vs. lean tissue), the NIRFlex N-500 performed well in both zones, successfully calibrating 
24 fatty acids. Notably, the spectrometer achieved calibration for C15:0 and C22:0 in the 
lean tissue zone, which could not be calibrated successfully using spectra from the fat 
zone. However, it was unable to predict certain fatty acids such as C17:1 and C18:1n7 (the 
latter being one of the major fatty acids in the sample, as shown in Table 1). In terms of 
model performance, the RSQ values (a measure of the goodness of fit of the calibration 
model) were >0.7 in more than 80% of the equations obtained from both the lean and fat 
tissue zones, which indicate strong calibration quality. However, when assessing the RSQ 
in cross-validation (RSQcv), it was found that the RSQcv values were lower for spectra 
recorded in the lean tissue zone compared to the fat zone. The RSQcv is particularly im-
portant as it measures the predictive accuracy of the model on unseen data or how well 
the model generalizes to new samples. A value close to 1 would indicate that the model 
can predict the fatty acid concentrations in new samples very accurately, which is ideal 
for practical applications. In this case, the lower RSQcv in the lean tissue zone suggests 
that although the model fits well to the training data, it may not generalize as effectively 
when the lean zone is analyzed. This trend seems to reflect the differences in the homoge-
neity of the sample within the respective zones considered here. The lean muscle tissue 
generally has a more complex composition, with varying amounts of water, protein, and 
fat distributed unevenly across different regions of the tissue. This variation makes it more 

Figure 3. Linear regression plot of the measured versus predicted values within the calibration set for
monounsaturated fatty acids with different devices using the NIR spectra measured in the lean meat
zones in the samples.



Appl. Sci. 2024, 14, 10680 11 of 18

Table 2. Statistical descriptors for the best calibration equations obtained from the NIR spectra of fat for the five devices.

Fatty
Acid

NIRFlex N-500 MicroPHAZIR SCiO Sensor Enterprise Sensor MicroNIR

N SEC RPD RSQ SECV RSQcv N SEC RPD RSQ SECV RSQcv N SEC RPD RSQ SECV RSQcv N SEC RPD RSQ SECV RSQcv N SEC RPD RSQ SECV RSQcv

C12:0 55 0.00 2.03 0.75 0.01 0.02
C14:0 57 0.06 1.81 0.70 0.09 0.30
C14:1 n5 58 0.00 2.32 0.82 0.01 0.15 57 0.00 1.57 0.60 0.01 0.05
C15:0 58 0.003 1.40 0.50 0.00 0.13
C16:0 57 0.34 3.55 0.92 0.87 0.47 57 0.730 1.56 0.59 0.89 0.37 59 0.64 1.91 0.73 1.19 0.03 58 0.73 1.69 0.65 0.99 0.34 57 0.73 1.67 0.64 0.85 0.50
∑ C16:1 59 0.23 2.51 0.84 0.46 0.37 57 0.22 2.66 0.86 0.47 0.31
C17:0
C17:1 59 0.01 3.85 0.93 0.03 0.00 57 0.015 1.59 0.60 0.02 0.09
C18:0 60 0.26 3.66 0.93 0.90 0.12 59 0.58 1.65 0.63 0.90 0.11
C18:1 57 0.51 2.98 0.89 0.98 0.58 53 1.00 1.55 0.58 1.31 0.27 57 0.93 1.61 0.61 1.43 0.06 58 0.64 1.52 0.56 0.79 0.33
C18:1 n7 60 0.20 2.39 0.83 0.38 0.37 57 0.22 1.98 0.75 0.41 0.06
C18:2 n6 57 0.34 2.53 0.84 0.57 0.56 58 0.45 1.98 0.75 0.81 0.18 58 0.38 2.34 0.82 0.67 0.41 58 0.53 1.63 0.62 0.65 0.43
C20:0 58 0.01 2.69 0.86 0.01 0.12 58 0.02 1.53 0.58 0.02 0.38
C18:3 n6 58 0.00 1.52 0.55 0.00 0.15 57 0.021 1.14 0.54 0.03 0.22
C18:3 n3 56 0.02 6.26 0.97 0.06 0.69 58 0.08 1.49 0.55 0.11 0.16 59 0.08 1.48 0.54 0.11 0.16 56 0.07 1.79 0.69 0.08 0.53
C21:0 58 0.00 3.68 0.93 0.01 0.31 56 0.01 1.62 0.62 0.01 0.07
C20:2 n6 58 0.01 2.49 0.84 0.03 0.38 59 0.02 1.75 0.67 0.04 0.01 56 0.02 1.69 0.65 0.02 0.48
C22:0 57 0.00 2.09 0.77 0.00 0.06
C20:3 n6 58 0.01 1.48 0.54 0.01 0.12
C22:1 n9 59 0.00 4.67 0.95 0.01 0.18
C20:3 n3 57 0.03 1.46 0.53 0.04 0.13
C22:2 n6
C24:0 54 0.00 8.75 0.99 0.01 0.20 56 0.004 1.80 0.69 0.01 0.04 53 0.00 1.50 0.55 0.01 0.23 53 0.00 1.45 0.51 0.01 0.37

