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Abstract: Indoor human detection based on artificial intelligence helps to monitor the safety status
and abnormal activities of the human body at any time. However, the complex indoor environment
and background pose challenges to the detection task. The YOLOv8 algorithm is a cutting-edge
technology in the field of object detection, but it is still affected by indoor low-light environments and
large changes in human scale. To address these issues, this article proposes a novel method based on
YOLOv8 called CIHD-YOLO, which is specifically designed for indoor human detection. The method
proposed in this article combines the spatial pyramid pooling of the backbone with an efficient partial
self-attention, enabling the network to effectively capture long-range dependencies and establish
global correlations between features, obtaining feature information at different scales. At the same
time, the GSEAM module and GSCConv were introduced into the neck network to compensate for
the loss caused by differences in lighting levels by combining depth-wise separable convolution and
residual connections, enabling it to extract effective features from visual data with poor illumination
levels. A dataset specifically designed for indoor human detection, the HCIE dataset, was constructed
and used to evaluate the model proposed in this paper. The research results show that compared
with the original YOLOv8s framework, the detection accuracy has been improved by 2.67%, and
the required floating-point operations have been reduced. The comprehensive case analysis and
comparative evaluation highlight the superiority and effectiveness of this method in complex indoor
human detection tasks.

Keywords: human detection; CNN; indoor scene; YOLOv8

1. Introduction

With the continuous development of computer vision, human detection technology
plays a crucial role in many practical applications. Especially in indoor environments,
human detection has broad application prospects in fields such as security monitoring [1,2],
smart homes [3,4], human–computer interaction [5], and abnormal behavior detection [6,7],
among others. However, due to the complexity of indoor scenes, factors such as changes in
lighting, occlusion, background interference, and scale variations pose some challenges [8].
Although advances in deep learning technology have made some breakthroughs in this
issue [9,10], there is still a need for targeted improvements to existing technologies based
on human detection in complex indoor environments.

Traditional detection algorithms use manual feature detection, and the quality of
manually designed features determines the accuracy of the detection algorithm [11]. The
emergence of deep learning has the potential to address some of the limitations of tradi-
tional techniques [12]. Deep learning technology has become the main method of feature
extraction due to its powerful learning ability and ability to express features, and it has
been gradually integrated into object detection algorithms, thereby greatly improving the
accuracy and efficiency of detection and enabling real-time monitoring [13–16]. The ideal
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algorithm for human detection technology is one that achieves both high accuracy and
high efficiency. The detection algorithm must be able to accurately locate and recognize
the targets in every frame of an image or video while remaining unaffected by external
environmental factors and inherent variability. The YOLO series has the advantages of
faster detection speed and better real-time performance by transforming object detec-
tion problems into regression problems while determining the category and location of
the target [13].

However, the complexity of indoor environments poses a challenge to improving the
accuracy of human detection. Firstly, indoor environments typically contain various objects,
furniture, and structures that may obstruct or partially hide objects of interest, resulting
in obstructed and chaotic scenes. At the same time, indoor scenes also have various back-
grounds, such as walls, furniture, and decorations, making the color and contour features in
the image cluttered and increasing the difficulty of neural networks distinguishing effective
features of human targets from the surrounding environment [8]. Secondly, the position of
the camera in the indoor space may result in different perspectives and angles, affecting
the appearance of the target. This can lead to significant differences and variations in the
scale and size of objects in the indoor environment, from small details to large furniture,
which increases the complexity of detection and recognition tasks [9,17]. Although some
progress has been made on these issues, there are still shortcomings. Thirdly, the variability
of lighting in different indoor spaces may pose challenges to object detection systems,
including differences in natural light, artificial lighting, shadows, and reflections [9,18,19].
Uneven lighting creates distinct shadows and highlights in different parts of the human
body, increasing the variability of appearance. Dark lighting can blur human details, re-
ducing the accuracy and stability of detection algorithms for human targets. Due to the
combined effect of these factors, the algorithm needs to have strong light adaptability and
robustness for indoor human detection tasks under complex lighting conditions.

Based on the above issues, this paper proposes a novel deep learning method specifi-
cally designed for indoor human detection using the YOLOv8 architecture, called complex
indoor human detection YOLO (CIHD-YOLO). In order to effectively extract the required
features for human detection from occlusion and differential illumination, an optimized
network structure called the generalized separated and enhancement aggregation net-
work (GSEAN) was designed to replace the C2f module in the YOLOv8 neck network.
A lightweight convolution called global spatial and channel reconstruction convolution
(GSCConv) was also added to the neck network to compress spatial and channel redun-
dancy. Then, the spatial pyramid pool was combined with effective partial self-attention
(SPPEPSA) to ensure the network’s ability to extract features at different scales. Finally, the
proposed neural network was trained using a self-built dataset consisting entirely of indoor
human body images (Human in Complex Indoor Environments Dataset, HCIE dataset).
The experimental results show that the model significantly improves the detection accuracy
of indoor human bodies without increasing floating-point operations. It can detect targets
of different scales and recognize human bodies under low illumination.

