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Abstract: This study examines an algorithm for collecting and analyzing data from wastewater
treatment facilities, aimed at addressing regression tasks for predicting the quality of treated wastew-
ater and classification tasks for preventing emergency situations, specifically filamentous bulking of
activated sludge. The feasibility of using data obtained under laboratory conditions and simulating
the technological process as a training dataset is explored. A small dataset collected from actual
wastewater treatment plants is considered as the test dataset. For both regression and classification
tasks, the best results were achieved using gradient-boosting models from the CatBoost family, yield-
ing metrics of SMAPE = 9.1 and ROC-AUC = 1.0. A set of the most important predictors for modeling
was selected for each of the target features.
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1. Introduction

Wastewater treatment is a critical human activity, directly influencing the sustainable
development of a comfortable living environment. It is essential to all types of industrial
processes and is a key infrastructure component in communities of any size.

Despite significant capital investments, consistent improvements in wastewater treat-
ment quality are not always achieved. Recent studies on existing treatment facilities reveal
that inadequate performance is often linked to operational errors. Modern wastewater
treatment plants are equipped with sufficient automation systems, enabling the control
of complex processes under normal operating conditions. However, because wastewater
treatment relies primarily on biological treatment facilities, which function as finely tuned
bioreactors, operating under quasi-stationary conditions, even minor deviations in one
of the many technological parameters can lead to emergencies. The shortage of qualified
personnel in the industry often results in delayed responses to emerging technological
issues, causing instability in the biological system, a decline in treatment quality, and
potential system failure. Such situations pose direct risks of technological, environmen-
tal, and sanitary disasters, leading to substantial financial losses for both the state and
operating organizations.

In recent years, research on the predictive modeling of wastewater treatment plant
operations has gained considerable attention worldwide. These studies aim to forecast
treated wastewater quality and to predict abnormal and emergency situations at treatment
facilities. Various model classes are being explored to achieve these objectives. Regression
models focus on implementing “soft sensors”—models designed to replace physical sensors
at treatment plants to reduce costs. Zhang [1] used machine learning models to refine
rates of nitrogen and phosphorus removal from wastewater, using activated sludge species
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composition as input parameters. The XGBoost model demonstrated a determination
coefficient (DC) of over 0.8. For the dataset, the authors suggest using 16S rRNA sequencing.
This study is notable for its approach to predictor selection, as similar studies have not been
conducted previously due to insufficient data. However, a drawback of this approach is its
technical complexity, as very few wastewater treatment plants are equipped to perform
regular PCR tests for detecting indicator microorganisms. For broader practical relevance,
it is recommended to consider more accessible characteristics as predictors.

Wang [2] investigated the impact of operational characteristics at the Umeå wastew-
ater treatment plant (Sweden) on the efficiency of suspended solids and orthophosphate
removal. The dataset included 105,763 entries across 32 predictors. The primary outcome
of the study was a Variable Importance Measure (VIM) analysis, which allowed the au-
thors to form several hypotheses regarding technological dependencies at the plant. A
limitation of this approach is that the model, based on such assumptions, functions as a
“black box”, presenting certain challenges during the technological development phase.
Nevertheless, the authors address the critical issue of time lags associated with treatment
processes and their effect on model performance. Approaches to handling wastewater
treatment duration at various stages should be adopted in future research. For example,
a similar approach is used in the work of Xu [3], which focuses on developing a new
Long Short-Term Memory (LSTM) model. In this study, a model was developed to pre-
dict wastewater treatment quality using a “soft sensor”, based on data from inexpensive
and limited physical sensors, while accounting for the time lag in wastewater treatment
duration. The Mean Absolute Percentage Error (MAPE) for total nitrogen removal in this
model was 2.3%, significantly lower than the results from the traditional multivariate
models tested on the same data by the authors. However, it should be noted that the
model’s performance is highly dependent on the selection and quality of the predictors [4].
Regarding LSTM, this recurrent neural network has proven effective in time series fore-
casting, as demonstrated by Recio-Colmenares [5], who applied it to predict two substrate
concentrations in the synthetic ASM1 model, achieving a MAPE of 1.31%. Nevertheless,
LSTM models have several limitations; they are prone to overfitting with small datasets
and are sensitive to data outliers. Despite these challenges, many researchers currently
approach the task of predicting wastewater treatment quality as a time series forecasting
problem. El-Rawy [6] applied the Deep Learning Time Series Forecasting (DLTSF) approach
to predict key parameters of treated wastewater at the El-Berka treatment plant in Egypt.
The Root Mean Squared Error (RMSE) for total nitrogen was 1.92, which is considered
a fairly accurate prediction. Singh [7] presented a comprehensive model comparing the
performance of various regression models—Artificial Neural Network (ANN), Fuzzy Logic
(FL) algorithms, Random Forest (RF), and LSTM—for predicting treated wastewater pa-
rameters. The models were evaluated using metrics such as RMSE, MAPE, Mean Squared
Error (MSE), and the Determination Coefficient (DC). The controlled parameters included
organic pollutants, nutrients, suspended solids, and heavy metals.

According to the reviewed sources, current models can predict treated wastewater
quality with a MAPE of around 1.0%, which displays a remarkably high accuracy for
machine learning models. The most accurate model identified was the Outlier Robust
Extreme Learning Machine (ORELM), a modification of the standard Extreme Learning
Machine (ELM), specifically adapted to handle significant data outliers. The study confirms
the presence of numerous data outliers in wastewater treatment studies, which is associated
with the high variability of the processes. When developing models, it is essential to
implement measures that mitigate the impact of outliers on modeling results. ORELM has
been increasingly used for optimizing drinking and wastewater treatment processes, likely
due to the unique distribution characteristics of the input data [8–11].