SFAs 60 0.85 2.47 0.84 1.65 0.37 59 0.95 2.14 0.78 1.67 0.31 56 1.28 1.55 0.59 1.75 0.22 54 0.96 1.90 0.72 1.19 0.56
MUFAs 56 0.66 2.22 0.80 1.15 0.38 52 0.63 1.96 0.74 1.07 0.23 57 0.88 1.55 0.58 1.23 0.17 57 1.02 1.43 0.51 1.19 0.33
PUFAs 56 0.32 3.13 0.90 0.64 0.60 55 0.44 2.32 0.81 0.80 0.38 58 0.47 2.30 0.81 0.79 0.46 56 0.61 1.69 0.65 0.71 0.51
n3 58 0.03 5.30 0.96 0.11 0.36 59 0.09 1.63 0.63 0.15 0.00 57 0.10 1.47 0.54 0.12 0.28 57 0.09 1.53 0.57 0.12 0.32
n6 57 0.23 3.93 0.94 0.62 0.53 55 0.42 2.12 0.78 0.65 0.46 57 0.38 2.52 0.84 0.67 0.50 57 0.53 1.69 0.65 0.67 0.42

N: number of samples after removing the outliers; SEC: standard error of calibration; SECV: standard error of cross-validation; RSQ: multiple correlation coefficient of calibration;
RPD: ratio performance deviation; RSQcv: multiple correlation coefficient of cross-validation.

Table 3. Statistical descriptors for the best calibration equations obtained from the NIR spectra of lean meat for the five devices.

Fatty
Acid

NIRFlex N-500 MicroPHAZIR SCiO Sensor Enterprise Sensor MicroNIR

N SEC RPD RSQ SECV RSQcv N SEC RPD RSQ SECV RSQcv N SEC RPD RSQ SECV RSQcv N SEC RPD RSQ SECV RSQcv N SEC RPD RSQ SECV RSQcv

C12:0 56 0.00 7.90 0.98 0.01 −0.07 53 0.00 1.82 0.69 0.01 −0.1542
C14:0 56 0.03 3.06 0.89 0.10 0.08 59 0.07 1.67 0.64 0.11 0.07 57 0.05 2.09 0.77 0.09 0.26
C14:1 n5 56 0.00 3.53 0.92 0.00 0.18 56 0.00 1.61 0.62 0.01 −0.04
C15:0 57 0.00 2.86 0.88 0.00 0.12
C16:0 59 0.37 3.28 0.91 1.05 0.24 54 0.79 1.47 0.53 0.88 0.42 57 0.43 2.64 0.86 0.80 0.51 59 0.86 1.47 0.54 1.01 0.35
∑ C16:1 58 0.27 1.97 0.74 0.49 0.13 59 0.35 1.61 0.61 0.53 0.13
C17:0 57 0.01 2.26 0.80 0.02 0.32 57 0.02 1.42 0.50 0.02 0.23 59 0.01 1.58 0.60 0.02 0.34
C17:1 57 0.01 2.51 0.84 0.03 0.12 56 0.02 1.51 0.56 0.03 −0.1011
C18:0 59 0.30 3.13 0.90 0.84 0.21 60 0.67 1.45 0.52 1.05 −0.19 56 0.63 1.49 0.55 0.75 0.35
C18:1 n9t 59 0.01 3.49 0.92 0.03 0.35 53 0.03 1.51 0.56 0.04 0.12 57 0.03 1.45 0.53 0.03 0.22
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Table 3. Cont.

