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Abstract: Industrial control systems (ICSs), which are fundamental to the operation of critical
infrastructure, face increasingly sophisticated security threats due to the integration of information
and operational technologies. Conventional anomaly detection techniques often lack the ability to
provide clear explanations for their detection, and their inherent complexity can impede practical
implementation in the resource-constrained environments typical of ICSs. To address these challenges,
this paper proposes a novel approach that leverages swarm intelligence algorithms for the extraction
of numerical association rules, specifically designed for anomaly detection in ICS. The proposed
approach is designed to effectively identify and precisely localize anomalies by analyzing the states
of sensors and actuators. Experimental validation using the Secure Water Treatment (SWaT) dataset
demonstrates that the proposed approach can detect over 84% of attack instances, with precise
anomaly localization achievable by examining as few as two to six sensor or actuator states. This
significantly improves the efficiency and accuracy of anomaly detection. Furthermore, since the
method is based on the general control dynamics of ICSs, it demonstrates robust generalization,
making it applicable across a wide range of industrial control systems.

Keywords: industrial control systems; anomaly detection; numerical association rules; swarm
intelligence algorithms; security enhancement

1. Introduction
1.1. Background

With the advancement of Industry 4.0, industrial control systems have evolved from
closed systems into complex, interconnected frameworks. While this transition has en-
hanced production efficiency and flexibility, it has also significantly expanded the attack
surface [1], allowing for security risks from information technology (IT) to be transmitted to
operational technology (OT), thereby directly threatening the safety of industrial facilities.
For instance, the “Stuxnet” virus attack on Iran’s Bushehr nuclear power plant in 2010 led
to the damage of centrifuges [2].

A typical ICS architecture comprises key components including sensors and actuators
at the physical layer, Programmable Logic Controllers (PLCs) and Remote Terminal Units
(RTUs) at the control layer, and Supervisory Control and Data Acquisition (SCADA)
and Human–Machine Interface (HMI) systems at the supervisory control layer. Figure 1
illustrates a generic ICS architecture. In this setup, physical layer devices receive commands
through the control layer and provide feedback on physical process states, while the
supervisory control layer is responsible for high-level monitoring and decision-making.
Anomaly detection mechanisms are typically implemented at this layer, monitoring sensor
data and actuator status to ensure the normal operation of the physical processes within
the ICS.
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Figure 1. General architecture of ICS.

1.2. Related Work and Problem Statement

Current research on ICS anomaly detection includes statistical analysis, machine
learning, and deep learning approaches [3]. Figure 2 illustrates the mainstream research
approaches in the field of ICS anomaly detection.

Traditional anomaly detection methods rely on mathematical models constructed
by domain experts to reflect the normal behavior of a system, such as entropy-based [4],
Kalman filtering [5,6], hidden Markov models [7], and maximum likelihood estimation [8]
methods. These methods capture anomalies by analyzing deviations from normal behavior.
Ke Liu et al. [4] developed an intrusion detection method based on entropy, using a dynamic
threshold adjustment mechanism to predict anomalies. However, these methods often
assume that all system states are measurable, an assumption that is difficult to satisfy in
real-world scenarios. Additionally, these algorithms depend heavily on expert knowledge,
making the model-building process cumbersome and time-consuming.
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Figure 2. Main research methods for anomaly detection in ICS.

With the rise of machine learning techniques, methods such as Local Outlier Factor
(LOF) [9], Isolation Forest (IF) [10,11], Support Vector Machine (SVM) [12], and clustering [13]
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have shown significant advantages in anomaly detection. These methods do not rely on
specific expert knowledge but face challenges when dealing with high-dimensional data,
requiring large amounts of labeled data in complex ICSs.

Deep learning models, with their powerful modeling capabilities, have become a hotspot
in the anomaly detection domain, including prediction-based and reconstruction-based
models. Prediction-based models, such as Convolutional Neural Networks (CNNs) [14,15],
Long Short-Term Memory networks (LSTMs) [16], Graph Neural Networks (GNNs) [17,18],
and Transformers [19], identify significant prediction errors as anomalies by predicting
future states or the next value in sequences. SiET [20] integrates Graph Neural Networks
into Anomaly Transformers to detect anomalies by leveraging the high-dimensional cor-
relations between time points. On the other hand, reconstruction-based models, such as
Autoencoders (AEs) and Generative Adversarial Networks (GANs), identify anomalies by
learning latent representations of data and attempting to reconstruct input data, with larger
reconstruction errors indicating the presence of anomalies [21,22]. In [23], the method
models normal behavior patterns by learning the graph structures within and between
signals, and it detects anomalies using multi-view contrastive learning and adaptive data
augmentation within a reconstruction-based approach. MAD-GAN [24] combines GAN
and Long Short-Term Memory Recurrent Neural Networks to generate anomaly scores
for detection. While deep learning-based anomaly detection methods exhibit superior
performance, their inherent black-box nature limits anomaly explanations. In complex
ICS, operators may need to investigate numerous sensors to locate the anomaly, impacting
system response time. Moreover, ICS often have strict constraints on memory and hardware
resources, constraining the direct application of complex models.