Zaghloul and Achari [12] applied an ensemble method to predict 15 operational
parameters of wastewater treatment plants, including biomass properties. The models
were trained using data collected over a 10-year period. The authors proposed a six-
stage framework in which subsequent parameters were predicted based on previously
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forecasted ones. According to the authors, the symmetric mean absolute percentage error
(SMAPE) using this approach was 7.5%. Another advantage of the multi-stage approach
is the reduction in the “black box” effect, which is common in other data-driven models.
The models used in this study included Artificial Neural Networks (ANN), Adaptive
Neuro-Fuzzy Inference System (ANFIS), and Support Vector Regression (SVR). The authors
raised an important issue regarding the development of feature generation principles in
wastewater quality models. In this study, intermediate features related to the sludge dose
(TSS) in various parts of the bioreactor were generated at different stages, though this alone
was insufficient to significantly improve model quality. Simple sequential transformations
of predictors increase the risk of model noise (or data leakage), which greatly reduces
model performance using test data.

However, using forecasted values for intermediate calculations can enhance model
accuracy. In such cases, selecting the appropriate calculation model is crucial. For example,
Xu [13] integrated machine learning approaches into the calculations of the Activated
Sludge Model #3 (ASM3). The authors aimed to address the limitations of the mechanistic
model, particularly those associated with the high variability of incoming wastewater.
A machine learning model was employed to predict the biodegradability of wastewater
during the treatment of petrochemical effluents. As a result of the study, two models
were developed, MLR-ASM3 (based on multiple linear regression) and DF-ASM3 (based
on decision forests). The hybrid model achieved MAPE values of less than 25%, which
represents a relatively high performance compared to classical ASM3 modeling. This
hybrid modeling serves as a practical example of combining “white-box” approaches with
high-performance, data-driven computations. An important aspect of regression tasks in
wastewater treatment is the optimization of energy consumption. Alali [14] conducted
a comparative analysis of 23 models for predicting energy consumption at wastewater
treatment facilities in Melbourne. Optimizing energy consumption is a crucial task, as
estimates suggest that approximately 7% of global electricity consumption is attributable to
the pumping and treatment of wastewater [15]. The time lag used in the model was set to
1 day. The most effective model was the gradient-boosting model XGBoost, which achieved
an RMSE metric of approximately 12%.

It is noteworthy that the study was conducted using open data, thus the issues of data
collection and preparation were not addressed. However, the challenge of obtaining a rep-
resentative sample for training and validating the model remains one of the primary issues
that must be addressed when employing machine learning approaches in the modeling of
wastewater treatment processes. The issue of high-frequency data collection of wastewater
characteristics is addressed in the work of Asadi [16]. This study focuses on machine
learning algorithms for optimizing the operation of aeration equipment. A total of 35 input
parameters were utilized, of which only a few (such as dissolved oxygen concentration)
could be collected in real-time. Nonetheless, the optimization of equipment operation
resulted in a 31% reduction in energy consumption, which is a significant achievement.
Increasing the sample size across all predictors could further enhance this outcome.

This issue is also discussed in the study by Asami [17]. Various models, including
Artificial Neural Networks (ANN) and the M5 model tree, were considered, yielding
satisfactory metrics. However, despite attempts to fine-tune the models, the primary
limitation for improving predictive quality is the insufficient amount of representative
data for training. This lack of data is primarily associated with inadequate funding for the
operation of treatment facilities. In many cases, automatic analytical sensors are absent at
the plants, and the quality control of treated wastewater is performed manually.

The issue of data collection in the absence of sufficient technical resources is addressed
in the study by Safder [18], who trained over 20 models primarily based on Artificial Neural
Network (ANN) architecture. The achieved metric values were relatively high; however,
the data collection and forecasting structure rely on time series analysis, which necessitates
a large number of continuously operating sensors. Consequently, models that reduce
noise were examined in conditions of unstructured input data and a significant number
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of missing values. The best results were obtained using the Multihead-Attention-Based
Gated Recurrent Unit (MAGRU) model. The modeling of total nitrogen was conducted
with a time lag of 3 h, corresponding to the adopted technological scheme for wastewater
treatment. This model has been referenced in several studies, demonstrating a generally
satisfactory forecasting quality [19–21].

The second prevalent task in the field of wastewater treatment is classification. In
most cases, this involves anomaly detection and the prevention of emergency situations at
treatment facilities. For instance, researchers led by Bellamoli [22] developed an approach
for classifying anomalies in wastewater treatment plants utilizing Sequencing Batch Reactor
(SBR) systems. They identified the most representative predictors and time cycles for
modeling. The most accurate results were achieved with ensemble models based on
decision trees, specifically XGBoost and LightGBM. The recall metric reached values of
0.83 at various stages of modeling. The authors conclude that one direction for advancing
classification modeling approaches in wastewater treatment plants is to focus on domain
distribution characteristics.

