
Citation: Xu, B.; Ning, P.; Wang, G.;

Zang, C. Steady-State Response

Analysis of an Uncertain Rotor Based

on Chebyshev Orthogonal

Polynomials. Appl. Sci. 2024, 14,

10698. https://doi.org/10.3390/app

142210698

Academic Editors: Yeyin Xu,

Zhaobo Chen and Yinghou Jiao

Received: 8 October 2024

Revised: 8 November 2024

Accepted: 15 November 2024

Published: 19 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Steady-State Response Analysis of an Uncertain Rotor Based on
Chebyshev Orthogonal Polynomials
Bensheng Xu 1,*,†, Peijie Ning 1,†, Guang Wang 1 and Chaoping Zang 2

1 School of Aeronautics, Guilin University of Aerospace Technology, Guilin 541004, China;
ningpeijie@guat.edu.cn (P.N.); wangguang@mail.nwpu.edu.cn (G.W.)

2 College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, China; c.zang@nuaa.edu.cn

* Correspondence: xubensheng@guat.edu.cn
† These authors contributed equally to this work.

Abstract: The performance of a rotor system is influenced by various design parameters that are
neither precise nor constant. Uncertainties in rotor operation arise from factors such as assembly
errors, material defects, and wear. To obtain more reliable analytical results, it is essential to consider
these uncertainties when evaluating rotor performance. In this paper, the Chebyshev interval
method is employed to quantify the uncertainty in the steady-state response of the rotor system.
To address the challenges of high-dimensional integration, an innovative sparse-grid integration
method is introduced and demonstrated using a rotor tester. The effects of support stiffness, mass
imbalance, and uncertainties in the installation phase angle on the steady-state response of the rotor
system are analyzed individually, along with a comprehensive assessment of their combined effects.
When compared to the Monte Carlo simulation (MCS) method and the full tensor product grid
(FTG) method, the proposed method requires only 68% of the computational cost associated with
MCS, while maintaining calculation accuracy. Additionally, sparse-grid integration reduces the
computational cost by approximately 95.87% compared to the FTG method.

Keywords: uncertainty analysis; Chebyshev orthogonal polynomials; sparse-grid integration method;
rotor system

1. Introduction

The rotor system is a vital component of rotating machinery such as aero engines
and gas turbines. In the field of rotor dynamics, numerical simulators are commonly used
to predict the dynamic behavior of the rotor system. However, uncertainties inherent in
actual rotor systems stem from operational conditions and geometric parameters that may
vary, including loose connections [1] or cracks [2]. These variations can lead to deviations
from the expected steady-state response. Consequently, a steady-state response of the rotor
system which initially meets design specifications may exceed acceptable limits in practice.
A major challenge for engineers and researchers is to analyze and quantify the impacts of
these uncertainties on the steady-state responses of complex rotor systems [3–5].

There are four commonly used methods for uncertainty analysis: the stochastic finite
element method, probabilistic models, fuzzy methods, and interval methods. The stochastic
finite element method assesses uncertainty by establishing stochastic differential equa-
tions for the system’s response based on stochastic matrix theory or Taylor’s formula [6].
Kureishi [7] applied this method to analyze a multi-degree-of-freedom rotor system in both
time and frequency domains, investigating dynamics such as axial trajectory and random
amplitude and frequency responses. Liu [8] developed a stochastic finite element model
of a rotor-bearing system considering radial clearance randomness and employed the
orthogonal polynomial method to examine the effects of factors like mean and coefficient of
variation of radial clearances, eccentricity, and rotational speeds on the system’s dynamic
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performance. However, the stochastic finite element method’s disadvantage is found in the
difficulty and time consumed in deriving embedded equations when analyzing complex
rotor systems. Probabilistic methods necessitate complete probability distributions of un-
certain parameters, which are often challenging to obtain [9]. Fuzzy methods employ fuzzy
variables to represent uncertain parameters, offering a robust framework for capturing
the inherent ambiguity in a system’s characteristics. The Fuzzy Stochastic Finite Element
Method (FSFEM) is particularly advantageous, as it integrates fuzzy logic with stochastic
modeling, allowing for a more comprehensive analysis of uncertainties in dynamic systems.
Lara [10,11] utilized the FSFEM to investigate flexible rotor dynamics under uncertain
parameters, examining the impacts of variables such as pad radius, oil viscosity, and radial
clearance on tilting-pad journal bearings. However, the derivation of membership functions
in fuzzy methods can be complex, presenting challenges when applied to the intricate task
of rotor uncertainty analysis. Additionally, the effectiveness of the FSFEM may be limited
by the presence of multi-source uncertainties, which complicates the modeling process and
can hinder accurate assessments of system behavior.

