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Abstract: Microservices have gained widespread adoption in enterprise software systems because
they encapsulate the expertise of specific organizational subunits. This approach offers valuable
insights into internal processes and communication channels. The advantage of microservices lies in
their self-contained nature, streamlining management and deployment. However, this decentralized
approach scatters knowledge across microservices, making it challenging to grasp the holistic system.
As these systems continually evolve, substantial changes may affect not only individual microservices
but the entire system. This dynamic environment increases the complexity of system maintenance,
emphasizing the need for centralized assessment methods to analyze these changes. This paper
derives and introduces quantification metrics to serve as indicators for investigating system architec-
ture evolution across different system versions. It focuses on two holistic viewpoints of inter-service
interaction and data perspectives derived through static analysis of the system’s source code. The
approach is demonstrated with a case study using established microservice system benchmarks.

Keywords: software evolution; static analysis; metrics; software architecture

1. Introduction

Microservice architecture is commonly employed in complex systems, facilitating scal-
ability and decomposing complicated organizational structures into smaller, self-contained,
independently managed units. These units are then governed by separate development
teams [1]. It becomes critical to understand the architecture of such systems to effectively
evolve them. System evolution is inevitable, driven by various factors such as new market
demands, technological shifts, and optimization efforts. This evolutionary process for the
system source code often involves new features, resolving bugs, and potentially introducing
new services with their respective data models and system dependencies.

However, due to the decentralized nature of this evolution, which spreads across semi-
autonomous teams, the holistic system-centric architectural perspective is often lost [2].
Moreover, individual teams may inadvertently make suboptimal design choices, leading to
inefficiencies that affect the system. Consequently, system architecture may degrade during
changes as system complexity increases.

To address these challenges, specifically the absence of a system-centered view, signi-
fied by a lack of assessment and reasoning mechanisms in system evolution available before
the system deployment, we propose deriving a centralized perspective of the system’s ar-
chitecture while tracing quantifiable structural metrics across microservice system versions
throughout the evolution to illustrate the impact of changes to individual microservices.

Software architecture can be described by various viewpoints [3]. A viewpoint repre-
sents a set of conventions for creating, interpreting, and utilizing an architectural view to
address specific concerns. For microservices, the literature has proposed service and data
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viewpoints to describe the system holistic perspective [4–6]. Service viewpoint constructs
service models specifying microservices, endpoints, and interactions, which should be
an essential view in the system’s holistic view [7]. It aids in assessing potential ripple
effects during their evolution [2]. On the other hand, the data viewpoint addresses data
models and microservice-bounded contexts. While these viewpoints are used to describe
the overall system architecture [3], they have not been used to assess system evolution.

Objective. The main objective of this paper is to utilize statically derived approx-
imations of service and data viewpoints and translate them into quantifiable metrics to
track the evolution of a microservice system and the impact of individual changes across
microservices. These metrics serve as indicators to comprehend the system’s evolution in re-
sponse to changes. Regularly calculating these metrics enables architects to make informed
decisions to optimize the architecture, ensuring improved performance, scalability, and
maintainability. This involves a methodology using Software Architecture Reconstruction
(SAR)) [8,9], which applies static analysis of microservices source code to create viewpoints
for calculating various centric metrics.

This work showcases a comprehensive case study with a practical application of the
proposed metrics in the context of system evolution analysis. The case study employs a
variety of approaches to demonstrate and evaluate the underlying reasons driving the
evolution of systems across various releases.

Research Questions. Identifying and calculating centric metrics provides indica-
tors of changes. Even if they do not capture every detail perfectly, architects can better
understand the system’s evolution and make informed decisions to optimize the archi-
tecture. For instance, if the number of microservices increases over time, it suggests the
system is evolving to meet new requirements. Splitting a service into multiple specialized
microservices can enhance scalability and performance, but adding extra services might
impact system modularity and introduce more connections. Similarly, if the number of
data entities grows due to new features, it can affect data storage and retrieval efficiency.
Tracking these numbers and their changes helps ensure that management practices evolve
to maintain performance and scalability.

These indicators provide practitioners and architects with a clearer and more fo-
cused perspective when exploring human-centric approaches such as architecture visual-
ization or source code debugging and investigation. The paper addresses the following
two research questions:

RQ1 How do we quantify the service viewpoint and assess its evolution?

To address this research question, we utilized two metrics and their changes: the num-
ber of microservices and the number of microservice connections. The number of microser-
vices provides a quantitative measure of the system’s scale or complexity, while the number
of microservice connections measures the communication intensity between services.

When calculated from the centric service viewpoint, these metrics offer insights into
the system’s modularity evolution by highlighting expansions or contractions in high-level
components between subsequent versions and releases. Additionally, they reveal changes
in the dependency view across system releases.

RQ2 How to quantify the data viewpoint and assess its evolution?