Elsayed [23] conducted an analysis of 23 models for the effectiveness of classifying
wastewater treatment quality. It is worth noting that the quality of treatment was classified
based on individual parameters, resulting in a binary classification of “High” and “Low”.
This approach appears somewhat unusual, as a regression model could have been employed
for the same purposes. Nonetheless, the available predictors were tested using classical
classification models, including k-nearest neighbor (KNN), support vector machine (SVM),
and decision trees (DT). The classification accuracy reached 88%; however, given that the
classes were unbalanced, it would be prudent to assess additional classification metrics. A
similar study was conducted by Nasir [24], who also addressed the classification task to
predict the quality of treated wastewater. Interestingly, the training dataset consisted of data
from various treatment plants. One of the models used, CatBoost, demonstrated the highest
effectiveness, achieving a classification accuracy of 94.51%. CatBoost is a multi-platform
machine learning library developed by Yandex (Yandex, Moscow, Russia), designed for
implementing gradient-boosting methods. Currently, it is one of the most popular models
in data analysis across various scientific fields. Interestingly, in the articles reviewed in
recent years concerning wastewater treatment, CatBoost models are rarely encountered.
Nevertheless, among the advantages of these models are enhanced support for categorical
features with automatic encoding, resilience to overfitting, rapid training times, versatility
(the ability to address regression, classification, and ranking tasks), interpretability, and
support for various platforms. CatBoost demonstrates high speed and accuracy, which
contribute to its growing popularity in machine learning project applications [25–28].

Many modern approaches to wastewater parameter modeling rely on deep neural
networks. These include Recurrent Neural Networks (RNN) and their variants, such as
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), which are widely
used for time series forecasting and sequential data, making them especially useful for
monitoring wastewater parameters (e.g., BOD5, COD, TSS) over time. These networks can
capture temporal dependencies, which is critical when analyzing seasonal or short-term
fluctuations in wastewater characteristics. However, they may encounter difficulties in
handling long-term dependencies [29]. Transformers, such as Temporal Fusion Transform-
ers (TFT), are well-suited for modeling complex temporal dependencies and can capture
relationships among various wastewater characteristics. They are particularly useful for
multivariate data when several wastewater indicators (e.g., BOD, COD, pH, TSS) need to
be considered simultaneously in forecasting. These models support variable and temporal
dependency analysis in complex, highly variable data [30,31]. Neural networks based
on N-BEATS (Neural Basis Expansion Analysis for Time Series Forecasting) represent a
relatively new architecture for time series forecasting, enabling the effective modeling of
long-term dependencies without using recurrent blocks. This architecture is suitable for
predicting complex trends and analyzing temporal data, especially when seasonality and
trends are less pronounced, as can occur in wastewater [32,33]. Combinations of CNN
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and RNN (e.g., CNN-LSTM) or GRU with autoencoders, such as top-sparse autoencoders
(TSA), are used for processing and forecasting high-dimensional wastewater data. These
architectures help extract spatial and temporal dependencies, enhancing model accuracy
and adaptability under variable loads at treatment facilities [34,35].

However, working with time series data requires high-quality preprocessing and
the regular measurement of parameters, which in many cases is challenging to achieve.
This study addresses the issue of accumulating training datasets in modeling not based
on the principle of time series. This is particularly relevant in cases where the technical
infrastructure of wastewater treatment plants does not allow for the regular measurements
of the characteristics necessary for constructing a time series. One of the primary objectives
of this work is to develop principles for obtaining training datasets for model training,
which can subsequently be applied to operational treatment facilities.

The feasibility of using laboratory sample data as a training set, followed by validation
against data from real treatment plants, is examined. An essential stage of the research
involved is analyzing the significance of predictors for establishing guidelines regarding
the placement of analytical equipment at wastewater treatment stations [36].

In this work, models compatible with Shapley’s value-based analysis tools (using the
SHAP library) are employed, which enabled the compilation of a list of predictors for each
specific task. Thus, the following research objectives have been formulated:

• To establish a system that facilitates the collection of the necessary amount of data for
training supervised models based on a laboratory setup.

• To test the hypothesis regarding the equality of the ratios of input and output param-
eters of wastewater in the populations of the laboratory setup and the operational
treatment plants under investigation.

• To develop a strategy for data preprocessing.
• To implement the addition and selection of predictors for model training.
• To identify the most effective models with optimal hyperparameters for classification

and regression tasks using cross-validation tools.
• To evaluate the models on a test dataset using selected quality metrics.

To achieve these objectives, an experiment was conducted using a laboratory-scale
bioreactor simulating the wastewater treatment process. Statistical tests were carried out to
confirm the applicability of the data collected in laboratory conditions as a training dataset.
The test dataset comprised data from full-scale wastewater treatment plants (WWTPs). This
approach assesses the feasibility of training a machine learning model under conditions of
limited historical data from real wastewater treatment plants. Well-established regression
and classification machine learning models were employed for training, with performance
evaluated across multiple metrics, significant parameters identified through SHAP analysis,
and rigorous quality assessment of the model predictions.

2. Materials and Methods
2.1. Data Description

The primary objective of the study was to assess the feasibility of using training and
test datasets from different sources for modeling the quality of treated wastewater and
detecting anomalies. The test dataset comprised the results of technological monitoring
from wastewater treatment plants located in the Moscow region, Russia. The monitoring
was conducted during 2022–2023, resulting in a sample size of 140 data entries across
15 parameters. This dataset was insufficient for forming a robust training dataset; therefore,
the missing information was obtained using a laboratory bioreactor whose operational
scheme allowed for the generation of parameter distributions corresponding to the data
from actual treatment plants. The equipment used is described in Section 2.2.

During the laboratory experiment, a dataset consisting of 4303 data entries across
15 parameters was collected. The quality of incoming and treated wastewater (only at
the biological stage) was measured based on the following characteristics: biochemical
oxygen demand (BOD5), chemical oxygen demand (COD), ammonium nitrogen (NH4),
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orthophosphates (PO4), nitrates, and nitrites (NO2, NO3, only in treated water). The
technological parameters measured included wastewater temperature (t), dissolved oxygen
concentration in the aerobic zone of the bioreactor (DO), and the proportion of carbon
dioxide in the exhaust air (CO2).