Interval analysis is widely applied in uncertainty analysis. Although variations in sys-
tem parameters are typically random, their range is usually finite, described as “unknown
but bounded”, indicating that the parameters fluctuate within definable intervals [12].
In the interval analysis of structural dynamics, uncertain parameters are represented as
interval vectors, and differential equations governing rotor motion are formulated by
incorporating these interval vectors. The solutions to these equations are derived using
interval mathematics and regression theory, which facilitates the determination of the
range of the system’s steady-state response [13]. Ma [14,15] proposed a Bound Correction
Interval Analysis Method (BCIM) based on Chebyshev expansion and modal superposi-
tion for the analysis of uncertain rotors. Mao [16] combined interval regression analysis
with regularization to introduce a computational inverse method for identifying bearing
loads. Utilizing interval analysis methods, Fu [17–19] examined the effects of uncertainties
in several design parameters on rotors, including stiffness, damping, Young’s modulus,
cracking, and coupling misalignment. The interval analysis approach allows for the omis-
sion of specific probability distribution models for the uncertain parameters, requiring
only the definition of their upper and lower fluctuation bounds. However, in scenarios
characterized by multi-source uncertainty, this method necessitates the computation of
combinations of specified integration points, such as Gaussian integration points, for multi-
dimensional interval variables, thus significantly increasing the computational workload.
To enhance computational efficiency, dimensionality reduction can be achieved through
sparse generalized polynomial chaos expansion (gPCE) or polynomial dimensional decom-
position [20–22]. Lu [23] employed a polynomial dimensional decomposition method to
analyze the uncertainty in the response of a nonlinear rotor system, achieving effective
dimensionality reduction. Nonetheless, when considering the nonlinear factors of the rotor
system (e.g., nonlinear oil film damping), balancing computational efficiency and accuracy
remains an area requiring further investigation.

The remainder of this paper is organized as follows: Section 2 presents the proposed
methodology; this is followed by Section 3, which introduces an example of the research
subject, namely a dynamically similar rotor tester for a turboshaft engine. Section 4 then
discusses the results of the numerical analysis. Finally, Section 5 concludes the paper.

2. The Proposed Method

This section describes the method proposed in this paper, which encompasses both
Chebyshev orthogonal polynomial approximation and the fundamental techniques of sparse-
grid numerical integration. In the context of high-dimensional random variables, the use of
sparse-grid numerical integration can effectively reduce computation time while maintain-
ing calculation accuracy, thereby alleviating the “curse of dimensionality”. To facilitate a
clearer understanding, a flowchart is provided below for conducting uncertainty analysis of
the steady-state response of rotor systems based on Chebyshev orthogonal polynomials.
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2.1. Chebyshev Orthogonal Polynomial Approximation

Suppose ξ = [ξ1, ξ2, · · · , ξn], ξj (j = 1, · · · , n) is a standard random variable with a
uniform distribution U (−1, 1). Using the tensor product approach, an n-dimensional,
k-order Chebyshev polynomial Ti1,··· ,in(ξ) can be defined as follows:

Ti1,··· ,in(ξ) = ∏
i1+···+in=k

Ti1(ξ1) · · · Tin(ξn) (1)

where i1, i2, . . ., in are non-negative integers. Tij denotes a Chebyshev polynomial with
order ij. For example, if n = 2, then ξ = {ξ1, ξ2}, and we have

k = 0 : T0,0(ξ) = T0(ξ1)T0(ξ2) = 1
k = 1 : T1,0(ξ) = T1(ξ1)T0(ξ2) = ξ1, L0,1(ξ) = T0(ξ1)T1(ξ2) = ξ2,
k = 2 : T2,0(ξ) = T2(ξ1)T0(ξ2) = 2ξ2

1 − 1, T1,1(ξ) = T1(ξ1)T1(ξ2) = ξ1ξ2,
T0,2(ξ) = T0(ξ1)T2(ξ2) = 2ξ2

2 − 1
· · ·

(2)

A Chebyshev orthogonal polynomial of order p is used to approximate the multi-
dimensional continuous function f (ξ1, · · · , ξn) : ℜn → ℜ , which can be expressed as follows:

f (ξ) ≈ ∑
i1+···+in≤p

ci1,··· ,in Ti1,··· ,in(ξ) = ∑
i1+···+in=0

ci1,··· ,in Ti1,··· ,in(ξ)+

∑
i1+···+in=1

ci1,··· ,in Ti1,··· ,in(ξ) + · · ·+ ∑
i1+···+in=p

ci1,··· ,in Ti1,··· ,in(ξ)
(3)

where Nc is the total number of undetermined coefficients, which is given by the follow-
ing equation:

Nc = 1 +
n!