Existing deep learning methods based on prediction and reconstruction often struggle to
handle “stealth attacks”, where attackers gradually inject small, imperceptible errors [25,26].
These attacks manifest as low-frequency and subtle disturbances that are frequently over-
looked by traditional anomaly detection methods. However, over time or through cumula-
tive effects, these disturbances can lead to severe system failures. Due to their covert nature,
such attacks require more sensitive and precise detection mechanisms. The performance
and robustness of current methods in dealing with these attacks still need improvements.

1.3. Contribution

To address these issues, this paper utilizes swarm intelligence algorithms to mine
numerical association rules from ICS and applies these rules for anomaly detection. This
approach effectively identifies anomalies and highlights deviations from normal patterns,
providing clear explanations of anomalies to experts. Consequently, this significantly
enhances the diagnostic speed and response efficiency of experts when encountering
system anomalies. The content extracted is as follows:

1. This study introduces a numerical association rule method based on swarm intelli-
gence algorithms for anomaly detection in ICSs, demonstrating broad applicability
and strong generalization across diverse environments.

2. A feature selection and task partitioning strategy optimizes the search space for swarm
intelligence algorithms, enhancing the efficiency of processing large-scale ICS datasets
and ensuring high-quality invariant rule generation.

3. An implemented anomaly detection system based on the generated invariants achieves
over 84% accuracy on the SWaT dataset, providing precise identification of operational
deviations and intuitive explanations for anomalies.

The remainder of this paper is structured as follows: Section 2 provides a brief intro-
duction to numerical association rule mining and swarm intelligence algorithms; Section 3
introduces the methodology design; Section 4 presents the experimental results; and the
final section, Section 5, summarizes the paper and outlines future perspectives.
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2. Numerical Association Rule Mining and Swarm Intelligence Algorithms
2.1. Numerical Association Rule Mining

Association rule mining [27] aims to uncover hidden relationships between attributes
within transactional databases. Traditional association rule mining algorithms [28–30] pri-
marily target discrete attribute data. When dealing with numerical attributes, discretization
strategies are often required [31–33], which inevitably leads to information loss. With the
advent of swarm intelligence and evolutionary algorithms, methods capable of directly han-
dling both discrete and continuous attributes have emerged, leading to the development of
numeric association rule mining (NARM) [34].

Formally, consider an ICS equipped with m sensors and n actuators. Let the data
log D1:T = {d1, d2, . . . , dT}, where each record dt consists of two parts: a state vector
xt ∈ Rm, representing the readings of all sensors at time t; and a control vector ut ∈ Kn,
denoting the operational states of the actuators at time t, where Kn is the set of control
action categories. Further, construct an item set I = {i1, i2, . . . , im+n}, where each signal
dt ∈ D1:T corresponds to a subset of the item set I. An association rule can be defined as an
implication relationship, formally expressed as follows:

X ⇒ Y (1)

where X and Y are non-empty and mutually exclusive subsets of I, i.e., X ⊂ I ∧ Y ⊂
I ∧ X ∩Y = ⊘.

The practical utility of association rules is measured using metrics such as support,
confidence, interest, and comprehensibility. Support reflects the frequency with which (X)
and (Y) co-occur, defined as follows:

supp(X ⇒ Y) =
n(X ∩Y)
|D| (2)

where n(X ∩ Y) denotes the number of transactions that contain both X and Y, and |D|
represents the total number of transactions in the dataset D.

Confidence quantifies the probability of Y occurring given X, defined as follows:

con f (X ⇒ Y) =
n(X ∩Y)

n(X)
(3)

A confidence of 1 indicates that Y always occurs if X occurs. Strong association rules
generally require both high support and high confidence.

Interestingness measures the novelty and importance of the rule, defined as follows:

inte(X ⇒ Y) =
supp(X ⇒ Y)

supp(X)
· supp(X ⇒ Y)

supp(Y)
·
(

1− supp(X ⇒ Y)
|D|

)
(4)

Comprehensibility assesses the intuitiveness and understandability of the rule by
quantifying the simplicity of the antecedent and consequent, defined as follows:

comp(X ⇒ Y) =
log(1 + |Y|)

log(1 + |X ∪Y|) (5)

Invariant rules can be defined as strong association rules. In the context of ICSs, they
reflect the essential characteristics of a normal system operation, manifesting as patterns of
state transitions among sensors and actuators. Any physical process violating these rules
would be considered an anomaly, formally represented as follows:

I1 ⇒ I2 where I1, I2 ⊂ D ∧ I1 ∩ I2 = ∅ ∧ sup(I1 ∪ I2)

sup(I1)
≥ 1 (6)

In which I1 and I2 are the antecedent and consequent of the rule, respectively, and their
relationship strictly meets specific conditions, that is, in all data logs, whenever I1 occurs,
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I2 must necessarily occur, ensuring that the rules with strong associative relationships are
selected, which can minimize the risk of false positives to the greatest extent.

2.2. Swarm Intelligence-Based Algorithms

Swarm intelligence [35] represents a computational paradigm inspired by the collec-
tive behavior of simple entities in nature. These algorithms simulate the complex group
behaviors that emerge from local interactions among simple individuals. Typical algo-
rithms include Differential Evolution (DE) [36], Particle Swarm Optimization (PSO) [37],
and Bat Algorithms (BA) [38]. The core concept of swarm intelligence algorithms is to guide
the collective behavior of numerous simple agents (referred to as “agents” or “particles”)
through basic rules to address complex optimization problems.