Categorical features included the type of external carbon source (acetate or a solution
of synthesized volatile fatty acids after acidification (VFA)), the point of introduction of
the external carbon source (into the bioreactor (In) or into the mixer before the bioreactor
(Out)), and the presence of filamentous bulking of activated sludge. Among all the features,
the characteristics of treated wastewater and the filamentous bulking were the primary
targets for modeling. Thus, the dataset enabled the resolution of two tasks, regression and
classification (detection of abnormal situations related to filamentous bulking of activated
sludge). The collected parameters and their average values are presented in Table 1.

Table 1. The average values of the parameters in the datasets.

Parameter Lab-Scale Full-Scale

BOD5 (influent) [mgO2/L] 107 108
COD (influent) [mgO/L] 135 136

Ammonium (influent) (NH4) [mg/L] 35.0 34.6
Phosphorus (influent) (PO4) [mg/L] 8.0 7.6

DO [mg/L] 2.51 2.53
CO2 [%] 3.3 3.0

Temperature (t) [◦C] 20.0 19.8
External carbon source (substrate) Acetate/VFA

Inlet point In/Out
BOD5 (effluent) [mgO2/L] 3.4 3.5
COD (effluent) [mgO2/L] 4.2 4.4

Ammonium (effluent) [mg/L] 1.0 1.0
Phosphorus (effluent) (PO4) [mg/L] 0.35 0.17

Nitrate (effluent) (NO3) [mg/L] 5.7 5.4
Nitrite (effluent) (NO2) [mg/L] 0.03 0.03

Filamentous bulking Yes/No

Preliminary data preparation involved operations such as data import, type checking,
and correction of missing values and duplicates. All numerical features incorporated into
the dataframe represent independent results from analytical measurements of water quality.
The presence of missing values may indicate either that measurements were not conducted
or that a technical malfunction occurred during the data transmission or report compilation
phases. This type of missing data, according to Donald Rubin’s classification, falls under
the category of Missing at Random (MAR), meaning that the missingness depends on an
observable variable. In this case, the observable variable could be the measurement interval,
which can be incorporated into the dataset as a separate feature. Removing records with
missing values in “long” analyses may reduce the dataset’s informativeness and render the
remaining data points meaningless. However, after establishing the relationships among
the features, it is possible to determine the sets of information necessary for modeling a
specific target variable. If, for a particular model, the “long” analyses do not carry weight,
they can be excluded, while a more comprehensive dataset using other parameters can
enhance the modeling quality.

Thus, the recommended approach to address missing values in this case is Pairwise
Deletion, which involves retaining the missing values and filling in existing gaps with
placeholders. The placeholders may represent feature values outside the feasible mea-
surement range. These placeholders can be temporarily disabled during analysis through
logical data slicing. In instances where the data are time-distributed (i.e., the time of the
experiment is recorded), the method of Missing Values Imputation can be applied, which
consists of filling in the missing values. This method can also be automated within the
pipeline using the SimpleImputer tool from the sklearn library.
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Regarding categorical features, the presence of a missing value in one of them may be
related to a specific experimental design. For example, an absence of values in the substrate
feature might indicate that the substrate was not supplied at all, and the data collection
system did not transmit any value. In such cases, it is advisable to use the most frequent
value for the features. The primary objective of the statistical analysis of data is to identify
the convergence of sample means between the training and test datasets. To achieve this,
it is essential to establish the distribution characteristics of the indicator variables. This
can be accomplished using both graphical methods, such as histograms and box plots, and
statistical analysis methods. For the statistical analysis, the Shapiro–Wilk test is proposed.
The null hypothesis H0 of the Shapiro–Wilk test posits that the random variable, for which
the sample is known, follows a normal distribution. Conversely, the alternative hypothesis
H1 states that the distribution is not normal.

In the case of normally distributed data, standard tools for parametric statistical
analysis can be employed. For instance, a two-tailed Student’s t-test can be utilized,
accompanied by the corresponding null and alternative hypotheses and the significance
level criterion. In cases where the sample distributions are not normal—an expected
occurrence for water treatment efficiency, which often exhibits an exponential distribution—
it is advisable to utilize bootstrap analysis methods. In this approach, 100,000 random
samples, each comprising 10% of the total dataset, are generated for each indicator variable,
followed by the assessment of the p-value with a significance level of 0.05.

The null hypothesis posits that the sample means are equal, while the alternative
hypothesis asserts that they differ. The allowable range for differences is limited to the
variability of the absolute means of the samples; for instance, in the case of biochemical
oxygen demand (BOD) efficiency, this variability was found to be 0.0007. In instances
of significant discrepancies between the sample means, it is recommended to implement
changes to the operational technology regime of the laboratory setup. Conversely, if
convergence is observed, a correlation analysis may be conducted.

Correlation analysis is conducted using both graphical and computational methods.
Given that the dataset includes categorical variables and potentially discrete features,
the standard calculation of correlation coefficients is not applicable. Instead, it is recom-
mended to employ correlation calculation tools based on chi-squared statistics, such as
the construction of a correlation matrix using the phik_matrix tool from the PhiK library.
Calculating correlation through chi-squared statistics allows for the identification of re-
lationships among all types of data—categorical, continuous, and discrete—which is not
feasible with conventional linear correlation methods. Additionally, an assessment of the
multicollinearity among the features was performed in preparation for the selection of
linear models.