The main contributions of this paper are as follows:

1. A new method for human detection through vision named CIHD-YOLO has been
developed based on deep learning. The method is optimized and adapted based
on the YOLOv8 architecture, which can significantly improve detection accuracy in
complex indoor environments.

2. Due to the lack of a dedicated dataset for indoor human detection, the HCIE dataset
was created. The new dataset combines multiple dimensions, such as different cam-
era angles, subtle differences in lighting, indoor obstacles, and diverse populations
composed of different age groups, forming a comprehensive resource.

3. The combination of spatial pyramid pooling and the efficient partial self-attention
mechanism (SPPEPSA) allows the network to extract features at different scales and
aggregate them locally, enhancing the model’s ability to capture critical information.
This improves the model’s detection capability for human subjects at various scales.
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4. An optimized network architecture GSEAM was proposed, which compensates for
the losses caused by occlusion and illumination level differences by combining depth-
wise separable convolutions and residual connections, enabling it to extract effective
features from visual data with poor illumination levels in indoor environments.

2. Related Works

The algorithms for human detection in computer vision can be categorized into
traditional machine learning-based methods and novel deep learning-based methods [20].
Traditional machine learning methods rely on detection algorithms that manually extract
image features to detect targets [11]. Schwartz et al. enhanced widely used edge-based
features through texture and color information and employed a partial least squares (PLS)
analysis to achieve human localization and tracking [21]. However, this enhancement
resulted in an extremely high-dimensional feature space. Ahmed et al. applied the rotating
histogram of oriented gradient (RHOG) algorithm and machine learning-based SVM
classifier in a top-down view to significantly improve detection performance [22]. However,
this method has the drawbacks of traditional machine learning, as its multi-level operations
cannot achieve good real-time speed and detection accuracy, making it difficult to apply in
practical scenarios.

Deep learning-based methods are categorized into two-stage and one-stage algorithms,
which are known for their real-time performance and detection accuracy. In multi-stage
detectors like the R-CNN series [15,23–25], one model identifies object regions while another
model classifies and detects object positions [23]. Although these methods yield high
accuracy, they suffer from increased computational costs and longer processing times. In
contrast, one-stage algorithms like YOLO [13,26–29] and SSD series [14,30] segment images
into grids, predicting object categories and bounding box coordinates directly without
intermediate tasks. They excel in agility and real-time capabilities. Fu et al. integrated
the Residual-101 classifier with SSD to create DSSD [30], thereby enhancing context in
object detection. Similarly, Wang et al. combined efficient training tools with YOLOv7 [27],
thereby achieving superior speed and accuracy (5FPS to 120FPS) compared to existing
detectors. While one-stage algorithms may slightly lag in accuracy compared to two-stage
algorithms, they offer notable advantages in speed and real-time performance.

Launched by Ultralytics in 2023, YOLOv8 is currently a research hotspot and widely
used in the field of indoor object detection. The network structure of YOLOv8 is shown in
Figure 1. Aoki et al. applied CNN to extract features from the detection objects cropped
by the YOLOv8 object detection algorithm and then integrated these features into a single
feature vector using LSTM to achieve position localization of multiple indoor targets [31].
Safaldin et al. enhanced the YOLOv8 model’s ability to detect small targets and specific mo-
tion detection in various visual environments by focusing on large-sized feature maps and
introducing Bi-PAN-FPN [32]. Although this method has generalization in various visual
environments, it does not take into account that indoor scenes often contain dense elements
and small-scale features of different scales. Han et al. proposed an intelligent monitoring
method for the real-time distribution of indoor pedestrians based on deep learning and
spatial partitioning [33]. Enhanced YOLOv8 and DeepSORT models were employed to
intelligently generate pedestrian IDs and location data, facilitating evacuation count and
direction determination. This approach surpasses alternative algorithms in detection accu-
racy and efficiency. However, further experiments and evaluations are required to assess its
performance adequately, considering factors like camera resolution, monitoring distance,
passenger occlusion, and environmental brightness that impact detection accuracy.
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Figure 1. Network architecture of YOLOv8.

Unlike the outdoors, indoor environments are characterized by different lighting
conditions, potential obstacles, such as furniture, and enclosed spaces, all of which can
seriously affect the accuracy and quality of human detection [34]. Yu et al. proposed
a novel real-time face detector, YOLO-FacedV2, based on the YOLOv5 architecture [9].
YOLO-FacedV2 compensates for the response loss of occluded faces and enhances the
response of unobstructed faces through the attention network module SEAM to improve
the effectiveness of object occlusion detection. This method is designed to solve facial
occlusion, so its drawback is that it has limited effectiveness when facing multi-scale
occlusion problems. Cao et al. designed a multi-scale small object detection structure for
MCS-YOLO to improve the recognition sensitivity of dense multi-scale objects [35]. This
method has effectiveness and superiority in autonomous driving object detection tasks,
but it has not been extended to indoor environments. In summary, there is an urgent
need for a human detection method specifically designed for indoor scenes to solve the
complex detection caused by factors such as lighting conditions and scale changes in
indoor environments. Inspired by these methods [9,28,29,36,37], this article proposes a new
approach based on YOLOv8 that combines GSEAM, SPPEPSA, and GSCConv to address
these challenges.