Swarm intelligence algorithms focus on the emergent behaviors of multiple interacting
agents following simple rules. While each agent may be considered non-intelligent on its
own, the collective system can exhibit self-organizing behavior, functioning akin to a form
of collective intelligence.

Typically, swarm intelligence algorithms consist of the following key components:

• Agents: Agents are the basic units of the algorithm, moving within the search space
and interacting based on the state of the environment and other agents.

• Search Space: This is the solution space explored by the algorithm, within which
agents move to find optimal solutions.

• Variation Operators: These operators are used to update the state of the agents, which
can be rule-based or equation-based.

• Evaluation Function: Used to evaluate the fitness of the agents, determining which
agents survive to the next iteration.

• Self-Organization: Interactions among agents lead to self-organizing behavior, guid-
ing the population toward the optimization objective.

By simulating the interactions among simple individuals, swarm intelligence algo-
rithms demonstrate powerful capabilities in solving complex problems. Their charac-
teristics of self-organization, parallelism, and adaptability make them effective tools for
addressing various optimization challenges. A general pseudocode for swarm intelligence
algorithms is provided in Algorithm 1.

Algorithm 1 General Pseudocode for Swarm Intelligence Algorithms

1: procedure ENHANCEDSWARMINTELLIGENCE
2: Initialization:
3: Set the search space S (the area in which agents search for solutions)
4: Initialize the population of agents agents (each agent has an initial position

within S)
5: Define the fitness evaluation function f (·) (assesses the quality of a solution)
6: while termination condition is not met do
7: for each agent agenti in agents do
8: Compute the fitness value f (positioni) of the agent agenti’s position

positioni
9: end for

10: for each agent agenti in agents do
11: Update the agent’s position positioni using variation operators
12: Consider the influence of neighboring agents neighborsi when updating

positioni
13: end for
14: Select the most fit agents based on their fitness values for the next iteration
15: Record the best solution found so far and its corresponding fitness value
16: end while
17: Output the best solution and its fitness value
18: end procedure
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3. Methodology

In this section, we present a framework for systematically deriving invariant rules from
ICS data logs and utilizing them for anomaly detection. Our proposed method addresses
the limitations of existing approaches by integrating swarm intelligence algorithms with
advanced feature selection and task segmentation techniques. The framework consists of
two primary components:

1. Generating Invariant Rules Using Swarm Intelligence Algorithms: We employ swarm
intelligence algorithms to efficiently extract invariant rules from ICS data logs. These
algorithms are powerful tools for solving optimization problems and allow us to
uncover meaningful patterns and relationships from large datasets.

2. Utilizing Invariant Rules for Anomaly Detection in ICS: Once the invariant rules
are generated, they are used for anomaly detection in ICS. This section details the
application of these rules to analyze ICS data, enabling the timely identification and
response to deviations from normal operational patterns.

The design of the anomaly detection model based on association rules is illustrated in
Figure 3.

Observing ICS Sensor & 

Actuator State

(train set)

Swarm Intelligence-

based NARM
Rules

Observing ICS Sensor & 

Actuator States

(test set)

Generate ICS Invariant Rule

Anomaly Detection

Matching
Anomaly Detection 

and Interpretation

Figure 3. Anomaly detection design.

To clearly present our contributions, we detail the proposed method in the
following subsections.

3.1. Generating Invariant Rules Using Swarm Intelligence Algorithms

To efficiently extract invariant rules from ICS data logs, we employ swarm intelligence
algorithms. These algorithms are powerful tools for solving optimization problems, and in
the context of ICS, they allow us to uncover meaningful patterns and relationships from
large datasets. The process of generating invariant rules is modeled as a single-objective,
continuous optimization task, which involves optimizing three key components:

• Feature Selection and Task Partitioning: To improve efficiency and avoid inefficiency
due to a large search space, we use feature selection through correlation analysis
and task partitioning. This strategy refines the search process by breaking down the
optimization task into more manageable sub-tasks, enhancing search efficiency.

• Solutions Representation in the Search Space: Solutions are encoded as real-valued
vectors in the search space. A genotype/phenotype mapping mechanism trans-
forms these encoded solutions into the phenotype space, which better represents the
actual problem.

• Fitness Function Evaluation: A fitness function in the phenotype space evaluates the
quality of the solutions, guiding the optimization process.

The flowchart for generating invariant rules using swarm intelligence algorithms is
shown in Figure 4.
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Figure 4. Flowchart of invariant rule generation based on swarm intelligence algorithms.

3.1.1. Feature Selection and Task Segmentation

Given the large scale and complexity of ICS datasets, as well as the challenges asso-
ciated with the extensive solution space encountered by traditional swarm intelligence
algorithms in numeric association rule mining, we employ feature selection and task seg-
mentation. Specifically, each feature is treated as a target feature, and machine learning
algorithms are utilized to identify features that are highly correlated with the target feature.
This approach decomposes the large-scale mining task into multiple smaller, more man-
ageable sub-tasks, thereby enhancing both computational efficiency and interpretability of
the algorithm.