2.2. Lab-Scale Equipment

The laboratory component of the study was conducted using an automated bioreactor-
fermentor equipped with a set of auxiliary sensors. The setup is based on the Yocell
YC-JG reactor (Yocell Biotechnology, Qingdao, China) and includes a reactor vessel with a
working volume of 11 L, made of borosilicate glass. The vessel is equipped with a controlled
electromechanical stirrer featuring adjustable rotational speed, a pneumatic aeration system
with adjustable aeration intensity, and a heating and cooling system through an external
circuit. The setup was further equipped with a set of analytical sensors that correspond to
those used in actual wastewater treatment facilities. These include the Hamilton VisiFerm
DO sensor for dissolved oxygen (Hamilton Company, Reno, NV, USA), the Hamilton
Polilyte Plus pH ARC sensor for pH measurement (Hamilton Company, Reno, NV, USA),
the HACH A-ISE system for nitrogen compound analysis (Hach, Loveland, CO, USA), the
BlueSens BlueVary system for analyzing carbon dioxide content in the outgoing air stream
(BlueSens Gas Sensor GmbH, Herten, Germany), and the CarboVis 701/705 IQ system for
analyzing COD and BOD (Xylem Analytics, San Diego, CA, USA).



Appl. Sci. 2024, 14, 10689 8 of 21

Control and calibration measurements were conducted using the HACH Lange
DR6000 UV-Vis spectrophotometer (Hach, Loveland, CO, USA), the WTW OxiTOP-IDS
system (Xylem Analytics, San Diego, CA, USA), the WTW Oxi3310 equipped with the
CellOX 325 sensor (Xylem Analytics, San Diego, CA, USA), and the WTW pH 3310 ana-
lyzer (Xylem Analytics, San Diego, CA, USA). The control tests for suspended solids were
performed using standard methods. Figure 1 shows a photograph of the bioreactor.
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Figure 1. The lab-scale bioreactor-fermentor.

The operation of the system was managed through an integrated controller, as well as
via a personal computer using Siemens Simatic software (SIMATIC WinCC V7.5 SP2 Upd15).
In addition to automating the control of the main components of the setup, the control
program was configured to facilitate data collection from all analyzers. The collected data
were exported to a .csv file for further analysis. For the operation of the system, wastewater
from active treatment facilities was used as the substrate, along with additional substrates
consisting of solutions of volatile fatty acids obtained from the acidification of the sludge
and acetic acid (CH3COOH, AnalaR NORMAPUR, 99%). The volatile fatty acids were
produced through the fermentation of sludge from the same treatment facilities.

The inoculum biomass was sourced from the aeration tank of the studied treatment
facilities. The operational regime of the system was aligned with the technological processes
of the existing facilities.

The bioreactor’s operating conditions were optimized to achieve comparable perfor-
mance characteristics of the system. The modeling was conducted in accordance with the
computational principles outlined in a previous study [37]. Thus, the actual technological
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process was replicated under controlled laboratory conditions. The data collection scheme
for the laboratory setup is illustrated in Figure 2.
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The laboratory bioreactor operated in sequencing batch reactor (SBR) mode. The
operational parameters of the setup are listed in Table 2.

Table 2. Lab-scale bioreactor operation parameters.

Parameter Values

Fill time [min] 15
Idle time [min] 5

Aeration time [min] 210
Mixing time [min] 210
Settling time [min] 30

Decanting time [min] 10
Hydraulic retention time (HRT) [h] 8

Mixed liquor volatile suspended solids (MLVSS) [g/L] 4.5
Dissolved oxygen (aeration stage) [mg/L] 3.5
Dissolved oxygen (anoxic stage) [mg/L] 0.2

External carbon source (BOD5 eq.) [mgO2/L] 150
Temperature (t) [◦C] 15–30

2.3. Methodology

The primary objective of this work is to develop algorithms for solving regression and
classification tasks. The regression task focuses on predicting numerical target features that
serve as indicators of water quality after treatment. A separate model is trained for each
feature. The pipeline for model selection and training consists of the following components:

• Data processing (encoding and scaling of features).
• Randomized cross-validation of selected models to find the optimal value of the chosen

metric.
• Model evaluation, including adequacy testing, assessment on a test set using a set of

metrics, and evaluation of feature importance using SHAP values. The Shapley values
are calculated using Formula (1), as follows:

Φi(p) = ∑
S∈N/{i}

|S|!(n − |S| − 1)!
n!

(p(S ∪ {i})− p(S)), (1)

where n represents the number of features in the model, S is a subset of features that does
not include feature i, |S|—denotes the number of features in subset S, p(S) is the value
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obtained from subset S, and (p(S ∪ {i}) is the value obtained from subset S that includes
feature i.

In addressing the regression task, the following machine learning models were em-
ployed: DecisionTreeRegressor, LinearRegression, ElasticNet, Lasso Regression, Ridge
Regression, XGBoost, LightGBM, and CatBoost. The defining metric for cross-validation
was the Symmetric Mean Absolute Percentage Error (SMAPE), which is determined using
Formula (2).

SMAPE =
100%

n

n

∑
t=1

|Ft − At|
(|At|+ |Ft|)/2

, (2)

where n is the number of observations, Ft is the predicted value, and At is the actual value.
After selecting significant features, re-cross-validation is performed. When the values

of the target metric increase, a new model with the selected hyperparameters is accepted.
Subsequently, the model metrics are evaluated on the test set. For the regression task, the
metrics R2, RMSE, and MAE are assessed (as defined in Formulas (3)–(5), respectively).

R2 = 1 − D[y|x]
D[y]

= 1 − σ2

σ2
y
= 1 − ∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − yi)

2 , (3)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2, (4)

MAE =
1
n

n

∑
i=1

|yi − ŷi|, (5)

where D[y] = σ2
y represents the variance of the random variable, D[y|x] = σ2 denotes the

variance of the model error, n is the number of observations, yi is the target value, ŷi is the
predicted value, and yi is the mean value.