(n − 1)!
+

(n + 1)!
(n − 1)!2!

+
(n + 2)!
(n − 1)!3!

+ · · ·+ (n − 1 + p)!
(n − 1)!p!

=
(n + p)!

n!p!
(4)

This weight function serves to guarantee that Chebyshev polynomials of varying
orders remain orthogonal over the specified interval. For the standard Chebyshev polyno-
mials, the weight function is expressed as follows:

W(ξ) =
1√

1 − ξ2
1 · · ·

√
1 − ξ2

n

(5)

Multiplying both sides of Equation (3) by Ti1,··· ,in(ξ) and integrating the weight func-
tion W(ξ), the following results can be obtained:

∫ 1

−1
· · ·

∫ 1

−1
TI(ξ)TJ(ξ)W(ξ)dξ1 · · ·dξn =


(

1
2

)l
πn I = J

0 I ̸= J
(6)

where l is the number of non-zeroes in i1, · · · , in. The undetermined coefficients in
Equation (3) can be formulated as

ci1,··· ,in =
2l

πn

∫ 1

−1
· · ·

∫ 1

−1
f (ξ)Ti1,··· ,in(ξ)W(ξ)dξ1 · · ·dξn (7)

When the dimension n is small (n ≤ 5), the coefficient in Equation (7) can be calculated
by full factor numerical integration, and the calculation formula is as follows:

ci1,··· ,in ≈ 2l

πn

q

∑
j1=1

· · ·
q

∑
jn=1

f
(

ξ
(j1)
1 , · · · , ξ

(jn)
n

)(
w(j1)

1 · · ·w(jn)
n

)
(8)
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where ξ
(j1)
1 , · · · , ξ

(jn)
n is integration node, and q is the number of integration nodes in

each dimension.

2.2. Sparse Grid Numerical Integration

In Equation (8), if the number of nodes taken for each dimensional random variable
is the same and equal to q, then the total number of function evaluations required is
qn. This approach for calculating ci1,··· ,in is referred to as full-tensor-product grid (FTG).
Regarding the selection of the number of nodes q (usually q > 3) in each dimension, a larger
q results in higher accuracy; however, it also leads to an increase in computational workload.
Consequently, when the dimension n exceeds 5, the strategy encounters a significant issue
known as the “curse of dimensionality”. To alleviate this issue, an efficient approach to
computing high-dimensional integrals is to use numerical integration with sparse-grid
(SG) technology. The sparse grid numerical integration, also known as the sparse tensor
product grid, was first proposed by Smolyak [24] and has been widely used by researchers
to address high-dimensional integration problems, thereby improving the efficiency of
integration. The SG with accuracy level L and n-dimensional integration is denoted as
G(L, n), and its construction formula is as follows:

G(L, n) = ∪
max(n,L+1)≤∥k∥1≤L+n

n
⊗

i=1
Uki

1 (9)

where ∥k∥1 = ∑n
i=1 ki (ki ≥ 1) is the 1-norm of k, and ki is a positive integer that determines

the number of integration nodes assigned to each dimensional random variable. The
accuracy level L is defined as q = L + 1. Uki

1 represents a univariate quadrature rule with
ki integral nodes. The SG decomposes the direct tensor product into different sub-tensor
products, using only the sub-tensor products corresponding to multi-indices that satisfy
max(n, L + 1) ≤ ∥k∥1 ≤ L + n. For example, if n = 2 and L = 2, the required multi-indices
are k = {(1,2), (1,3), (2,1), (2,2), (3,1)}, and the construction of the corresponding sparse grid
G(2, 2) is given in Figure 1.
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Figure 1. Schematic diagram of the construction of a sparse grid.

In Figure 1, the dots represent integration nodes; each square box represents a [−1,1]2

space. The Gauss–Chebyshev integration points are used for each one-dimensional in-
tegration node, and the sub-grid corresponding to the multi-exponential k that satisfies
the requirement is between the two dot–dash lines. Note that the tensor product results
for sub-grids U1

1 ⊗ U3
2 and U3

1 ⊗ U1
2 in Figure 1a have one identical integration node, and

the corresponding number of FTG nodes is 9. However, the number of integral nodes of
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G(2, 2) in Figure 1b is 13. In lower-dimensional cases (n = 2), achieving the same integration
accuracy (L = 2) requires more integration nodes for the SG method, compared to the FTG
method (13 > 9). This discrepancy arises because SG techniques are specifically designed
for high-dimensional problems (typically n > 5). Table 1 presents the number of integration
nodes required for both SG and FTG methods, corresponding to different dimensions and
accuracy requirements.