Let F = {F1, F2, . . . , Fp} be the set of all features, where p is the total number of
features. The strength of the correlation between features is calculated using the Pearson
correlation coefficient:

rFi ,Fj =
∑n

k=1(xik − x̄i)
(

xjk − x̄j

)
√

∑n
k=1(xik − x̄i)

2
√

∑n
k=1

(
xjk − x̄j

)2
(7)

where rFi Fj represents the correlation coefficient between feature Fi and Fj, xik is the value
of feature Fi in the k-th data record, x̄i is the mean value of feature Fi, and n is the number
of data records.

To ensure that the segmented sub-tasks possess clear correlations, a threshold θ must
be defined to select features Fj that exhibit a significant correlation with the target feature
Fi. Specifically, only features Fj for which the following condition holds:

{Fj | |rFi ,Fj | > θ, Fi ̸= Fj} (8)

are considered to have a strong correlation with Fi and are included in further analysis.
Having selected the set of features correlated with Fi, the original invariant rule

mining task T can be divided into several smaller tasks Tk, each involving a subset of
correlated features:

Ti = {Fi, Fj1 , Fj2 , . . . , Fjl} (9)

where l is the number of selected features, and l < p. This method allows us to effectively
reduce the complexity of the mining task by focusing on the most relevant features, thus
improving the efficiency and accuracy of the mining process and ensuring that the mined
rules have a higher explanation and generalization capability.
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To illustrate this process, we provide Algorithm 2, which details the steps involved in
feature selection and task segmentation.

In Algorithm 2, the input is the set of all features F and the correlation threshold
θ. The output is a list of sub-tasks T, where each sub-task contains a set of highly
correlated features. The algorithm first initializes a correlation matrix R and then cal-
culates the Pearson correlation coefficients for all pairs of features. It then selects fea-
tures that are highly correlated with each target feature and forms sub-tasks based on
these correlated features. This approach ensures that the sub-tasks are manageable and
computationally efficient.

Algorithm 2 Feature Selection and Task Segmentation

Require:
1: F: Set of all features {F1, F2, . . . , Fp}, where p is the total number of features.
2: θ: Correlation threshold to filter highly correlated features.

Ensure:
3: T: List of sub-tasks, where each sub-task contains a set of highly correlated features.
4: p← length(F) ▷ Obtain the total number of features
5: R← zeros(p, p) ▷ Initialize the correlation matrix with zeros.
6: for i = 1 to p do
7: for j = i to p do
8: R[i][j]← PearsonCorrelation(F[i], F[j])
9: R[j][i]← R[i][j] ▷ The correlation matrix is symmetric.

10: end for
11: end for
12: T ← [] ▷ Initialize an empty list to store sub-tasks.
13: for i = 1 to p do
14: correlated_ f eatures← [F[i]] ▷ Start with the target feature.
15: for j = 1 to p do
16: if i ̸= j and |R[i][j]| > θ then
17: correlated_ f eatures.append(F[j]) ▷ Add feature Fj if it is highly correlated

with Fi.
18: end if
19: end for
20: T.append(correlated_ f eatures) ▷ Add the sub-task for Fi to the list.
21: end for
22: return T ▷ Return the list of sub-tasks.

3.1.2. Representation of Solutions and Numerical Association Rule Generation

In the representation of solutions within the search space of swarm intelligence algo-
rithms, individual solutions appear as real-valued vectors, where t denotes the iteration
number, and i is the index of the solution. The structure of the vector is as follows:

x(t)i =
(

. . . ,
〈

x(t)i,j,1, x(t)i,j,2, x(t)i,j,3

〉
︸ ︷︷ ︸

Attr(num)
i,j

, . . . ,
〈

x(t)i,j′ ,1, x(t)i,j′ ,2

〉
︸ ︷︷ ︸

Attr(cat)
i,j′

, . . .
)

(10)

Here, j and j′ represent the j-th numerical attribute and the j′-th categorical attribute,
respectively. n indicates the number of numerical attributes, and m is the number of
categorical attributes.

Each numerical attribute Attr(num)
i,j is represented by a triple

〈
x(t)i,j,1, x(t)i,j,2, x(t)i,j,3

〉
, where

x(t)i,j,1 and x(t)i,j,2 denote the lower and upper bounds of the specific attribute values, and x(t)i,j,3
is a threshold indicating whether the feature is included in the rule.

The numerical attributes are calculated according to the following formula:
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Attr(num)
i,j =

NULL , if rand(0, 1) < x(t)i,j,3

[x(t)i,j,1, x(t)i,j,2] , otherwise
(11)

Categorical attributes are simplified to a 2-tuple
〈

x(t)i,j′ ,1, x(t)i,j′ ,2

〉
, including the specific

candidate value x(t)i,j′ ,1, the threshold x(t)i,j′ ,2 indicating whether the feature is included in
the rule.

The categorical attributes are calculated according to the following formula:

Attr(cat)
i,j′ =

NULL , if rand(0, 1) < x(t)i,j′ ,2

x(t)i,j′ ,1 , otherwise
(12)

According to the mapping rules of the solution vector, the antecedent and consequent
are generated to form the rule Ante⇒ Conse. The iterative process continues to optimize
the solution vector and generate more high-quality invariant rules.