3. Methods
3.1. CIHD-YOLO Network

This article introduces the CIHD-YOLO model, which is based on YOLOv8s [38], for
indoor human detection. Improving upon YOLOv8, this model addresses the limitations
faced in detecting indoor human bodies amidst complex backgrounds and varying object
scales. The CIHD-YOLO network architecture, which is depicted in Figure 2, highlights the
enhanced components of the algorithm with red dashed boxes.

In the upgraded network design, the SPPEPSA module replaces SPPF in YOLOv8’s
backbone network. SPPEPSA combines SPP’s multi-scale feature extraction with self-
attention (PSA) for global modeling. It enhances global dependency capture by locally
aggregating features with SPP and calculating correlation weights with PSA.

A refined architecture, GSEAM, replaces YOLOv8’s C2f module, thereby addressing
illumination variations with depth-wise separable convolutions and residual connections
for challenging indoor settings.
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Figure 2. Network architecture of CIHD-YOLO.

GSCConv, a global spatial and channel reconstruction convolution, is integrated into
the neck network following standard convolution. It leverages SCConv techniques to
minimize redundancy, enhance efficiency, and maintain feature information integrity.

The resulting CIHD-YOLO network excels at capturing human features globally across
scales, ensuring accurate detection in poorly lit and occluded environments.

3.2. Spatial Pyramid Pooling with Effective Partial Self-Attention (SPPEPSA)

In the human detection task of indoor scenes with limited space and shooting angles,
the proportion of targets of different scales is relatively high. Therefore, a well-designed
spatial pyramid pooling can significantly improve the detection performance of the model.
We suggested a spatial pyramid pooling method called SPPEPSA that combines partial
self-attention in the backbone network of the model.

Spatial pyramid pooling (SPP) divides feature maps into grids of varying scales,
pooling features across scales to create a multi-scale feature representation [39]. By utilizing
MaxPooling with different window sizes, like 1 × 1, 3 × 3, and 5 × 5, SPP enables the
network to extract features at diverse scales, facilitating the detection of targets of different
sizes. This pooling technique segments images into regions of different sizes, pooling
features within each region to capture information across scales. MaxPooling, a common
method in SPP, operates on inputs (N, C, Hin, Win) and outputs (N, C, Hout, Wout), per
Equations (1) and (2) as follows, for output shape calculation:

Hout =

⌊
Hin + 2 × P[0]− D[0]× (K[0]− 1)− 1

S[0]
+ 1
⌋

(1)

Wout =

⌊
Win + 2 × P[1]− D[1]× (K[1]− 1)− 1

S[1]
+ 1
⌋

(2)

In these equations, the following parameters are defined: S[i] represents the stride,
K[i] denotes the kernel size, P[i] stands for padding, and D[i] refers to dilation. Maxpooling
involves sliding fixed-sized windows over input feature maps, selecting the maximum
value within each window to generate the output. This method preserves significant
features, maintaining spatial key feature positions in the image and enhancing model
invariance and robustness.



Appl. Sci. 2024, 14, 10713 6 of 19

While spatial pyramid pooling algorithms have excelled in multi-scale object detec-
tion tasks [26,27,40], distinguishing human bodies from complex backgrounds in indoor
settings remains a challenge. The SPPEPSA model combines spatial pyramid pooling
with self-attention mechanisms to enhance multi-scale human detection in indoor envi-
ronments, as depicted in Figure 3. Spatial pyramid pooling captures multi-scale features,
while self-attention mechanisms enable better feature utilization, enhancing human target
recognition accuracy.

Figure 3. Network architecture of spatial pyramid pooling with effective partial self-
attention (SPPEPSA).

Partial self-attention dynamically assigns weights to each feature by learning the
interrelationships between features, so that the model can focus on the most relevant
features, thus greatly improving the multi-scale detection capability.

Self-attention can capture the dependency relationships between different elements in
the input sequence by learning the correlations between them, which helps improve the
performance of the model in sequence tasks. It first calculates the attention distribution of all
input information and then calculates the attention value based on the attention distribution.
For the input feature information X, the key–value pair can be used to represent the N pixel
information it contains, as follows: X = (K, V) = [(k1, v1), (k2, v2), . . . , (kN, vN]. A query vector
q is now given to calculate the attention distribution for all input information. The attention
score of input image features on each pixel can be expressed as s(ki, q), which is shown in
Equation (3), as follows, where d is the dimension of the input information:

s(ki, q) =
kT

i q√
d

(3)

If an attention variable t is defined to represent the index position of the input infor-
mation, then the formula for calculating the probability αi of the input information at the
i-th pixel can be expressed using Equations (4) and (5), as follows:

αi = p(t = i|X, q ), t ∈ [1, N] (4)

αi =
exp(s(ki, q))

∑N
j=1 exp

(
s
(
k j, q

)) =
e

kT
i q
√

d

∑N
j=1 e

kT
j q
√

d

(5)
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The function of Equation (5) is to normalize and obtain a probability distribution
where the sum of all weight coefficients is 1 and to highlight the weights of important
elements. The vector (αi) composed of the obtained results is the attention distribution of
the input feature information. Finally, the value is weighted and summed based on the
weight coefficients, as shown in Equation (6), as follows:

attention(X) = ∑N
i=1 αivi = ∑N

i=1
vie

kT
i q
√

d

∑N
j=1 e

kT
j q
√

d

(6)

In the described approach (Figure 3), the feature map undergoes spatial pyramid pool-
ing initially, merging features of various scales post-pooling. Subsequently, the post-1 × 1
convolution channel features are split evenly into two segments, with only one part en-
tering the multi-head self-attention module. Finally, these two segments are fused via
1 × 1 convolution. This enhancement weights multi-scale feature representations using
self-attention mechanisms, thereby facilitating the adjustment and integration of features
based on their significance.