Fatty
Acid

NIRFlex N-500 MicroPHAZIR SCiO Sensor Enterprise Sensor MicroNIR

N SEC RPD RSQ SECV RSQcv N SEC RPD RSQ SECV RSQcv N SEC RPD RSQ SECV RSQcv N SEC RPD RSQ SECV RSQcv N SEC RPD RSQ SECV RSQcv

C18:1 58 0.37 4.13 0.94 1.29 0.27 58 0.73 2.08 0.77 1.26 0.30 57 0.79 1.92 0.73 1.43 0.10 59 1.14 1.42 0.50 1.37 0.27
C18:1 n7 58 0.22 2.09 0.77 0.39 0.23
C18:2 n6 56 0.13 6.27 0.97 0.58 0.52 53 0.51 1.59 0.61 0.56 0.51 58 0.27 3.38 0.91 0.65 0.49 57 0.59 1.49 0.55 0.85 0.06
C20:0 58 0.00 10.40 0.99 0.02 −0.01 60 0.02 1.81 0.69 0.03 0.22 55 0.02 1.42 0.50 0.02 0.36 54 0.01 3.41 0.91 0.03 0.18
C18:3 n6 59 0.00 2.25 0.81 0.00 0.06 56 0.00 1.75 0.68 0.00 0.37 57 0.00 1.44 0.53 0.00 0.26
C18:3 n3 59 0.03 3.94 0.94 0.10 0.26 56 0.08 1.44 0.52 0.09 0.34 60 0.08 1.47 0.54 0.11 0.13 57 0.07 1.75 0.67 0.08 0.53
C21:0 58 0.00 2.32 0.81 0.01 −0.31
C20:2 n6 60 0.02 1.56 0.59 0.03 0.14 54 0.02 1.48 0.54 0.03 0.26 60 0.02 1.49 0.55 0.03 0.13
C22:0 59 0.00 1.71 0.65 0.00 0.31
C20:3 n6 58 0.00 8.00 0.98 0.01 0.45 59 0.01 1.45 0.52 0.01 0.31
C22:1 n9 58 0.01 1.76 0.68 0.01 −0.32 55 0.01 1.45 0.53 0.01 0.28 56 0.01 1.49 0.55 0.01 0.39
C20:3 n3 56 0.00 9.60 0.99 0.03 0.53 57 0.02 1.96 0.74 0.04 0.28 55 0.02 1.80 0.69 0.03 0.52
C24:0 58 0.00 1.76 0.68 0.01 −0.15 55 0.00 1.78 0.68 0.01 0.26 56 0.01 1.42 0.50 0.01 0.01

SFAs 58 0.27 7.26 0.98 1.45 0.43 57 1.39 1.53 0.57 2.00 0.10 58 0.87 2.18 0.79 1.61 0.27 58 1.31 1.62 0.62 1.66 0.37
MUFAs 57 0.25 5.30 0.96 1.16 0.19 55 0.54 2.64 0.86 1.35 0.08 56 0.89 1.50 0.55 1.20 0.17 53 0.69 1.68 0.64 0.78 0.53
PUFAs 57 0.09 11.11 0.99 0.75 0.48 52 0.63 1.57 0.59 0.69 0.49 58 0.49 2.25 0.80 0.82 0.43 57 0.73 1.48 0.54 0.88 0.33
n3 57 0.03 5.17 0.96 0.11 0.42 56 0.08 1.84 0.70 0.11 0.45
n6 56 0.14 6.71 0.98 0.62 0.53 52 0.55 1.58 0.60 0.60 0.50 57 0.27 3.67 0.93 0.64 0.55

N: number of samples after removing the outliers; SEC: standard error of calibration; SECV: standard error of cross-validation; RSQ: multiple correlation coefficient of calibration;
RPD: ratio performance deviation; RSQcv: multiple correlation coefficient of cross-validation.
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3.6. Comparison of Spectra Sampling Zone: Fat vs. Lean Meat