3.1.3. Fitness Function

In the process of generating invariant rules, the evaluation of the fitness function is a
crucial step in determining the quality of the invariant rules [34]. The design of the fitness
function directly impacts the performance of the algorithm and the quality of the final
mined invariant rules. To comprehensively evaluate the invariant rules, the fitness function
is typically constructed based on several metrics, including support, confidence, compre-
hensibility, and interestingness. Here, we use a weighted sum of support, confidence, and
comprehensibility metrics:

f
(

x(t)i

)
=

α · supp
(

x(t)i

)
+ β · conf

(
x(t)i

)
+ γ · comp

(
x(t)i

)
α + β + γ

(13)

where α, β, and γ are the respective weights. The objective is to maximize the
fitness function.

The fitness function is designed to incorporate multiple metrics such as support,
confidence, and comprehensibility. By maximizing the fitness function, the algorithm
ensures the generation of high-quality invariant rules, which are essential for effective rule
mining in ICS datasets.

3.2. Utilizing Invariant Rules for Anomaly Detection in ICS

After generating invariant rules using swarm intelligence algorithms, the next task
is to apply these rules for real-time monitoring of an ICS to achieve effective anomaly
detection. This section details the application of extracted invariant rules to analyze ICS
data, enabling the timely identification and response to deviations from normal operational
patterns, thus ensuring system stability and safety.

SCADA continuously collects data from various sensors and actuators within the
ICS, including critical operational parameters such as pressure, temperature, liquid level,
flow rate, and valve statuses. These data are compared against the set of invariant rules
generated in the previous section. Each invariant rule is considered a physical law or state
constraint that the system should adhere to under normal conditions. Any deviation from
these invariant rules is flagged as an anomaly.

The method of anomaly detection based on invariant rules, due to its clarity and
explanation, enables operators to quickly understand changes in the system’s state and
respond promptly. By comparing real-time data collected by the SCADA system with
these invariant rules, this approach facilitates early detection and localization of anomalies,
reducing the time required for fault diagnosis. Additionally, its ability to clearly distinguish
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between normal and abnormal states enhances the overall safety of the system, ensuring
the continuity and reliability of industrial processes.

4. Experiments

The experiments were conducted on a personal computer equipped with the hard-
ware and software configurations listed in Table 1. All experimental code was written in
Python 3.9 and executed on the Windows 11 Pro 64-bit operating system. Data processing
and feature extraction were performed using the Pandas and NumPy libraries, while vi-
sualization results were generated using the Matplotlib library. The implementation and
optimization of swarm intelligence algorithms were carried out using the NiaARM and
NiaPy libraries.

Table 1. Experimental setup and environment.

Component Specification

CPU Intel(R) Core(TM) i7-9700F @ 3.00GHz
(Intel, Santa Clara, CA, USA)

RAM 32 GB
Operating System Windows 11 Pro 64-bit

Programming Language Python 3.9
Data Processing Libraries Pandas 2.1.3

NumPy 1.26.2
Visualization Library Matplotlib 3.5.3

Swarm Intelligence Libraries NiaARM 0.3.5
NiaPy 2.0.5

4.1. Dataset

This experiment was conducted using the SWaT dataset [39]. The SWaT dataset
originates from a downscaled model testbed designed to simulate a real-world water
treatment plant, encompassing six critical stages of water treatment. The dataset comprises
11 days of operational data, with the first 7 days representing normal operation conditions
collected in a physically isolated environment. The subsequent 4 days feature 41 distinct
cyber-attack scenarios, which are categorized into three main types:

• Single Stage Single Point Attacks: These attacks target a single point within one
stage of the water treatment process.

• Single Stage Multi-Point Attacks: These attacks involve multiple points within a
single stage, affecting several components or sensors simultaneously.

• Multi-Stage Single Point Attacks: These attacks target a single point across multiple
stages of the water treatment process.

• Multi-Stage Multi-Point Attacks: These attacks span multiple stages of the water
treatment process, impacting various components and sensors across different stages.

Out of the 41 attack scenarios, 36 resulted in tangible physical impacts on the sys-
tem. Data were recorded at a frequency of one sample per second, encompassing sensor
readings from 25 continuous attributes and actuator states from 26 discrete attributes. The
architecture of the SWaT testbed is illustrated in Figure 5.

For this experiment, the training set consisted of the normal operational data from
the first seven days, capturing the system’s typical operational conditions. The test set
was derived from the data of the following four days, featuring a range of cyber-attack
scenarios, to evaluate the model’s performance and detection accuracy under various
attack conditions.
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Figure 5. The figure illustrates the architecture of SWaT, which is designed to simulate a real-world
water treatment plant. The testbed consists of six critical stages of water treatment, each with multiple
sensors and actuators [39].

4.2. Numeric Association Rules Mining
4.2.1. Feature Selection and Task Segmentation

In the SWaT dataset, Pearson correlation coefficients between all features were com-
puted using the method described in Section 3.1.1. The results are shown in Figure 6.
Certain features exhibit a high degree of correlation; for instance, the Pearson correlation
coefficient between the flow sensor FIT101 and the valve MV101 is as high as 97.12%. This
strong dependency indicates that the valve MV101 regulates the inflow to the raw water
tank, which is consistent with the interdependencies between sensors and actuators in
industrial control systems environments.
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To reduce the search space for swarm intelligence algorithms in mining invariant rules
for ICSs and enhance search efficiency, the mining task was decomposed into smaller tasks
based on feature correlations. To determine an appropriate threshold for this decomposition,
we conducted an experiment where the Pearson correlation coefficient threshold, denoted
by θ, was varied from 0 to 0.9 in increments of 0.1. The evaluation metrics used in this
experiment were the number of rules mined and the time cost of the mining process.