The adequacy of the model was assessed by comparing the target metric of the model
with the metric of the constant model, DummyRegressor. In addressing the classification
task, the following models were considered: DecisionTreeClassifier, LogisticRegression,
KNeighborsClassifier, SVC (Support Vector Classification), as well as XGBoost, LightGBM,
and CatBoost. The metric employed for the evaluation was the ROC-AUC (Receiver
Operating Characteristic—Area Under the Curve), which is a metric used to assess the
performance of binary classifiers. This metric is based on the analysis of a curve con-
structed from the values of true positive and false positive rates at various classification
thresholds. An AUC greater than 0.5 indicates that the trained model performs better than
random guessing.

Considering the research objectives, data from actual wastewater treatment facilities
were used as the test set for model evaluation (preceded by a statistical analysis of both
laboratory and real-world data). For hyperparameter tuning, the cross-validation tool
RandomizedSearchCV (from Scikit-learn V1.5.2) was employed, eliminating the need for a
separate validation dataset within the training dataset.

3. Results

Prior to model construction, a comprehensive statistical analysis was conducted
on the datasets obtained from both operational wastewater treatment facilities and the
laboratory experiment. The results of the statistical evaluation indicated that the numerical
features exhibit varying measurement scales, necessitating data scaling during modeling to
ensure uniformity. Additionally, no anomalous values were detected within the datasets,
confirming their suitability for modeling purposes. Information from both dataframes was
examined to facilitate a comparative analysis. It was observed that the nature of the feature
values corresponds between datasets, thereby enabling further progress on the project. To
test the hypotheses regarding the equality of sample values of feature ratios between the
populations of the laboratory experiment and the operational facilities, additional features
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were introduced. These include the ratio of easily oxidizable organic matter (BOD5) to
ammonium nitrogen (NH4) in the incoming wastewater (C/N ratio) and the efficiency of
removal of key pollutants.

Overall, all numerical features, both input and target variables, exhibited distributions
approaching normality, attributed to the controlled conditions of the experiment. Outliers
were present for all features, defined as values lying outside the 1.5 interquartile range. The
presence of outliers aligns with the inherent variability in wastewater treatment processes.
The measured values fell within the analytical equipment’s range and corresponded to the
technological scheme and operational conditions of the installations. Figure 3 presents the
distribution diagrams of ammonium nitrogen and COD values in the incoming wastewater,
illustrating the variability and distribution characteristics of these key parameters.
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To prevent negative impacts on model training quality due to class imbalance, over-
sampling of the target categorical feature (filamentous bulking occurrence) was performed
as a stratification method. Oversampling was conducted using the tools available in the
imbalanced-learn library, specifically the “RandomOverSampler” function, to ensure ade-
quate representation of the minority class during model training. The distribution of class
values concerning the presence of filamentous bulking after oversampling is illustrated
in Figure 4.
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Figure 4. Distribution of the target feature of the presence of filamentous bulking in the bioreactor.

According to the Shapiro–Wilk statistical test, the distributions of indicator variables—
primarily the efficiency of wastewater treatment—are generally not normal (p < 0.05). A
visual comparison of the samples was conducted using histograms with a highlighted
density. The comparative histograms are presented in Figure 5. Despite deviations from
normality, the histograms indicate that many distributions approach normality, and the
variances of the samples are nearly equal.
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Figure 5. Comparative histograms of the bioreactors (Lab-scale and Full-scale) operation: (a) C/N
ratio; (b) orthophosphates reduction efficiency [%]; (c) COD reduction efficiency [%]; (d) ammonium
reduction efficiency [%].

Applying Student’s t-test to non-normalized samples yields results with significant as-
sumptions; therefore, a bootstrap analysis with 1000 resamples was conducted. The results
supported all null hypotheses regarding the convergence of sample means for all indicator
variables. According to the statistical tests and bootstrap analysis, the sample means of the
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populations for the majority of indicator variables are equal (p > 0.05). Consequently, we
assumed that the results of laboratory modeling can be applied to the operation of existing
wastewater treatment facilities.

Since the statistical tests indicated that the training and test samples can be used in
their current form, we performed a correlation analysis of the features from both samples to
verify the convergence of their interrelationships. It was essential to confirm that there are
no significant differences in the feature distributions between the training and test samples
and that the model evaluation of the test sample would be valid. Furthermore, the analysis
assessed the multicollinearity of the input features. A correlation matrix was constructed,
incorporating the calculation of Pearson correlation coefficients for continuous variables
and transformed chi-squared statistics for categorical variables. The correlation matrix for
the training sample is presented in Figure 6.
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Figure 6. Correlation matrix PhiK: (a) lab-scale data; (b) full-scale data.

As observed, the overall nature of the relationships between the features in both
samples is consistent, allowing for the adequate evaluation of the models using the test
sample. No significant multicollinearity (correlation coefficient > 0.8) was detected among
the input features, suggesting that each predictor contributes unique information to the
model. However, a strong correlation was identified between certain target parameters,
such as COD/BOD5, substrate input point/phosphates, and nitrates/nitrites. To assess
the presence of linear dependencies among the features, scatter plots and box plots were
additionally constructed for each pair of predictors and target variables. Some of these
plots are presented in Figure 7.