3.3. Generalized Separated and Enhancement Aggregation Network (GSEAM)

The generalized separated and enhancement aggregation network (GSEAM) is intro-
duced to improve feature focus in low-light scenarios. Initially, feature maps at different
scales are split and later recombined after Rep-NCSP module processing. Depth-wise
separable convolutions with residual connections are utilized to address illumination dis-
crepancies. A two-layer fully connected network is then used to project features into a
reduced-dimensional space for better detection. GSEAM replaces the C2f module by merg-
ing different-scale feature maps in the neck network to enhance feature extraction efficiency.

The RepNCSP module enhances human body feature identification by extracting spatial
and semantic information through convolutional structures and residual connections. Its
three layers manage feature extraction, channel fusion, and transformation, capturing intricate
image details and improving performance in low-light conditions. Illustrated in Figure 4,
RepConvN conducts feature extraction across scales through iterative convolutions. RepNBot-
tleneck combines multi-layer convolutions with residuals to merge information from various
levels, allowing the model to address global and local features simultaneously.

Figure 4. Network architecture of RepNCSP and RepNBottleneck. (a) The network architecture of
RepNCSP; (b) The network architecture of RepNBottleneck.

Depth-wise separable convolution enhances the processing of feature maps under
varying illumination by decreasing the parameter count and enhancing feature extraction
efficiency [41]. To combat potential feature degradation and ambiguity stemming from
uneven lighting, this paper introduces depth-separable convolution with residual connec-
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tions within the GSEAM module, combining depth-wise and pointwise convolutions. The
computational formulation for this process is outlined in Equations (7)–(9), as follows:

ConvP
(i,j) =

M

∑
m

WP·y(i,j,m) (7)

ConvD
(ij) =

K,L

∑
k,l

WD ⊙ y(i+k,j+l) (8)

DSConv(i,j) =
M

∑
m

WP·
(

K,L

∑
k,l

WD ⊙ y(i+k,j+l)

)
(9)

Among them, k, l, and m represent offsets in the depth, width, and height dimensions,
respectively, and y(i, j) denotes the pixel position index on the feature map, with W as the
trainable weight matrix.

In this process, the input features undergo depth-wise separable convolution followed
by GELU activation and BatchNorm operations. The resulting output is then added to the
initial input, allowing the network to learn a residual function rather than a complete input-
to-output mapping. This approach eases the learning burden by focusing on the discrepancy
between the input and the desired output. Additionally, unlike the SiLU function in
YOLOv8, the GELU activation function, which is detailed in Equations (10) and (11) as
follows, is utilized in this part:

GELU(x) = x·P(X ≤ x) = x
∫ x

−∞

e−
(X−µ)2

2σ2

√
2πσ

dX (10)

GELU(x) = 0.5x

[
1 + tanh

(√
2
π

(
x + 0.047715x3

))]
(11)

Equation (10) involves the cumulative function of the Gaussian normal distribution,
which is denoted as P(X ≤ x), where µ and σ represent the mean and standard deviation of
the distribution. Since Equation (10) cannot be directly calculated, the calculation formula
for the GELU activation function can also be approximated as Equation (11). After average
pooling and weighting of the output results, the network architecture of the entire GSEAM
module is shown in Figure 5.

Figure 5. Network architecture of generalized separated and enhancement aggregation net-
work (GSEAM).
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For the input feature map y, a global average pooling operation is performed to
obtain a feature vector z, where each channel of z corresponds to the average value of the
corresponding channel of the input feature map. This can be represented by Equation (12),
as follows:

zi =
1

h × w∑h
x=1 ∑w

y=1 yi(x, y) (12)

In this context, zi represents the i-th element of the feature vector z, while yi(x, y)
signifies the pixel value of the i-th channel of the input feature map y at position (x, y).
Here, h and w denote the height and width of the input feature map, respectively.

The fully connected layer maps the feature vector z to the attention weight vector a.
It then leverages this attention weight to weight the input feature map y, resulting in a
weighted feature map, as depicted in Equations (13) and (14) as follows:

ai = Sigmoid(Wzi + b) =
1

1 + e−( W
h×w ∑h

x=1 ∑w
y=1 yi(x,y)+b)

(13)

y′ : y′i(x, y) = yi(x, y)× ai =
yi(x, y)

1 + e−( W
h×w ∑h

x=1 ∑w
y=1 yi(x,y)+b)

(14)

Here, W represents the weight matrix of the fully connected layer, b is the bias term,
and y′

i(x, y) denotes the pixel value of the i-th channel of the output feature map y′ at
position (x, y).