The experimental results, illustrated in Figure 7, show that when θ = 0.3, the number
of rules mined is maximized while the time cost remains relatively low. This suggests
that setting θ = 0.3 strikes a balance between the comprehensiveness of the rule set and
computational efficiency. Therefore, for each feature, its correlation with other features was
calculated, and only those with a correlation coefficient greater than θ = 0.3 with the target
feature were retained. This approach enabled the large-scale mining task to be broken
down into multiple smaller tasks, each focusing on different feature combinations, with
each sub-task targeting a group of highly correlated features.

By adopting this strategy, we not only reduced the complexity of the problem but
also ensured that the rules mined are more likely to capture meaningful and relevant
patterns within the data, thereby improving the overall performance and interpretability of
the model.
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Figure 7. Effect of pearson correlation coefficient threshold (θ) on the number of rules mined and
time cost.

4.2.2. Selection and Parameters Tuning of Swarm Intelligence Algorithms

In this study, we utilized three different swarm intelligence algorithms: DE [36], PSO [37],
and BA [38]. All swarm intelligence algorithms in this study were implemented using the
NiaPy [40] framework. This section aims to identify the most suitable swarm intelligence
algorithm for invariant rule mining in ICS scenarios through parameter optimization.

PSO, DE, and BA are metaheuristic algorithms that depend on predefined param-
eters, and tuning parameters is crucial for algorithm performance. To determine the
optimal parameter settings, we adopted the General Factorial Design method for system-
atic parameters tuning. The parameter settings for the PSO algorithm were set by prior
research [41–43], ensuring a scientific and effective range of parameter. The parameter
values for the BA and DE were derived from the default settings in the NiaPy framework
and related studies [44,45]. The factors and levels are listed in Table 2.

Considering the inherent randomness of these algorithms, to ensure robust results,
each parameter combination was independently run 20 times. The average results served
as the basis for performance evaluation, reducing the impact of random factors. Ultimately,
through a comprehensive analysis of the experimental data, Table 3 presents the optimal
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parameter combinations for each algorithm, which demonstrates the best rule mining
performance across multiple tests.

Table 2. Parameter settings for different optimization methods.

Method Factor Level 1 Level 2 Level 3

PSO

w 0.4 0.8 –
C1 0.5 1 2
C2 0.5 1 2

Population 20 30 50
50 100 500

Iteration 50 100 500
50 100 500

DE

F 0.5 0.8 1
CR 0.7 0.8 0.9

Population 20 30 50
50 100 500

Iteration 50 100 500
50 100 500

BA

Loudness 1 0.9 0.8
Pulse Rate 1 0.9 0.8

α 0.7 0.8 0.9
γ 0.1 0.2 0.3

Population 20 30 50
50 100 500

Iteration 50 100 500
50 100 500

Table 3. Best parameter setting.

Method Factor Value

PSO
w 0.8
C1 2
C2 2

DE F 1
CR 0.8

BA

Loudness 1
Pulse rate 1

α 0.9
γ 0.1

PSO, DE, BA population 50
Iteration 50

4.2.3. Results and Evaluation of Invariant Rule Generation

To comprehensively assess the performance of different swarm intelligence algorithms
in the task of numerical association rule mining, we evaluated them using metrics such
as fitness, support, interestingness, comprehensibility, and the number of rules generated.
Table 4 presents the results of these evaluation metrics for each swarm intelligence algorithm
under their optimal hyperparameter configurations, providing quantitative evidence for
comparative analysis.

As shown in Table 4, PSO outperformed BA and DE in most metrics. Specifically,
PSO achieved the highest average fitness (0.8573), support (0.7102), and interestingness
(0.7468). These superior results can be attributed to PSO’s global search capability and
rapid convergence, which enable it to explore the solution space effectively and avoid local
optima. The high support and interestingness indicate that the rules generated by PSO are
both frequent and novel, reflecting the true behavior of the system.
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Table 4. Evaluation metrics of swarm intelligence algorithms under optimal hyperparameters.

Algorithm Avg (Fitness) Avg (Support) Avg (Interestingness) Avg (Comprehensibility) Total Rules

BA 0.7879 0.5814 0.5749 0.5417 22,847
DE 0.7403 0.4856 0.5064 0.5410 20,958

PSO 0.8573 0.7102 0.7468 0.5866 21,075

While PSO’s comprehensibility (0.5866) was slightly lower than BA’s (0.5417) but
higher than DE’s (0.5410), it still generated a reasonable number of rules (21,075), balancing
quality and quantity. This suggests that PSO can produce high-quality, interpretable rules
without generating excessive redundancy.

In contrast, BA performed well in fitness and support but was less effective in interest-
ingness and comprehensibility. DE had relatively lower performance in all metrics except
comprehensibility. These differences can be attributed to the distinct search mechanisms
and optimization strategies of BA and DE.

Overall, PSO demonstrated superior performance in numerical association rule mining,
particularly in terms of fitness, support, and interestingness. Its global search capability
and rapid convergence make it a preferred choice for this task.