Table 1. Comparison of the number of integration nodes for SG and FTG.

n L SG FTG L SG FTG

5 1 11 32 2 66 243
7 1 15 128 2 113 2187

10 1 21 1024 2 231 59,049
13 1 27 8192 2 243 1,594,323

Table 1 demonstrates that as dimensionality increases, the number of integration nodes
required for the FTG method rises rapidly, while the growth rate of required nodes in the
SG method is significantly slower. This results in a substantial reduction in the number
of integration nodes compared to the full-grid method, effectively alleviating the “curse
of dimensionality”.

SG numerical integration is constructed from tensor products of hierarchical difference
sets based on a one-dimensional product rule. The formula for integration based on the
constructed sparse grid G(L, n) is as follows:

G(L, n)[ f ] = ∑
max(n,L+1)≤∥k∥1≤L+n

b(∥k∥1) · (U
k1
1 ⊗ · · · ⊗ Ukn

1 )[ f ] (10)

where f is an n-dimensional (n > 1) continuous function, Uki
1 (U0

1 = 0) is one-dimensional
product rule, and coefficient b(∥k∥1) is given by

b(∥k∥1)(−1)L+n−∥k∥1

(
n − 1

L + n − ∥k∥1

)
(11)

Assuming that the number of n-dimensional SG integration nodes is N, denoted as
G(L, n) = {l1, . . ., li, . . ., lN}, and the weight corresponding to the ith n-dimensional integration
node li is represented as wi, Equation (10) can be simplified to the following form:

G(L, n)[ f ] =
N

∑
i=1

f (li) · wi (12)

The weight wi is calculated by the following equation:

wi = (−1)L+n−∥ki∥1

(
n − 1

L + n − ∥ki∥1

)
(w(i)

1 · · ·w(i)
n ) (13)

where w(i)
1 · · ·w(i)

n represents the product of the corresponding weights of each one-dimensional
integration node in the ith dimensional sparse-grid integration node.

2.3. Uncertainty Analysis Flow Based on Chebyshev Orthogonal Polynomials

The process of interval uncertainty analysis using Chebyshev orthogonal polyno-
mials consists of four primary steps. First, the random variables are specified, and one-
dimensional interpolation points are generated using Gauss integration nodes. These nodes
serve as the foundation for the subsequent steps in the analysis. Second, n-dimensional
interpolation points are created from each one-dimensional point using either the tensor
product or sparse-grid integration method. The choice between these two methods de-
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pends on the complexity of the problem and the desired balance between accuracy and
computational efficiency. Once the n-dimensional interpolation points are established, the
system response is calculated at each point, providing a comprehensive set of data for the
uncertainty analysis.

In the third step, the coefficients of the Chebyshev orthogonal polynomials are com-
puted to construct an orthogonal polynomial approximation model. This model serves
as a surrogate for the original system, allowing for a more efficient uncertainty analysis.
Finally, the steady-state response bounds of the rotor systems are calculated using the
constructed approximation model. Once the Chebyshev orthogonal polynomial approx-
imation is established, it can be used as a proxy model for the system, enabling efficient
and accurate estimation of the steady-state response bounds through random sampling of
the standard random variables using the MCS approach. Compared to the original finite
element model, the use of Chebyshev orthogonal polynomials significantly enhances the
efficiency of uncertainty analysis by reducing the computational burden while maintain-
ing a high level of accuracy. Figure 2 provides a visual representation of this procedure,
illustrating the flow of data and the key steps involved in the interval uncertainty analysis
using Chebyshev orthogonal polynomials, thereby facilitating a clearer understanding of
the methodology employed.
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The accuracy and predictive quality of the Chebyshev orthogonal polynomial sur-
rogate model can be assessed using the relative generalization error, denoted as εr. The
formula for calculating εr is as follows:

εr =

E
[(

M(X val)−MCheby(X val)
)2

]
Var[M(X val)]

(14)

where E[·] denotes the expectation operator, while Var[·] represents the variance operator.
M represents the finite element model of the rotor system (also referred to as the original
model or source model), MCheby denotes the Chebyshev orthogonal polynomial, and X val
represents the random validation set.
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3. Rotor System

Figure 3 illustrates the dynamics similarity tester for a turboshaft engine rotor with
the discs and shafts constructed from the same material (40CrMnSiA), which has an elastic
modulus of 2.11 × 1011 N/m2. The shaft has a length of 2.4 m and a diameter of 0.17 m.
The masses of Disc 1, Disc 2, and Disc 3 are 3.3 kg, 5.83 kg, and 3.09 kg, respectively,
with corresponding moments of inertia of 0.0079 kg·m2, 0.0247 kg·m2, and 0.0088 kg·m2.
The damping coefficient is 200 Ns/m. Other relevant model parameters include support
stiffness, unbalanced mass on each disc, and installation phase angles. The installation
phase angle of the unbalanced mass denotes the angular positions of each disc at the time of
installation. The arrangement of these phase angles directly impacts the relative positioning
of the unbalanced masses, thereby influencing the system’s vibration patterns and stability.
Specific values and interpretations of these parameters in the example rotor system are
presented in Table 2.
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Table 2. Model parameters.