The GSEAM module splits feature maps into two segments, recombining one after pro-
cessing through the RepNCSP module to enhance sensitivity to subtle features in low-light
conditions and prevent the loss of dark details. Depth-wise separable and pointwise convolu-
tions enhance feature representations by dissecting feature maps spatially and in depth. A
two-layer fully connected network then consolidates information from each channel, address-
ing information loss from uneven illumination by learning relationships between adjacent
human target areas. Finally, the resulting output is multiplied with the original features to
amplify feature representation, thereby effectively resolving illumination discrepancies.

3.4. Global Spatial and Channel Reconstruction Convolution (GSCConv)

In object detection networks, the neck network plays a crucial role in extracting perti-
nent features from the backbone, processing this data, and forwarding it to the recognition
head. To enhance both accuracy and efficiency in handling complex images without increas-
ing computational demands, this paper introduces a novel convolution module named
global spatial and channel reconstruction convolution (GSCConv), which is based on the
SCConv module [36].

Drawing inspiration from the GSConv module [37], the GSCConv module incorporates
the Conv, SCConv, Concat, and shuffle modules. The mathematical formulation is provided
in Equation (15), as follows:

Xout = fshu f f le( fconcat( fSCConv( fConv(Xin)), fConv(Xin))) (15)

As shown in Figure 6, in GSCConv, data undergo a flow from standard convolution
to SCConv, followed by concatenation with standard convolution output. The shuffle
module then processes the concatenated data, ensuring a random mixture that evenly
blends information from standard convolutions into the SCConv output, promoting the
exchange of local feature details across channels.

The SCConv module within the GSCConv framework, as presented in this article,
is composed of two integral units: the spatial reconstruction unit (SRU) and the channel
reconstruction unit (CRU), which are depicted in Figure 7.
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Figure 7. Network architecture of spatial and channel reconstruction convolution (SCConv).

SRU focuses on addressing spatial redundancy through separation and
reconstruction operations.

Initially, trainable parameters are computed to derive the information weight W1 and
non-information weight W2. Multiplying the input feature X by W1 and W2 yields two
weighted features: X1, with higher information content and X2, with lower information
content. Subsequently, through the cross-reconstruction operation, these distinct weighted
information features are merged to produce a feature with enhanced information content,
as depicted in Equation (16), as follows:

X1 = X
⊗

W1,
X2 = X

⊗
W2,

Xw = (X11 ⊕ X22)
⋃
(X21

⊕
X12).

(16)

The spatial fine feature mapping Xw retains redundancy in the channel dimension,
which is a challenge addressed by CRU.

CRU divides the input spatially refined features into two parts, Xup and Xlow, based on
channels αC and (1- α)C. Then, it performs a transformation operation using the segmented
features and performs weighted summation on the two parts to obtain the final output. The
calculation process is shown in Equation (17), as follows, in which β1 and β2, respectively,
represent the weight vectors of two features:

Xoutput = β1·
(
GWC

(
Xup

)
+ PWC

(
Xup

))
+ β2·(PWC(Xlow) + Xlow) (17)

Integrating SCConv into the model enhances performance by reducing redundant
features, leading to decreased complexity and computational costs while maintaining per-
formance. However, spatial information transmission to channels during image conversion
may lead to some loss of semantic information due to spatial dimension compression and
channel dimension expansion.

The GSCConv module, by merging standard Conv and SCConv, combines their advan-
tages. By integrating it into the neck, feature redundancy is minimized with SCConv while
preserving inter-channel correlations through regular convolution. This integration en-
hances detection efficiency without increasing computational complexity, thereby meeting
real-time human detection requirements effectively.



Appl. Sci. 2024, 14, 10713 11 of 19

4. Experimental Evaluation
4.1. HCIE Dataset

To address the absence of a dedicated dataset for indoor human body detection in
existing publicly available object detection datasets, this study introduced a new dataset
named the Human in Complex Indoor Environments Dataset (HCIE dataset).

The HCIE dataset is sourced from two main channels: integrating indoor human
images from existing open-source target detection datasets and collecting public indoor
images from the internet. The dataset’s image distribution was carefully planned from
various viewpoints to ensure that models trained on it exhibit a degree of generalization.

Following the construction principles of established object detection datasets [42,43],
the HCIE dataset was chosen based on the following specific criteria:

• Diversity: For data diversity, the dataset encompasses diverse lighting conditions,
shooting angles, backgrounds, human body sizes, and other variations within indoor
scenes. This approach enhances the model’s generalization capability.

• Class Balance: While focusing solely on the human class, the dataset incorporates a
range of factors like diverse ages, genders, body types, and poses of human subjects in
indoor settings (standing, sitting, lying down, etc.). This approach enables the model
to learn features from a spectrum of categories.

• Similar targets: The dataset includes both the human body to be detected and objects
that are partially similar to the human body that are not intended to be detected, but
when labeled, only the target to be detected is labeled.