When comparing the efficiency of the spectrometers based on the sampling zone (fat
vs. lean tissue), the NIRFlex N-500 performed well in both zones, successfully calibrating
24 fatty acids. Notably, the spectrometer achieved calibration for C15:0 and C22:0 in the
lean tissue zone, which could not be calibrated successfully using spectra from the fat zone.
However, it was unable to predict certain fatty acids such as C17:1 and C18:1n7 (the latter
being one of the major fatty acids in the sample, as shown in Table 1). In terms of model
performance, the RSQ values (a measure of the goodness of fit of the calibration model)
were >0.7 in more than 80% of the equations obtained from both the lean and fat tissue
zones, which indicate strong calibration quality. However, when assessing the RSQ in cross-
validation (RSQcv), it was found that the RSQcv values were lower for spectra recorded
in the lean tissue zone compared to the fat zone. The RSQcv is particularly important as
it measures the predictive accuracy of the model on unseen data or how well the model
generalizes to new samples. A value close to 1 would indicate that the model can predict
the fatty acid concentrations in new samples very accurately, which is ideal for practical
applications. In this case, the lower RSQcv in the lean tissue zone suggests that although
the model fits well to the training data, it may not generalize as effectively when the lean
zone is analyzed. This trend seems to reflect the differences in the homogeneity of the
sample within the respective zones considered here. The lean muscle tissue generally has
a more complex composition, with varying amounts of water, protein, and fat distributed
unevenly across different regions of the tissue. This variation makes it more challenging to
create a predictive model that generalizes well to new samples. In contrast, the fat zone
tends to have a more consistent and homogenous composition (mostly fat), which allows
for better calibration and more stable, generalized predictions. The fat is more uniform
across the tissue, making it easier for the model to capture consistent absorption features
and reduce prediction errors.

Thus, this discrepancy in the zone-specific modeling highlights the importance of
careful selection of the sampling zone (fat vs. lean) in model development, as it can
influence the predictive performance of the calibration equations. Furthermore, a clear
impact of instrument-related characteristics can be seen in this context. Spectrometers with
a wider sample spot should perform better in the case of more inhomogeneous samples.
Therefore, while the NIRFlex N-500 was successful in calibrating a broad range of fatty
acids across both zones, further optimization is needed for better predictive performance,
especially in the lean tissue zone.

In the case of the Enterprise Sensor, the number of constituents for which successful
prediction equation could be established was higher when the recording was made in the
lean meat with 19 constituents compared to the 16 calibrated in the fat. No equation was
obtained for C14:0 and C18:2 n6 in the fat recording and for C16:1, C18:1n7, and the sum
of n3 in the recording in the meat zone. RSQ values > 0.7 were observed in 50% of the
equations in both locations, but only RSQcv values > 0.5 were obtained for the sum of n6 in
both the fat and lean zone and of C16:0 in the lean-zone recordings.

In the case of the microPHAZIR equipment with the recording of the lean zone,
12 equations were obtained, including all the major fatty acids—except C18:3n3—and
MUFAs. In the case of the spectra taken with this equipment in the fat zone, only five
fatty acids are predictable, among which only C16:0 is found among the major fatty acids,
but none of the summations. In addition, no predictive equation was obtained for RSQ
values > 0.7.

MicroNIR also shows this behavior, i.e., a lower number of predicted constituents
from the fat spectrum (10) with respect to the lean zone (14) and only one equation with
an RSQ > 0.7 in each recording zone. It should be noted that this equipment is the one that
presented the highest number of equations with an RSQcv > 0.5 with respect to the rest of
the portable equipment.

Finally, the SCiO presented the opposite tendency, so that the number of equations
obtained from the fat spectra was greater than in the meat zone with the prediction of
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12 fatty acids, among which are all the summative and the majority C16:0, C18:2 n6, and
C18:3 n3 versus 9 fatty acids predicted in the lean meat zone and 50% of the equations with
RSQ values > 0.7 but no RSQcv > 0.5.

In order to assess the suitability of the equations developed, the SEC and SECV values
must also be taken into consideration. Specifically, the RSQcv and SEC are relevant because
a higher value of the RSQcv and a lower value of the SEC are indicative of a better predictive
fit and less error in the calibrated value, thus obtaining a more accurate and reliable model.
On the other hand, SEC and SECv values provide information on how the model fits the
calibration data and how it behaves with data that are not part of the calibration training.
Comparison between the two data may result in detecting poor predictive reliability due to
overfitting when the SEC is significantly lower than the SECv. To determine a correct fit,
the SEC and SECv values must be very close to confirm a tight and reliable model for the
prediction of samples external to the calibration set.