Model validation was conducted using cross-validation with randomized optimization
of the loss function, employing the RandomizedSearchCV tool from scikit-learn. For the
regression task, the validation metric employed was SMAPE (Symmetric Mean Absolute
Percentage Error), providing a scale-independent measure of predictive accuracy. For
the classification task, the area under the receiver operating characteristic curve (ROC-
AUC) was used as the validation metric, assessing the model’s ability to discriminate
between classes.
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The analysis of SHAP (SHapley Additive exPlanations) values facilitated the identifi-
cation of the most significant predictors for each target variable, enhancing model inter-
pretability. Figure 8 presents the distribution of SHAP values for the predictors associated
with the target variables, COD effluent and orthophosphates effluent. The most influential
features included the type of external substrate, its point of introduction, dissolved oxygen
concentration, and temperature.
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The results of the modeling are presented in Table 3. The CatBoost model demonstrated
superior performance in both regression and classification tasks, with SMAPE values below
10% for key effluent parameters and a ROC-AUC score of 0.95 for the classification of
filamentous bulking events.

As observed, modeling involves limited sets of features, which can generally be
explained in the context of the relevant mechanistic models [13]. The classification task
necessitates the exclusion of false negative predictions from the model. A false negative
prediction (or missed detection of an emergency) means that the model failed to recognize
a potential emergency, predicting a normal state when the situation is actually hazardous.
The model’s operation should be aimed at preventing emergencies at the station, even at the
expense of overall accuracy (i.e., false positive predictions are acceptable). Figure 9 presents
the confusion matrix, indicating that no changes to the prediction thresholds are required.
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Table 3. Summary table of modeling results within the framework of the tasks set.

Target Feature Best Model Hyperparameters Important Features Metrics Values

BOD5 (effluent)

CatBoostRegressor

learning_rate 0.05
iterations 150

depth 7
random_strength 2

Temperature
Substrate
Inlet point

DO

SMAPE 19.2
RMSE 0.962
MAE 0.670

R2 0.78

COD (effluent)

learning_rate 0.35
iterations 180

depth 6
random_strength 2

Temperature
Substrate
Inlet point

DO
BOD influent
COD influent

SMAPE 19.1
RMSE 1.211
MAE 0.854

R2 0.85

Ammonium (effluent)

learning_rate 0.25
iterations 210

depth 6
random_strength 2

DO
Temperature

C/N ratio

SMAPE 10.6
RMSE 0.145
MAE 0.111

R2 0.79

Phosphorus (effluent)

learning_rate 0.12
iterations 160

depth 8
random_strength 2

DO
Temperature
NH4 influent

C/N ratio
Substrate
Inlet point

SMAPE 9.1
RMSE 0.054
MAE 0.036

R2 0.81

Nitrate (effluent)

learning_rate 0.08
iterations 130

depth 7
random_strength 2

DO
Temperature
NH4 influent

C/N ratio
Substrate
Inlet point

SMAPE 9.1
RMSE 0.765
MAE 0.484

R2 0.82

Nitrite (effluent)

learning_rate 0.05
iterations 140

depth 7
random_strength 2

DO
Temperature
NH4 influent

SMAPE 12.4
RMSE 0.006
MAE 0.003

R2 0.88

Filamentous bulking CatBoostClassifier

learning_rate 0.8
iterations 150

depth 6
random_strength 2

DO
Temperature
NH4 influent

C/N ratio

ROC-AUC
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For the regression task results, residual analysis was performed for each target feature.
A graphical representation of the analysis for some of the target features is shown in
Figure 10.
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The residual analysis demonstrated favorable results. Residuals were randomly
distributed around zero, indicating no systematic bias in the model predictions. Slight
biases in the median were observed, which can be addressed by incorporating a larger
dataset of historical data [15].

4. Discussion

Filamentous bulking of activated sludge is classified as an emergency situation within
wastewater treatment systems, often resulting in extremely negative outcomes for process
development. Essentially, filamentous bulking frequently leads to the complete shutdown
of the entire system due to the loss of sludge settleability, causing effluent quality deteriora-
tion. The probability of its occurrence in conventional treatment plants operating under
normal conditions is low, estimated at approximately 3% in the laboratory experiment.
When training the model, stratification of the data or oversampling is necessary to mitigate
the adverse effects of class imbalance in the target variable. The application of oversampling
techniques ensures that rare but critical events, such as filamentous bulking, are adequately
represented in the training process, improving the model’s ability to predict such events.

The histograms indicate that many distributions approach normality, and the variances
of the samples are nearly equal. However, the issue of non-normality is likely related to the
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absence of ultra-low values for the indicators due to the detection limits of the equipment.
This limitation affects statistical analyses that assume normal distribution, emphasizing the
need for robust statistical methods or data transformations.

Applying Student’s t-test to non-normalized samples introduces significant assump-
tions. Thus, the use of bootstrap analysis provided a more reliable assessment of sample
means without relying on normality assumptions. Confirming that laboratory data can be
applied to operational facilities is significant, as it validates the relevance of the experimen-
tal findings to real-world applications. The constructed scatter plots revealed that a linear
dependence on the target numerical variables is present only for ammonium, dissolved
oxygen, and temperature. This is primarily related to the nature of biochemical processes,
where reaction rates depend largely on ambient temperature and the availability of dis-
solved oxygen to the biomass. Additionally, the availability of organic substrates relative to
the amount of incoming nitrogen (C/N ratio) plays a significant role in microbial activity
and nutrient removal efficiency. Consequently, linear regression models are unlikely to
yield high performance metrics in assessing treated wastewater quality due to the complex,
non-linear relationships between process variables. Similar findings regarding the absence
of clear linear dependencies between predictors and target variables have been reported
in other studies [12,14,17]. This suggests that advanced modeling techniques capable of
capturing non-linear interactions, such as gradient-boosting algorithms, are more suitable
for this application.