• Practicality: Ensure the quality of the collected data, preferably with a size close to the
actual usage scenario.

• Data integrity: To ensure consistency and completeness between images and anno-
tations in the dataset, and to avoid missing or inconsistent data, LabelImg is used to
label all data in this dataset.

The final dataset contains five thousand images, which are divided into training,
validation, and testing subsets in an 8:1:1 distribution. The examples of some images in
Figure 8 demonstrate that the dataset includes different postures and lighting conditions of
human bodies of different age groups in indoor scenes.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 20 
 

The final dataset contains five thousand images, which are divided into training, val-
idation, and testing subsets in an 8:1:1 distribution. The examples of some images in Fig-
ure 8 demonstrate that the dataset includes different postures and lighting conditions of 
human bodies of different age groups in indoor scenes. 

 
Figure 8. Example of indoor human detection images in HCIE dataset. 

Figure 9 shows the label distribution of the HCIE dataset. In Figure 9a, the x and y 
coordinates denote the ratio of the bounding box center point’s coordinates to the image’s 
length and width, respectively. This description illustrates the distribution of bounding 
box center points within the image. In Figure 9b, the x and y coordinates indicate the ratio 
of the detection target’s horizontal and vertical length within the bounding box to the 
image’s horizontal and vertical length. This representation highlights the distribution of 
target aspect ratios in the training set. 

 
Figure 9. Dataset label distribution. (a) The position of the bounding box center point relative to 
the entire image; (b) The aspect ratio of the target in the image relative to the entire image. 

4.2. Experimental Process 
In this study, the model was trained and assessed on the HCIE dataset with specific 

training parameters. The number of epochs is set at 100, the batch size is set at 20, and the 
SGD optimizer is utilized with an initial learning rate of 0.02. Selecting suitable training 
parameters is essential before initiating model training. After thorough adjustments, the 
finalized model training parameters are outlined in Table 1. 

The experimental setup includes an AMD Ryzen7 5800H CPU (AMD, Santa Clara, 
CA, USA) and NVIDIA GeForce RTX 3060 GPU (Nvidia, Santa Clara, CA, USA) running 
on Windows 11. The method and experiments in this article are implemented using a 
PyTorch 2.2.1-based deep learning framework. The development software comprises Py-
Charm 2023.3.4 and Python 3.11. 

Figure 8. Example of indoor human detection images in HCIE dataset.

Figure 9 shows the label distribution of the HCIE dataset. In Figure 9a, the x and y
coordinates denote the ratio of the bounding box center point’s coordinates to the image’s
length and width, respectively. This description illustrates the distribution of bounding box
center points within the image. In Figure 9b, the x and y coordinates indicate the ratio of
the detection target’s horizontal and vertical length within the bounding box to the image’s
horizontal and vertical length. This representation highlights the distribution of target
aspect ratios in the training set.
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4.2. Experimental Process

In this study, the model was trained and assessed on the HCIE dataset with specific
training parameters. The number of epochs is set at 100, the batch size is set at 20, and the
SGD optimizer is utilized with an initial learning rate of 0.02. Selecting suitable training
parameters is essential before initiating model training. After thorough adjustments, the
finalized model training parameters are outlined in Table 1.

Table 1. Model training parameters.

Parameter Value

Initial Learning Rate 0.02
Epochs 100

Batch Size 20
Imgsz 640

Optimizer SGD
Weight Decay 0.0005
Momentum 0.937

The experimental setup includes an AMD Ryzen7 5800H CPU (AMD, Santa Clara,
CA, USA) and NVIDIA GeForce RTX 3060 GPU (Nvidia, Santa Clara, CA, USA) running
on Windows 11. The method and experiments in this article are implemented using a
PyTorch 2.2.1-based deep learning framework. The development software comprises
PyCharm 2023.3.4 and Python 3.11.

4.3. Evaluation Criteria

In this study, key evaluation metrics include mAP at IoU 0.5 (mAP50), mAP50-95,
model parameter count, and GFLOPS. The mAP provides a comprehensive assessment
of model performance across different precision and recall scenarios that are commonly
utilized in object detection evaluations. Parameters (Params) and floating-point operations
(FLOP) assess algorithm or model complexity. Equations (18)–(20) define precision (P),
recall (R), and mAP.

P =
TP

TP + FP
× 100% (18)

R =
TP

TP + FN
× 100% (19)

mAP =
∑K

i=1
∫ 1

0 P(R)dR × 100%
K

(20)

Among them, TP represents the number of correctly predicted positive samples, TN
represents the number of correctly predicted negative samples, FP represents the number
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of negative samples classified as positive, FN represents the number of positive samples
classified as negative, and K represents the number of categories.

In the evaluation criteria, mAP50 refers to the average precision when the intersection
over union (IoU) is above 50%. IoU is used to measure the degree of overlap between the
area detected by the model and the actual target area. Its calculation formula is shown in
Equation (21), where SA and SB refer to the bounding box and ground truth, respectively.

IoU =
|SA ∩ SB|
|SA ∪ SB|

(21)

Similarly, mAP50-95 represents the average mAP at different IoU thresholds (ranging
from 0.5 to 0.95, with a step size of 0.05).