Parameters Dimension Description

k1 2.46 × 105 N/m Stiffness of Support 1
k2 3.64 × 105 N/m Stiffness of Support 2
u1 30 g·cm Mass unbalance on Disc 1
u2 30 g·cm Mass unbalance on Disc 2
u3 30 g·cm Mass unbalance on Disc 3
ϕ1 0◦ Phase angle of unbalanced mass on Disc 2 relative to Disc 1
ϕ2 0◦ Phase angle of unbalanced mass on Disc 3 relative to Disc 1

The steady-state response of the rotor system is computed using the finite element
method (FEM). For clarity, the detailed modeling process is presented in Appendix A,
ensuring that the organization of this paper remains coherent. Using the established FEM,
the first three critical speeds are identified as 1434 rpm, 1964 rpm, and 6923 rpm. The
corresponding vibration mode shapes are depicted in Figure 4, in which the first and second
modes represent pitching, while the third mode represents bending. Taking the steady-state
response associated with Disc 1 as an example, the frequency response function for Disc 1
is obtained, as illustrated in Figure 5.
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Figure 4. The first three vibration mode shapes of the example rotor: (a) 1st mode shape, (b) 2nd
mode shape, and (c) 3rd mode shape.
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Figure 5. The steady−state unbalance response for Disc 1.

4. Numerical Results

In this section, the effects of various uncertainty parameters, including support stiff-
ness, unbalance, and phase, as well as their combinations, are investigated with respect
to their relationship to the steady-state response of the rotor system, using the method
proposed in this paper. The range of response variation is obtained and compared with the
results calculated through the MCS method.

4.1. Effect of Interval Support Stiffness

Assuming the degree of uncertainty is βKb , the support stiffness can be expressed in
interval form as follows: [

Kb, Kb
]
=

[
Kb − βKb Kb, Kb + βKb Kb

]
(15)

where Kb is the nominal value of stiffness in Support 1 or Support 2.
Generally, support stiffness comprises three components: the support structure stiff-

ness, the squeeze film damper stiffness, and the bearing stiffness; all of these vary with
temperatures, assembly states, and loads [25]. Furthermore, squirrel-cage elastic supports
are widely used in jet engines, and unexpected breakage of the cage bars further increases
the uncertainty of the support stiffness. Consequently, defining the precise value of support
stiffness is challenging. Here, uncertain degrees of 5%, 10%, and 15% for support stiffness
are considered, and uncertainty analysis is performed for these three scenarios to determine
the range of steady-state responses of the rotor system. The convergence results of the
relative generalization error εr are shown in Figure 6.

As shown in Figure 6, the error εr converges when the Chebyshev orthogonal polyno-
mial is of order 3 (p = 3). Therefore, a third-order polynomial with four integration points
in each dimension is employed. Utilizing full factorial numerical integration requires 16
invocations of the system evaluation model. The results of the uncertainty analysis for the
steady-state response of Disc 1 are presented in Figure 7.

As shown in Figure 7, near the critical speed, the range of vibration amplitude broadens
as the degrees of uncertainty increase. This phenomenon is more pronounced at the first and
second critical speeds compared to the third, indicating that the dynamic response at these
speeds is more sensitive to changes in support stiffness. In the range from 1000 to 4000 rpm,
the resonance frequency, initially characterized by a single-peak mode, transitions into a
broad resonance band. At the upper bound, the distinction between the first and second
order becomes very blurred. The steady-state response exhibits less variability when the
rotational speed exceeds 4000 rpm.
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4.2. Effect of Interval Mass Unbalance

Unbalance in a rotor is unavoidable, due to manufacturing and assembly errors. The
mass unbalance is considered as an interval variable, one expressed in the following form:

[e, e] = [e − βee, e + βee] (16)

where e is the nominal value (30 g·cm) of mass unbalance in Discs 1, 2, and 3, and βe is
the degree of uncertainty. The steady-state response of the rotor system is calculated for
uncertainty degrees of 5%, 10%, and 15%, respectively. Similar to the convergence analysis
described in Section 4.1, a third-order (p = 3) Chebyshev orthogonal polynomial with four



Appl. Sci. 2024, 14, 10698 10 of 18

Gaussian integration nodes in each dimension has been constructed. The variation in the
steady-state response of Disc 1 is shown in Figure 8.
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Figure 8 illustrates that the range of steady-state amplitude widens as the rotational
speed increases, indicating that higher rotational speeds amplify the effect of mass unbal-
ance uncertainty on the vibration amplitude of the rotor system. Additionally, the upper
and lower bounds are symmetric about the deterministic curve, while the critical speed
remains unchanged.