4.3. Anomaly Detection and Explanation
4.3.1. Evaluation Metrics for Anomaly Detection

Due to the issue of class imbalance in ICS datasets, relying solely on accuracy as an
evaluation metric may be insufficient. Class imbalance refers to the disparity in sample
sizes across different classes, which can lead to models achieving high accuracy simply
by predicting the majority class while neglecting the performance on minority classes.
Therefore, this study employs a range of evaluation metrics to provide a comprehensive
assessment, including accuracy, precision, recall, and F1-score.

Accuracy

Accuracy =
TP + TN

TP + FN + TN + FP
(14)

Accuracy is defined as the proportion of correctly predicted instances out of the total
number of instances. While accuracy is an intuitive and commonly used metric, it may not
be the best choice when dealing with class imbalance, as a model can achieve high accuracy
by predominantly predicting the majority class.

Recall

Recall =
TP

TP + FN
(15)

Recall, also known as sensitivity or true positive rate, is the ratio of true positives (TP)
to the total number of actual positives (TP + False Negatives, FN). In the context of ICS
monitoring, a high recall indicates the effective identification of most true anomalies, which
is crucial for ensuring system security.

Precision

Precision =
TP

TP + FP
(16)

Precision, also known as positive predictive value, is the ratio of true positives (TP) to
the total number of predicted positives (TP + False Positives, FP). In ICS scenarios, high
precision ensures that when the model predicts an event as anomalous, the prediction is
highly reliable, thereby reducing the impact of false alarms.
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F1-Score

F1-score =
2× Precision× Recall

Precision + Recall
(17)

The F1-score is the harmonic mean of precision and recall, providing a balanced measure of
these two aspects. In ICS monitoring, the F1-score helps find a reasonable trade-off between
the accuracy of anomaly detection and its comprehensiveness.

By employing these metrics, we can provide a more comprehensive evaluation of
the model’s performance in handling ICS data, particularly in detecting rare but critical
anomalies. Additionally, this multi-dimensional evaluation approach helps reveal potential
biases or weaknesses in the model, guiding further improvements.

4.3.2. Anomaly Detection Results

To validate the effectiveness of the discovered invariant rules in the anomaly detection
task for ICSs, we evaluated the invariant rules on the test set. The evaluation employed
recall, precision, and F1-score as primary metrics to comprehensively measure the detection
performance of different algorithms. The specific evaluation results are presented in Table 5.

Table 5. Evaluation of invariant rule anomaly detection performance.

Algorithm Accuracy Recall Precision F1-Score

BA 0.9782 0.8239 0.9795 0.8950
DE 0.9811 0.8676 0.9603 0.9116

PSO 0.9804 0.8457 0.9773 0.9067

The evaluation results indicate that the DE algorithm excels in recall and F1-score due
to its superior global search capability and local optimization performance, outperforming
both the BA and PSO algorithm. However, in terms of precision, the PSO algorithm
demonstrates slightly better performance.

Table 6 illustrates several typical invariant rules mined using the PSO algorithm. The
recall and precision values indicate the detection effectiveness of the rules for specific
attack types. These rules not only exhibit high predictive accuracy but also possess ex-
cellent interpretability, facilitating rapid identification of potential anomaly patterns by
experts. In practice, utilizing multiple invariant rules in conjunction can yield improved
detection results.

Table 6. Typical invariant rules mined using the particle swarm optimization algorithm.

Rule No. Antecedent Consequent Attack Type Recall Precision

1 167.305 < LIT101 < 650.699 and P101 = ON P102 = OFF 1 0.8978 1

2 246.053 < AIT201 < 272.272 and 229.611 <
LIT101 < 678.163 P102 = OFF 2 0.8961 1

3 153.781 < AIT402 < 165.234 and 262.233 <
AIT503 < 281.705 413.039 < LIT301 < 1014.724 7 0.9463 1

4 MV302 = OFF and 0.0 < FIT301 < 2.359
and MV304 = ON 0.0 < DPIT301 < 21.0993 8 0.4917 1

5 329.519 < AIT203 < 336.848 and 0.663 <
FIT501 < 1.707 P501 = ON 22 0.8509 1

4.4. Comparison with Other Methods

To validate the effectiveness of our approach, we compared it against several repre-
sentative methods recently applied to the SWaT dataset using the same evaluation metrics.
Table 7 summarizes the comparison, which includes traditional baseline methods [9–11],
deep learning-based baselines [19–21,23], and an invariant rule-based baseline [32]. Some



Appl. Sci. 2024, 14, 10705 16 of 21

experimental results are sourced from SiET [20]. For this comparison, we used the hyperpa-
rameters specified in the respective papers for each baseline model.

Table 7. Detection performance of different methods on the SWaT dataset.

Method Precision Recall F1-Score

LOF 0.7544 0.6290 0.6860
IF 0.4929 0.4495 0.4702

DIF 0.935 0.835 0.882
Anomaly Transformer 0.8935 0.9292 0.9110

TranAD 0.976 0.6997 0.8151
MAD-GAN 0.9897 0.6374 0.7754

SiET 0.9258 0.9705 0.9476
Invariant rule 0.974 0.7657 0.8578

BA (ours) 0.9795 0.8239 0.8950
DE (ours) 0.9603 0.8676 0.9116

PSO (ours) 0.9773 0.8457 0.9067

As shown in Table 7, while our method exhibits slightly lower performance in recall
and F1-score compared to some deep learning-based methods (e.g., SiET), it maintains
high precision. This indicates that our method effectively reduces false positives while still
identifying most anomalies.