4.4. Experimental Results and Analysis

This study conducted ablation and comparative experiments to assess the CIHD-
YOLO algorithm. The ablation experiments compared the original YOLOv8s model with
three enhancements, focusing on changes in accuracy indicators to gauge the effectiveness
of each improvement. Additionally, CIHD-YOLO was compared with popular object
detection algorithms to evaluate its performance and accuracy.

Figures 10 and 11 illustrate the training process of the CIHD-YOLO model, using
box loss to quantify the error between predicted and annotated boxes. The loss curves
in Figure 10 show a rapid decrease during training, followed by a gradual stabilization.
The curves for training and validation losses align closely, demonstrating a smooth de-
scent without oscillations or increases. This suggests effective training with no signs of
underfitting or overfitting.
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Figure 11 shows the changes in mAP50 and mAP50-95 over the training epoch. In the
initial training stage, the detection accuracy rapidly improves and gradually slows down
as the training epoch progresses. At around the 40th epoch, the accuracy curve reaches the
plateau period, which indicates that the model has reached the optimal accuracy benchmark.
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4.4.1. Ablation Experiment

Ablation experiments were carried out to assess the impact of different modifications
on the original network, ensuring consistency in the experimental environment for accuracy
and performance. The results, which are presented in Table 2, showcase the effectiveness
of these modifications. Improved models 1–3 integrate SPPEPSA, GSEAM, and GSCConv
individually into the YOLOv8s network, while improved models 4–6 combine two of these
enhancements in the original network.

Table 2. Ablation experiments with different improvement strategies.

Models SPPEPSA GSEAM GSCConv mAP50 mAP50-95 Params (M) FLOPs (G)

YOLOv8s × × × 85.77 61.52 11.17 28.8
YOLOv8s_1

√
× × 86.15 62.57 12.16 29.6

YOLOv8s_2 ×
√

× 86.23 63.05 10.17 26.9
YOLOv8s_3 × ×

√
86.14 63.07 11.25 28.9

YOLOv8s_4
√ √

× 86.42 63.38 11.16 27.7
YOLOv8s_5

√
×

√
86.39 63.50 12.24 29.7

YOLOv8s_6 ×
√ √

86.52 63.77 10.25 27.0
CIHD-YOLO

√ √ √
86.76 64.19 11.24 27.8

Table 2 indicates that incorporating the SPPEPSA module into the YOLOv8 backbone
network boosted mAP50 by 0.38% and mAP50-95 by 1.05%, mainly due to replacing the
SPPF module. Despite a slight increase in Params and FLOPs, this adjustment enhanced
the model’s multi-scale detection ability.

Replacing the C2f setup with GSEAM in the YOLOv8s neck network reduced Params
and FLOPs by 1M and 1.9G, respectively, while improving mAP50 by 0.46% and mAP50-
95 by 1.53%. This enhancement better captured feature relationships for more accurate
bounding boxes.

Integrating GSCConv into the neck network moderately raised mAP50-95 by 1.55%,
with negligible changes in Params and FLOPs. Combining all three enhancements led to
a 0.99% increase in mAP50, a substantial 2.67% rise in mAP50-95, almost no change in
Params, and a 1.0G FLOP reduction compared to the base YOLOv8s network.

This study demonstrates that the proposed network enhances feature extraction, aiding
in capturing intricate details in complex and low-light settings. This optimization notably
benefits high-level IoU thresholds, thereby enhancing model performance in indoor scenar-
ios. The improved YOLOv8s exhibit superior human detection efficiency in challenging
environments without increasing model complexity while also reducing FLOPs.

4.4.2. Comparison Experiment

To evaluate the effectiveness of various state-of-the-art models in indoor human
detection, we selected nine representative lightweight network models for comparison:
YOLOv5s, YOLOv5sp6, YOLOv6s, YOLOv8s, YOLOv9s, YOLOv10s, CenterNet [44], Ef-
ficientDet [45], and RT-DETR-L [46]. In order to maintain consistency in evaluation, all
models were trained and tested using the HCIE dataset proposed in this paper. In addition
to the four performance indicators used in Table 2, a new indicator called model size has
been added. Table 3 summarizes the comparative results of the tests.

The CIHD-YOLO model, with 11.24 million parameters and 27.8 GFLOPs, strikes a
balance between complexity and performance, achieving an impressive 86.76% mAP50
accuracy. It outperforms other models in precision, especially at IoU thresholds of 50–95,
with a mAP of 64.19%, surpassing similar models. This means that the model can detect
as many targets as possible, avoiding missed detections as much as possible, even if the
targets are small or in complex backgrounds.
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Table 3. Comparative experiment of human detection results using different lightweight models.