4.3. Effect of Interval Unbalance Phase

Taking the unbalance phase of Disc 1 as a reference and assuming that the unbalance
phase of Disc 1 is 0◦, the unbalance phase shifts of Discs 2 and 3 fluctuate within the range
of [0, 360◦]. The convergence results of the relative error at different speeds are presented
in Figure 9.
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As shown in Figure 9, to consider the convergence of the relative error, a Chebyshev
orthogonal polynomial of order (p = 8) is constructed. This forms the basis for conducting an
uncertainty propagation analysis of the phase angle of the mass imbalance across the entire
speed range. Figure 10 illustrates the variation range of the steady-state response at Disc 1.
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As shown in Figure 10, uncertainty in the unbalance phase significantly impacts the
steady-state response of the rotor, particularly at the third-order critical speed, at which
the maximum amplitude increases by nearly threefold compared to the deterministic case.
Changes in the unbalance phase alter the direction of the corresponding centrifugal force,
consequently modifying the total centrifugal force on the rotor and the force couples.
To ensure that the rotor operates reliably and safely, it is essential to account for the
uncertainty of the unbalance phase during the design and assembly process, thereby
preventing excessive unbalance-phase differences between the discs due to oversight.

4.4. Effect of Multi Interval Parameters

In practice, the uncertain parameters affecting rotor performance are typically diverse.
This subsection investigates the simultaneous effects of seven uncertainty parameters—
namely, interval stiffness in supports 1 and 2, interval mass unbalance in Discs 1, 2, and 3,
and interval unbalance phase in Discs 2 and 3—on the rotor’s steady-state response. The
degrees of uncertainty for stiffness and mass unbalance are assumed to be 5%, 10%, and
15%, respectively. Given the significant impact of phase fluctuations on vibration, only the
scenario where the phase angle varies within ±5◦ is considered, with the phase of Disc 1
fixed as a reference. Three cases are established based on the degrees of uncertainty for
all parameters, and uncertainty analysis is conducted for these scenarios. For clarity, the
degrees of uncertainty for all parameters are summarized in Table 3.

Table 3. The degrees of uncertainty for all parameters.

Parameters
Degrees of Uncertainty

Case 1 Case 2 Case 3

k1 5% 10% 15%
k2 5% 10% 15%
u1 5% 10% 15%
u2 5% 10% 15%
u3 5% 10% 15%
ϕ1 ±5◦ ±5◦ ±5◦

ϕ2 ±5◦ ±5◦ ±5◦
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When the Chebyshev orthogonal polynomial is of order 3 (p = 3), the relative error
εr achieves convergence. Consequently, a third-order Chebyshev orthogonal polynomial
is utilized to calculate the range of steady-state response variations of the system under
multiple sources of uncertainty and varying parameter intervals. The range of steady-state
response for Disc 1, obtained using the proposed method, is illustrated in Figure 11.
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As shown in Figure 11, having multiple uncertainty parameters significantly affects the
steady-state response of the rotor. This pattern of influence encompasses the characteristics
exhibited by the individual parameters described earlier, including broad resonance bands,
peak shifts, and fluctuations in amplitude magnitude.

4.5. Comparison and Validation

To validate the correctness of the proposed method, a comparison is made using the
MCS method. Since the comparison processes for different uncertainties are consistent, due
to space constraints, only one scenario is analyzed here, specifically, the one in which the
uncertainties in support stiffness and mass imbalance are set at 10%, while the phase angles
in Discs 2 and 3 fluctuate within a range of ±5◦. The comparison’s results are illustrated in
Figures 12 and 13.
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In Figure 12, the random sample size used for the MCS is 1000, and L in Figure 13
is the accuracy level of the sparse-grid integration used for establishing the Chebyshev
orthogonal polynomial. The results indicate that the envelope intervals obtained by the
two methods coincide, except at the anti-resonance point near 6500 rpm. Additionally,
the statistical means and standard deviations of the steady-state responses obtained by
both methods are nearly identical, which verifies the accuracy of the method proposed in
this paper under conditions of multiple uncertainties. Table 4 presents a comparison of
the computational efficiency of the MCS and FTG methods and the method proposed in
this paper.