The SEC in all equations took very low values in general, with slightly higher values in
the fat recording zone for the NIRFlex N-500, microPHAZIR, and Enterprise Sensor devices.
On the contrary, for the SCiO Sensor equipment, the SEC values were slightly higher in
most of the equations for the spectra taken in the lean meat zone, while for the MicroNIR
equipment, the behavior of the errors was similar in both zones. Finally, the cross-validation
errors (SECv) presented different behaviors with respect to the SEC; in some of the cases,
the behavior of both was maintained, and in other cases, it was much higher. These errors
are comparable with those reported in the literature for the fatty acids C18:0, C18:2, and
C18:3 [28]. The analysis of the results obtained seems to show that the number of equations
obtained for the calibration of fatty acids is always higher when the recording is carried out
on lean meat. This fact is especially significant in the microPHAZIR equipment that records
in the longer wavelength zone (1596–2395 nm). On the other hand, only the spectral zone of
740–1070 nm (SCiO equipment) offers a greater number of calibration equations in samples
when the recording is performed on fat. This appears to indicate that higher wavelengths
are more suitable for lean and lower wavelengths for fat.

It should be noted that fatty acids are muscle components that are strongly influenced
by animal nutrition and to a lesser extent by genotype. In turn, they are associated with
many sensory attributes of meat and meat products [63]. Specifically, in Iberian ham, a high
content of infiltrated fat directly related to a higher oleic acid content and lower PUFA
content is pursued, which is reflected in the product through the properties of smoothness
and shine. In addition, a high oleic and palmitoleic acid content is associated with less
hardness, dryness, and fibrousness in the cured product [57]. Therefore, the determination
of the lipid profile can be interesting to look at for correlations with sensory parameters of
interest in this type of cured product.

4. Conclusions

The results obtained in this work evidence the potential of NIR spectroscopy, includ-
ing miniaturized sensors, which can be considered as an alternative to conventional gas
chromatographic analysis for the determination of the lipid profile in Iberian ham. The
results showed that it was possible to predict, using spectra recorded in both meat and fat,
the most abundant fatty acids and their summations. All of them showed RSQ values > 0.7
when using the NIRFlex N-500 benchtop instrument for both the meat and fat spectra
recording sites. The Sensor Enterprise gave an RSQ > 0.7 for C18:2 and PUFA prediction
using the spectra of fat and for C16:0, C18:1, C18:2, SFAs, and PUFAs using the spectra
of meat; the ScIO for C16:0, C18:2, SFAs, MUFAs, and PUFAs for records taken in the fat;
the microPHAZIR for C18:1 and MUFAs; and MicroNIR only for PUFAs when using the
spectra of meat in both cases.

Of the five spectrometers used, the best results were obtained with the use of the bench-
top instrument (NIRFlex N-500) because 20 equations with an RSQ > 0.7 were obtained for
both the muscle and fat, and it can be considered as a reference for evaluating the analytical
performance of portable spectrometers in the examined application. It was shown that
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portable instruments offer good performance levels as well, indicating full suitability for
on-site operation in industry; the Enterprise Sensor (TellSpec), followed by the MicroNIR
device, appeared particularly promising, both of which record in the range between ca.
900 and 1700 nm. Thus, for the first device, it was possible to obtain 19 equations (9 with
an RSQ < 0.7) in muscle and 14 equations (5 with an RSQ < 0.7) in fat, and for the second,
it was possible to obtain 16 equations in muscle and 10 equations in fat, but only one at
both recording sites had an RSQ < 0.7. Of the two spectra measurement zones that were
considered at the sample surface, it was observed that the highest number of successful
regressions and the highest RSQ values were obtained when the spectra were taken on
the lean meat. An exception for this trend was observed only for the SCiO sensor, which
yielded better results when the spectra were recorded on the fatty part where 12 equations
(6 with an RSQ < 0.7) were obtained. These results could be related to the fact that the
absorption range of this equipment is located in the water absorption zone, which could
make prediction difficult in the case of samples with a higher water content. The results
also revealed that measurements performed in both zones delivered complementary infor-
mation on lipid composition. The preliminary study of feasibility confirms the suitability
of employing NIR spectroscopy, and miniaturized sensors in particular, for comprehensive
analysis of fatty acids in Iberian ham including on-site application. However, further
research is needed; in particular, it would be necessary to improve the statistical basis by
increasing the number of samples, including controlled samples that differ in their fatty
acid composition to broaden the range of application and improve the precision of the
calibrations. This would allow the obtainment of a more robust method for its generalized
application in the Iberian pork sector.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/app142210680/s1, Table S1: Mathematical pre-treatment for obtaining the
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47. Grabska, J.; Beć, K.B.; Ishigaki, M.; Huck, C.W.; Ozaki, Y. NIR Spectra Simulations by Anharmonic DFT-Saturated and Unsaturated
Long-Chain Fatty Acids. J. Phys. Chem. B 2018, 122, 6931–6944. [CrossRef] [PubMed]