Models mAP50 mAP50-95 Model Size (MB) Params (M) FLOPs (G)

YOLOv5s 82.23 55.89 14.4 7.01 15.8
YOLOv5sp6 84.59 59.06 25.1 12.32 16.3

YOLOv6s 86.26 63.15 32.8 16.30 44.0
YOLOv8s 85.77 61.52 22.5 11.17 28.8
YOLOv9s 84.27 60.89 15.2 7.29 27.4
YOLOv10s 84.10 61.46 16.5 8.04 24.4
CenterNet 72.20 44.00 124.9 32.67 70.2

EfficientDet 59.90 38.40 15.1 3.87 5.2
RT-DETR-L 82.65 59.26 66.2 32.81 108.0

CIHD-YOLO 86.76 64.19 22.8 11.24 27.8

Among various comparison algorithms, YOLOv6s has the closest detection accuracy
to CIHD-YOLO, but its computational requirements and model size are significantly higher.
Although YOLOv9s and YOLOv10s models have faster computational performance on
model size, params, and FLOPs, their mAP50s are 2.49% and 2.66% lower than that of
CIHD-YOLO, respectively, and their mAP50-95s are 3.3% and 2.73% lower, respectively,
indicating a certain gap in accuracy. As a transformer-based model, RT-DETR-L has strong
detection capabilities, but in the reproduction results of this study, its accuracy in detecting
indoor human bodies under low-light conditions is poor. Although the transformer model
performs well in handling long-distance dependencies, it may be difficult for the model
to accurately capture subtle features and relationships between target objects in low-light
environments. This may lead to the poor detection accuracy of RT-DETR in human detection
tasks in low-light indoor environments.

In summary, these results indicate that the enhanced CIHD-YOLO model not only
ensures excellent detection accuracy but also maintains a low computational load, signifi-
cantly enhancing the network’s capabilities.

4.5. Visual Results

This study performed visual testing to compare the original YOLOv8s model with
the proposed CIHD-YOLO model in detail. Random samples from the HCIE dataset were
used, focusing on images in low-light conditions and with smaller detection targets, as
depicted in Figures 12 and 13. The test sets in these figures include original real images,
detection outcomes of YOLOv8s, and detection outcomes of CIHD-YOLO.
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In Figure 12, the original YOLOv8s model struggles to accurately detect human bodies
in low-light indoor settings, often resulting in false positives. In such conditions, color
features and complex backgrounds make human recognition challenging for the model.
Due to unclear color features, similar-shaped objects are sometimes misidentified as targets.
In contrast, CIHD-YOLO excels in precisely localizing human bodies, even in low-light
scenarios. While YOLOv8s relies heavily on shape features when color features are vague,
CIHD-YOLO’s enhanced neck network effectively recognizes features, even when colors are
indistinct, leading to precise bounding box localization. The improved detection accuracy
and visual results in Figure 12 highlight CIHD-YOLO’s superiority in object detection
within poorly illuminated indoor environments.

In Figure 13, it is evident that the original model struggles to distinguish small-scale
true positive targets effectively. Small objects occupying minimal pixels provide limited
information for accurate feature extraction, posing a challenge for the model. The original
YOLOv8s model’s receptive field may not cover the entire small target, impeding its ability
to capture comprehensive global and contextual information. On the contrary, CIHD-
YOLO’s pyramid pooling incorporates partial self-attention, facilitating the capture of
long-range dependencies and establishing global feature correlations, which is especially
beneficial for small objects. This approach enables effective fusion and attention to multi-
scale features, enhancing detection even in crowded scenes. CIHD-YOLO excels in detecting
small-scale human bodies in indoor environments, showcasing improved effectiveness
compared to the original model.

In order to investigate how camera angle affects detection accuracy, some test set
images were rotated by 30◦ for further detection, as shown in Figure 14. The results indicate
that the rotation of the angle has a significant impact on the test results. The original
YOLOv8s model experienced serious missed detections and may even be unable to detect
a target from the rotated image. Although CIHD-YOLO also experienced some missed
detections, the situation is far better than the original model.

The integration of the three enhanced networks proposed in this study notably boosts
the model’s performance. The CIHD-YOLO algorithm proves highly effective across
diverse complex indoor environments, enhancing both human detection accuracy and
precise bounding box localization significantly.
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5. Conclusions

The CIHD-YOLO method introduced in this study significantly enhances indoor
human detection accuracy by addressing challenges faced by traditional YOLOv8 models
in indoor settings. By incorporating specific enhancements like spatial pyramid pooling
with effective partial self-attention, a generalized separated and enhancement aggregation
network, and global spatial and channel reconstruction convolution, this model offers a
balanced solution for low-light indoor environments and multi-scale human detection.

Moreover, a specialized dataset, the HCIE dataset, was curated for training and testing
the indoor human detection model. Experimental results indicate that CIHD-YOLO, with a
model size of 22.8MB, 11.24M parameters, and 27.8G FLOPs, achieves an mAP50 of 86.76%
and an mAP50-95 of 64.19%, showcasing a 2.67% enhancement over the original algorithm
on the HCIE dataset and superior detection efficiency compared to existing models.

CIHD-YOLO represents a significant advancement in real-time indoor human de-
tection, with potential applications in various object detection domains like industrial
production and smart buildings. Future enhancements could include integrating a low-
light image enhancement network for clearer input images, exploring 3D visual data for
occlusion handling and background reconstruction, optimizing parameter quantity and
computational demands for improved real-time performance, and mitigating camera angle
impacts on detection tasks for enhanced human detection capabilities.
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