Table 4. Comparison of computational efficiency.

Method FTG Method MCS Method Proposed Method

Computational cost 16,384 1000 680

In Table 4, the computational cost refers to the number of times the finite element
model of the rotor system is invoked during the uncertainty analysis process. For example,
the FTG method, which employs a full tensor product mesh with four integration points
in each dimension, requires a total of 16,384 integration nodes, necessitating 16,384 invo-
cations of the source model. In contrast, sparse-grid numerical integration requires only
680 invocations. Furthermore, when looking at the percentage reduction in computational
cost, sparse-grid integration requires only 68% of the computational cost associated with
the MCS. Compared to the FTG method, sparse-grid integration reduces the computa-
tional cost by approximately 95.87%, highlighting its superiority in high-dimensional cases.
Therefore, employing sparse-grid integration in high-dimensional cases can significantly
enhance computational efficiency.

5. Conclusions

In this paper, the method of Chebyshev orthogonal polynomials is utilized to compute
the steady-state response of a rotor with uncertainties. To enhance computational efficiency
in high-dimensional scenarios involving multiple uncertain parameters, the sparse-grid
numerical integration method is employed. A dynamically similar rotor of a turboshaft
engine is selected as the study’s subject, and the influences of multiple uncertain parameters
on the rotor’s dynamics are analyzed. The main conclusions are as follows:



Appl. Sci. 2024, 14, 10698 14 of 18

(1) The uncertainty in support stiffness significantly affects the steady-state response
and critical speed, causing the resonance frequency, originally characterized by a
single-peak pattern, to transform into a broad resonance band; this is accompanied by
shifts in the resonance peak.

(2) The upper and lower bounds of the steady-state response are symmetric around the
deterministic curve under the influence of mass-unbalance uncertainty, with these
bounds widening at high rotational speeds, although the critical speed remains un-
changed. Additionally, the phase of the uncertainty unbalance significantly influences
the dynamic response of the rotor, resulting in substantial increases in vibration
amplitude at critical speeds.

(3) The effects of multiple uncertainty parameters together on the rotor’s steady-state
response are multifaceted, characterized by broad amplitude bands, resonance peaks,
frequency shifts, and fluctuations in amplitude magnitude.

In summary, the method proposed in this paper integrates Chebyshev orthogonal
polynomial approximation with sparse-grid numerical integration techniques, targeting
the analysis of high-dimensional random variables. By utilizing sparse-grid integration, the
approach addresses the computational challenges associated with the “curse of dimension-
ality”, allowing for efficient processing without compromising accuracy. The combination
of these techniques not only streamlines the computation but also enhances the robustness
of the results, making it a valuable method for engineers and researchers dealing with
high-dimensional problems in rotor dynamics and related fields.

Future research will concentrate on the experimental validation of uncertainties in
rotor systems to enhance the connections between theoretical models and practical appli-
cations. Systematic experimental protocols will be developed to elucidate how various
uncertainty factors influence rotor dynamic performance, thereby providing empirical
evidence to confirm the accuracy of these models. Furthermore, a strong emphasis on
robust optimization methods is crucial, as it integrates results from uncertainty analysis to
create designs that are both efficient and resilient to variations in operational conditions.
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Appendix A

A schematic representation of the finite element model established for the rotor system
is shown in Figure A1.

In Figure A1, the shaft of the rotor system is modeled using one-dimensional Timo-
shenko beam elements, divided into 25 segments. The discs are represented by concentrated
mass elements, while the red triangles indicate the bearing elements. “Brg Type 3” specifies
that the bearing has constant stiffness and damping, and no rotational stiffness. The load–
deformation relationship of the bearing is typically nonlinear and closely related to the
rotational speed. To simplify the rotor dynamic analysis, the load–deformation relationship
of the supports is often approximated as linear.
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tem is shown in Figure A1. 

 
Figure A1. The established FEM of the rotor System. 

In Figure A1, the shaft of the rotor system is modeled using one-dimensional Timo-
shenko beam elements, divided into 25 segments. The discs are represented by concen-
trated mass elements, while the red triangles indicate the bearing elements. “Brg Type 3” 
specifies that the bearing has constant stiffness and damping, and no rotational stiffness. 
The load–deformation relationship of the bearing is typically nonlinear and closely related 
to the rotational speed. To simplify the rotor dynamic analysis, the load–deformation re-
lationship of the supports is often approximated as linear. 