Although deep learning-based anomaly detection methods excel in recall and F1-score,
their black-box nature poses significant limitations in practical applications. Specifically,
these models can detect anomalies but fail to provide specific reasons for the anomalies. As
a result, operators must manually inspect numerous sensor or actuator states to identify
potential sources of anomalies, which is both time-consuming and complex.

In contrast, our method not only accurately detects anomalies but also provides
intuitive explanations. Once an anomaly is detected, our method can quickly pinpoint the
specific cause and detail how it deviates from normal patterns. For instance, by analyzing a
small number of key sensors (typically 2–6) or actuators, operators can rapidly determine
the exact location and cause of the anomaly. This capability significantly enhances the
efficiency of fault diagnosis, reducing the time and effort required to identify and address
issues, thus ensuring the safe and stable operation of the system.

For example, one of the typical invariant rules we mined using the PSO algorithm is
810.1662341107707 < LIT101 < 1000.0 and P101=ON⇒MV101=OFF. Through the system’s
feedback mechanism, this rule eventually causes MV101 to close. Deviations from this
established pattern may indicate an attack or a fault. In the SWaT system, network attacks
on MV101 can be effectively identified by this rule. Specifically, in the test set, single stage
single point attacks on MV101 are detected with high accuracy, as shown in Figure 8. The
recall rate for this rule in detecting the single stage single point attack reached 89.78%,
with a precision of 1.0. Furthermore, combining this rule with two other invariant rules
for detecting the attack can improve the recall rate to 98.14%. Similarly, the invariant rules
we discovered showed good detection performance for single stage multi-point attacks,
multi-stage single point attacks, and multi-stage multi-point attacks. Figures 9, 10 and 11
illustrate the detection results for these attack types, respectively.
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Figure 8. Detection performance of the invariant rule for single stage single point attacks on MV101.
The figure shows the accuracy and recall rate in detecting anomalies, with a recall rate of 89.78% and
a precision of 1.0.
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Figure 9. Detection performance of the invariant rules for multi-stage single point attacks on LIT101
and LIT301. The figure demonstrates the rule’s ability to detect anomalies across multiple stages.
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Figure 10. Detection performance of the invariant rules for single stage multi-point attacks on FIT501
and FIT502. The figure illustrates the effectiveness of the rule in identifying these types of attacks.
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Figure 11. Detection performance of the invariant rules for multi-stage multi-point attacks on P501
and FIT502. The figure highlights the rule’s effectiveness in identifying complex, multi-stage, and
multi-point attack scenarios.

5. Conclusions

This study proposes a numerical association rule mining method based on swarm
intelligence algorithms for anomaly detection in ICS. The method models the association
rule mining task as a single-objective continuous optimization problem. By applying
feature selection and task partition strategies, the method simplifies the management of
complex tasks, improving search efficiency while ensuring the quality of the generated
rules. The representation of solutions in the search space is optimized, which not only
enhances computational efficiency but also ensures the high quality of the generated rules,
ultimately enabling accurate identification of anomalous behavior in ICSs.

One significant advantage of this method is its ability to mine association rules across
multiple subsystems, revealing the interactions between different components within the
system. This cross-subsystem perspective allows for the identification of more complex
anomaly patterns, which may only emerge through interactions between multiple subsys-
tems and could be missed if individual subsystems were analyzed in isolation. Additionally,
the generality of the method makes it adaptable to various types of ICS, requiring only the
collection of log data during normal system operation for rule mining and anomaly detec-
tion. This characteristic gives the method strong applicability, allowing it to be deployed
across diverse industrial control environments.

Experimental results demonstrate that the swarm intelligence algorithms, based on
PSO, DE, and BA, can detect over 84% of attack instances and achieve a detection accuracy
of more than 97%. The method not only exhibits high detection performance but also
provides excellent interpretability, offering detailed analyses of the causes of anomalies,
which helps operators quickly identify the source of issues.

However, there are still some limitations to the method. First, the quality of the
data significantly impacts the performance of the method, as the size, completeness, and
accuracy of the dataset directly affect detection results. Second, the method may struggle to
detect certain complex attacks that have minimal impact on the physical state of the system,
as these attacks may not cause significant anomalous behavior. Therefore, future research
will explore the integration of deep learning and other technologies to further enhance
the detection accuracy and robustness of the method, especially in dynamic and complex
industrial environments.

Overall, the swarm intelligence-based anomaly detection method proposed in this
study, by mining cross-subsystem association rules and exhibiting strong generality, offers
an effective and reliable solution for ICS security monitoring. Future work could further
incorporate additional technologies and optimization strategies to achieve more efficient
and precise anomaly detection.
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ICSs Industrial Control Systems
IT Information Technology
OT Operational Technology
PLCs Programmable Logic Controllers
RTUs Remote Terminal Units
SCADA Supervisory Control and Data Acquisition
HMI Human–Machine Interface
LOF Local Outlier Factor
IF Isolation Forest
SVMs Support Vector Machines
CNNs Convolutional Neural Networks
LSTMs Long Short-Term Memory Networks
GNNs Graph Neural Networks
AEs Autoencoders
GANs Generative Adversarial Networks
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