48. Dixit, Y.; Casado-Gavalda, M.P.; Cama-Moncunill, R.; Cama-Moncunill, X.; Cullen, P.J.; Sullivan, C. Prediction of Beef Fat Content
Simultaneously under Static and Motion Conditions Using near Infrared Spectroscopy. J. Infrared Spectrosc. 2016, 24, 353–361.
[CrossRef]

49. ElMasry, G.; Sun, D.-W.; Allen, P. Chemical-Free Assessment and Mapping of Major Constituents in Beef Using Hyperspectral
Imaging. J. Food Eng. 2013, 117, 235–246. [CrossRef]

50. Murray, I. The NIR Spectra of Homologous Series of Organic Compounds; Akademiai Kiado: Budapest, Hungary, 1986; pp. 13–28.
51. Cozzolino, D.; Murray, I. Identification of Animal Meat Muscles by Visible and near Infrared Reflectance Spectroscopy. LWT Food

Sci. Technol. 2004, 37, 447–452. [CrossRef]
52. Sierra, V.; Aldai, N.; Castro, P.; Osoro, K.; Coto-Montes, A.; Oliván, M. Prediction of the Fatty Acid Composition of Beef by near

Infrared Transmittance Spectroscopy. Meat Sci. 2008, 78, 248–255. [CrossRef]
53. Prieto, N.; López-Campos, Ó.; Aalhus, J.L.; Dugan, M.E.R.; Juárez, M.; Uttaro, B. Use of near Infrared Spectroscopy for Estimating

Meat Chemical Composition, Quality Traits and Fatty Acid Content from Cattle Fed Sunflower or Flaxseed. Meat Sci. 2014,
98, 279–288. [CrossRef]

54. Zamora-Rojas, E.; Garrido-Varo, A.; De Pedro-Sanz, E.; Guerrero-Ginel, J.E.; Pérez-Marín, D. Prediction of Fatty Acids Content in
Pig Adipose Tissue by near Infrared Spectroscopy: At-Line versus in-Situ Analysis. Meat Sci. 2013, 95, 503–511. [CrossRef]

https://doi.org/10.1017/S1751731119002003
https://www.boe.es/diario_boe/txt.php?id=BOE-A-2014-318
https://doi.org/10.1007/s11947-024-03486-x
https://doi.org/10.1016/S0021-9258(18)64849-5
https://doi.org/10.1016/j.meatsci.2021.108619
https://www.ncbi.nlm.nih.gov/pubmed/34271344
https://doi.org/10.1016/j.talanta.2017.03.067
https://www.ncbi.nlm.nih.gov/pubmed/28411824
https://doi.org/10.1016/j.talanta.2020.121165
https://www.ncbi.nlm.nih.gov/pubmed/33076045
https://doi.org/10.1016/j.foodcont.2016.03.037
https://doi.org/10.1016/j.trac.2009.07.007
https://doi.org/10.1016/j.chemolab.2006.10.005
https://doi.org/10.1007/s12161-011-9208-2
https://doi.org/10.1198/016214507000000527
https://doi.org/10.1016/S0169-7439(99)00047-7
https://doi.org/10.1016/j.foodcont.2022.109260
https://doi.org/10.1016/j.saa.2017.05.024
https://www.ncbi.nlm.nih.gov/pubmed/28535459
https://doi.org/10.1021/acs.jpcb.8b04862
https://www.ncbi.nlm.nih.gov/pubmed/29894632
https://doi.org/10.1255/jnirs.1221
https://doi.org/10.1016/j.jfoodeng.2013.02.016
https://doi.org/10.1016/j.lwt.2003.10.013
https://doi.org/10.1016/j.meatsci.2007.06.006
https://doi.org/10.1016/j.meatsci.2014.06.005
https://doi.org/10.1016/j.meatsci.2013.05.020