Considering only the lateral bending vibration, the shaft beam element can be de-
scribed by 8 degrees of freedom. The analysis of beam bending can be approached simi-
larly to that of bar extension. Figure A2 shows a typical element, along with its local coor-
dinates. To guarantee the continuity of both deflection and slope at the element bounda-
ries, the local coordinates incorporate the translations and rotations at the ends of the ele-
ment. 

Figure A1. The established FEM of the rotor System.

Considering only the lateral bending vibration, the shaft beam element can be de-
scribed by 8 degrees of freedom. The analysis of beam bending can be approached similarly
to that of bar extension. Figure A2 shows a typical element, along with its local coordinates.
To guarantee the continuity of both deflection and slope at the element boundaries, the
local coordinates incorporate the translations and rotations at the ends of the element.
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Figure A2. Degrees of freedom of axis elements and nodes.

In Figure A2, le is the length of the axis unit, and each node has four degrees of
freedom, which, respectively, represent the node displacement along the x and y directions
(represented by u and v respectively) and the cross-sectional rotation around the x and
y axes (represented by α = v/z and β = u/z respectively). Therefore, eight coordinate
components are needed to describe the displacement xe of the shaft unit, namely

xe = [u1v1α1β1u2v2α2β2]
T (A1)

The shaft element model is given by the following formula:

Me
..
xe + (Ce + ωGe)

{ .
xe
}
+ Kexe = qe (A2)

where the vector qe is the force applied to each node on the shaft unit, and ω is the rotational
speed of the rotor. Me, Ge, Ke, and Ce are the mass matrix, gyro matrix, stiffness matrix,
and damping matrix of the shaft element, respectively. The density, cross-sectional area,
elastic modulus, and moment of inertia of the shaft element are, respectively, denoted as ρe,
Ae, Ee, and Ie, and the specific forms of the element matrices Me, Ge, and Ke are as follows:

Me =
ρe Aele

420
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Ke =
Ee Ie
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Ge =
ρe Ie
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(A5)

Considering the rigid disc as a concentrated mass on the node of the shaft unit can
effectively reduce the degree of freedom of the model and improve the calculation efficiency
of the finite element model. The model of the rigid disc is given by the following formula:

Md
..
xd + ωGd

.
xd = qd (A6)

where the vector qd is the unbalanced force caused by eccentric mass, Md and Gd are the
mass matrix and gyro matrix of the disc, and

Md =


md 0 0 0
0 md 0 0
0 0 Id 0
0 0 0 Id

 (A7)

Gd =


0 0 0 0
0 0 0 0
0 0 0 Ip
0 0 Ip 0

 (A8)

where md is the mass of the disc, Id is the diameter moment of inertia, and Ip is the polar
moment of inertia.

In Equation (A6), the unbalanced force qd is given by the following equation:

qd =
[
medeω2cos(ωt + ϕ)medeω2sin(ωt + ϕ) 0 0

]T (A9)

where me and de are the magnitude of unbalance and eccentricity, and ϕ represents the
initial angular positions of unbalance, as shown in Figure A3.
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where md is the mass of the disc, Id is the diameter moment of inertia, and Ip is the polar 
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Based on finite element theory, the general process for constructing the differential
equation of the rotor system is as follows: (1) Assemble the element mass, stiffness, damp-
ing, and gyroscopic matrices into a global matrix. (2) Incorporate supports and constraints.
(3) Apply external excitation. The resulting differential equation of motion for the entire
rotor system can then be expressed in the following form:

M
..
x + (C + ωG)

.
x + (K + Kb)x = q (A10)

where x is the node displacement, ω is the rotor speed, and M, C, K, and G are the overall
mass matrix, damping matrix, stiffness matrix, and gyro matrix of the rotor system. Kb is the
supporting stiffness matrix, and q is the unbalanced force acting on the whole rotor system.
Considering that the unbalanced force can be written as q = Qeiωt, the response vector can
be written as x = Xeiωt, where X is the amplitude of the unbalanced response. Transforming
the motion equation of the rotor system shown in Equation (A10) into frequency domain,
we have

Z(ω)X(ω) = Q(ω) (A11)

where
Z(ω) = −ω2M + iω(C + ωG) + K + Kb (A12)

Equation (A12) can be employed to calculate the unbalanced response at each node of
the rotor system at a specified speed. The unbalanced steady-state response of the rotor
at each node follows a distinct trajectory. When the supporting parameters are isotropic,
the trajectory is circular, with the radius representing the amplitude of the unbalanced
response in the X and Y directions at the rotor cross-section. Conversely, if the bearing
parameters differ in the two directions, the trajectory takes the form of an ellipse.
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