Notably, the results of the significance analysis differ from those of previous stud-
ies [17,20,22]. This discrepancy arises because, in this work, the most influential features
include those not utilized in other studies, specifically the type of external substrate and
its point of introduction. The inclusion of these operational parameters provides a more
comprehensive understanding of the factors influencing effluent quality. Furthermore,
the best-performing model identified was CatBoost, a gradient-boosting algorithm that
effectively handles categorical features. A comparison with studies that also evaluated
the CatBoost model indicates that the significance of common features is similar [24–28],
reinforcing the validity of our findings.

The modeling involves limited sets of features, which can generally be explained in the
context of relevant mechanistic models [13]. Using a limited but significant set of predictors
enhances model interpretability and reduces the risk of overfitting. The classification task
necessitates the exclusion of false negative predictions from the model. A false negative
prediction (or missed detection of an emergency) means that the model failed to recognize
a potential emergency, predicting a normal state when the situation is actually hazardous.
The model’s operation should be aimed at preventing emergencies at the station, even
at the expense of overall accuracy (i.e., false positive predictions are acceptable). This
approach prioritizes safety and environmental protection, ensuring that potential risks are
not overlooked. The confusion matrix presented in Figure 9 indicates that no changes to
the prediction thresholds are required, as the model successfully identifies all instances
of filamentous bulking without producing false negatives. This result underscores the
effectiveness of the model in emergency prediction. The residual analysis demonstrates
favorable results; however, the presence of slight biases in the median suggests that incor-
porating a larger dataset of historical data could further enhance model performance [15].
Expanding the dataset would improve the model’s generalizability and robustness, cap-
turing a wider range of operating conditions and the variability inherent in wastewater
treatment processes.

Overall, this study demonstrates the feasibility and effectiveness of using advanced
machine learning models, specifically CatBoost, for predicting effluent quality and poten-
tial emergency situations in wastewater treatment plants. The inclusion of operational
parameters unique to this study contributes to a deeper understanding of process dynamics.
Future research should explore the impact of external substrates and their introduction
points on treatment efficiency, as well as the integration of larger, more diverse datasets to
enhance model reliability.
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5. Conclusions

It is important to note that the primary goal of this project was not the development of
specific models but rather the formulation of approaches in the form of recommendations
for data acquisition, preparation for modeling, and subsequent model selection. Each
modification of the technological scheme parameters (for instance, changes in treatment
duration) necessitates retraining the model. The recommendations can be articulated
as follows:

1. It is essential to ensure complete adherence to the technological parameters of the
investigated treatment facilities during laboratory modeling. First and foremost,
this includes aligning the average values of incoming pollutant concentrations, dis-
solved oxygen concentrations, and temperature. The proportion of carbon dioxide
is not regulated; therefore, in cases of significant discrepancies in values, it is rec-
ommended to exclude this parameter from the modeling process. It is advisable to
use analytical equipment that is similar to that used at the facility. Additionally, it is
recommended to automate the collection of sensor readings, focusing on the longest
measurement intervals.

2. It is recommended to incorporate a new feature into the model, the carbon-to-nitrogen
(C/N) ratio. This feature holds significant importance for nearly all target variables.

3. It is recommended to remove all complete duplicates from the training dataset to
prevent data leakage during cross-validation. Missing values in quantitative features
should be handled using the Pairwise Deletion strategy. In cases where time series
data are present in the dataset, missing values can be filled with the average of the
two adjacent values. For categorical features, it is advisable to impute missing values
using the mode.

4. It is recommended not to remove outliers that fall outside the range of the interquartile
range, as outliers are significant indicators for the occurrence of emergency situations.
Before training models on the training dataset, statistical tests for the comparison
of sample means should be conducted. Student’s t-test can be applied when there
are more than 50 observations in the sample. Additionally, a correlation analysis
should be performed primarily to identify multicollinearity among predictors. If the
values in the samples are not suitable for statistical analyses (for example, according
to Student’s t-test), it is advisable to conduct a bootstrap analysis, as water treatment
efficiency indicators often exhibit exponential distribution.

5. It is recommended to apply oversampling methods or stratification of target categori-
cal features. In the present project, high-quality predictions were achieved despite
class imbalance; however, verification is necessary for each specific case. Feature
scaling should be performed using robust methods, such as the RobustScaler.

6. For the examined set of features, gradient-boosting methods are the most preferred
models for both regression and classification tasks, with CatBoost identified as the
optimal model based on the results of the study. Each target feature has its own opti-
mal set of hyperparameters; therefore, it is recommended to utilize cross-validation
procedures for hyperparameter tuning during modeling.

7. The most objective metrics for model evaluation in this project are proposed to be
SMAPE for regression and ROC-AUC for classification. It is recommended to assess
model adequacy by comparing these metrics against a constant model during the
model-building process.

8. The necessary sets of features for use as predictors (minimum quantity) are presented
in Table 2 for each of the target metrics. These features were selected based on the eval-
uation of SHAP values and are intended to enhance the models by eliminating noise.

9. In addressing classification tasks related to system failure detection, it is essential to
prevent the occurrence of false negative predictions. This means excluding the over-
sight of forecasting emergency situations, which are encoded as 0 by the LabelEncoder.
To achieve this, it is necessary to conduct an evaluation using the confusion matrix
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and, if needed, to re-calibrate the thresholds of the models based on the metrics of
Recall and Precision.

10. The results obtained from the modeling can be utilized to predict both the efficiency
of wastewater treatment and the likelihood of emergency situations, with a time lag
equivalent to the Hydraulic Retention Time (HRT). The HRT is incorporated into the
design calculations of wastewater treatment facilities and is adjusted based on the
hydraulic load on the bioreactor. This factor must be taken into consideration in each
specific case.
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