Appl. Sci. 2024, 14, 10680 18 of 18

55. Ventanas, S.; Ventanas, J.; Jurado, Á.; Estévez, M. Quality Traits in Muscle Biceps Femoris and Back-Fat from Purebred Iberian
and Reciprocal Iberian×Duroc Crossbred Pigs. Meat Sci. 2006, 73, 651–659. [CrossRef]

56. Tejeda, J.F.; Gandemer, G.; Antequera, T.; Viau, M.; García, C. Lipid Traits of Muscles as Related to Genotype and Fattening Diet
in Iberian Pigs: Total Intramuscular Lipids and Triacylglycerols. Meat Sci. 2002, 60, 357–363. [CrossRef] [PubMed]

57. Ruiz-Carrascal, J.; Ventanas, J.; Cava, R.; Andrés, A.I.; García, C. Texture and Appearance of Dry Cured Ham as Affected by Fat
Content and Fatty Acid Composition. Food Res. Int. 2000, 33, 91–95. [CrossRef]

58. Fernández-Cabanás, V.M.; Polvillo, O.; Rodríguez-Acuña, R.; Botella, B.; Horcada, A. Rapid Determination of the Fatty Acid
Profile in Pork Dry-Cured Sausages by NIR Spectroscopy. Food Chem. 2011, 124, 373–378. [CrossRef]

59. González-Martín, I.; González-Pérez, C.; Alvarez-García, N.; González-Cabrera, J.M. On-Line Determination of Fatty Acid
Composition in Intramuscular Fat of Iberian Pork Loin by NIRs with a Remote Reflectance Fibre Optic Probe. Meat Sci. 2005,
69, 243–248. [CrossRef]

60. Olivan, M.; Delaroza, B.; Mocha, M.; Martinez, M.J. Prediction of physico-chemical and texture characteristics of beef by near
infrared transmittance spectroscopy. In Proceedings of the 10th International Conference on Near Infrared Spectroscopy, Kyongju,
Republic of Korea, 10–15 June 2002; pp. 197–202.

61. Davies, A.M.C.; Grant, A. Review: Near Infra-Red Analysis of Food. Int. J. Food Sci. Technol. 1987, 22, 191–207. [CrossRef]
62. Kamruzzaman, M.; ElMasry, G.; Sun, D.-W.; Allen, P. Non-Destructive Assessment of Instrumental and Sensory Tenderness of

Lamb Meat Using NIR Hyperspectral Imaging. Food Chem. 2013, 141, 389–396. [CrossRef]
63. Gandemer, G. Lipids and Meat Quality: Lipolysis, Oxidation, Maillard Reaction and Flavour. Sci. Aliments Food Sci. Int. J. Food

Sci. Technol. 1999, 19, 439–458.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.meatsci.2006.03.009
https://doi.org/10.1016/S0309-1740(01)00143-7
https://www.ncbi.nlm.nih.gov/pubmed/22063638
https://doi.org/10.1016/S0963-9969(99)00153-2
https://doi.org/10.1016/j.foodchem.2010.06.031
https://doi.org/10.1016/j.meatsci.2004.07.003
https://doi.org/10.1111/j.1365-2621.1987.tb00479.x
https://doi.org/10.1016/j.foodchem.2013.02.094

	Introduction 
	Materials and Methods 
	Samples 
	Reference Analysis 
	Spectroscopy Measurements 
	Statistical Analyses 
	Spectra Pre-Treatment 
	Development of Calibration Models 


	Results and Discussion 
	Spectral Characteristics 
	Fatty Acid Composition 
	Regression Models 
	Fatty Acid Profile Prediction Using Fat Spectra 
	Fatty Acid Profile Prediction Using Lean Meat Spectra 
	Comparison of Spectra Sampling Zone: Fat vs. Lean Meat 

	Conclusions 
	References