To address this research question, we utilized five different metrics from a data per-
spective. These metrics include changes in the number of entities, both persistent and
transient, and the number of relationships between these entities. These metrics provide
insights into the scale of data entities within the system and measure the complexity and
interconnectedness of data entities within a data model. Additionally, they measure the
scaling of bounded contexts by the number of matching entities and relationships between
different bounded contexts of microservices.

These numbers offer insights into the data perspective and its modularity changes
throughout system releases. They also reveal changes in bounded contexts over the
system’s evolution.
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Academic Contributions. This paper makes the following academic contributions to the
field of microservice-based systems:

• Theoretical Contribution: We introduced and defined seven novel system-centric
metrics tailored specifically for microservice architectures. Unlike traditional metrics,
which often focus on monolithic systems or lack granularity for microservices, these
metrics provide a new way to quantify key architectural properties such as service
granularity. This advances the current understanding of microservice system behavior,
helping to bridge a gap in the existing literature.

• Methodological Contribution: We developed and implemented automated methods
for extracting the proposed metrics directly from the system’s source code. This
methodological advancement allows for the efficient, repeatable, and scalable analysis
of microservice-based architectures, enabling researchers and practitioners to assess
systems without extensive manual intervention. The use of automation also opens up
new pathways for continuous monitoring and checking of system health.

• Practical Contribution: A Java-based prototype was developed as a practical tool
for calculating and reporting these metrics. This prototype can be integrated into
development pipelines, providing indicators about the system architecture that can
influence architectural decisions and system improvements.

• Data Contribution: We published a dataset containing the extracted metrics data, cap-
turing insights from both service and domain viewpoints of a benchmark system. This
dataset provides a valuable resource for further research, enabling other scholars to
replicate and extend our study or apply the metrics to different microservice systems.

• Empirical Contribution: A comprehensive case study was conducted to evaluate and
interpret the extracted metrics. This empirical investigation not only validates the
usefulness of the metrics but also provides evidence-based insights into how these
metrics can be applied in realistic scenarios, contributing to the body of knowledge on
microservice architecture assessment.

• Visualization Contribution: We adapted a visualization approach to display architec-
tural views from both service and data viewpoints. This visualization is essential for
understanding and reasoning about the relationship between different microservices
in the system, offering a new way to analyze and optimize microservice architectures.

The rest of this paper is organized as follows: Section 2 explains the related works. In
Section 3, the paper details the methodology used for metric extraction and viewpoints
representation. Section 4 focuses on evaluating the methodology and presenting a case
study to demonstrate the results. Section 5 delves into the answers to the research questions
and discusses the implications and potential extensions of the methodology. Section 6
highlights potential threats to the validity of the research. Section 7 concludes the study.

2. Related Work

The evolution of microservices brings up multifaceted challenges across various
system dimensions. To name a few, Bogner et al. [2] classified many challenges that
practitioners face with microservices and their evolution, including lack of centralization,
ripple effects, and lack of guidance. We must be aware that it is a common setting that
microservices are managed by distinct teams [10,11], and when there are hundreds of
microservices interconnected, management is really complex. This can be underlined
by Lercher et al. [12] describing problems with API change propagation. Such change
propagation brings significant overhead on communication across teams when aiming to
evolve microservices. Despite the initial assumptions for many that microservices can be
managed independently, there are microservices dependencies that could lead to difficult
maintenance needing multiple team attention [13]. Unfortunately, there is a lack of change
impact analysis tools for microservices [14].

To proactively identify and mitigate potential issues, a comprehensive understanding
of how the system evolves with each change becomes imperative [2,15]. Consequently, mul-
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tiple studies [16–18] introduced diverse approaches and metrics aimed at comprehending
the system and its complex perspectives.

Various studies have introduced SAR techniques that enable the extraction of view-
points from the system [19]. Maffort et al. [20] employed static analysis coupled with
reflection modeling to create a high-level model that depicts architectural components
and data/control flows. They described component granularity as a higher-level orga-
nizational unit that encapsulates related functionalities or groups of classes within the
system. They provided a lightweight approach to identify architecture conformance is-
sues but focus on specific absences and divergences. Soldani et al. [21] analyzed Docker
configurations to grasp the microservice deployment topology, providing insights into
component interactions. Additionally, various studies [22–24] have combined static and
dynamic analysis to furnish both static and dynamic viewpoints, facilitating comprehensive
architecture reconstruction.

However, while these studies have proposed approaches to reconstruct different
system perspectives, they often overlook the critical aspect of system evolution. For
instance, Mayer et al. [25] addressed system evolution by considering snapshots of the
current architecture, yet they do not consider the dynamic evolution of microservices over
time. Moreover, Sampaio et al. [26] proposed an approach that leverages both static and
dynamic information to generate a representation of evolving microservice systems based
on service evolution modeling.

The evolution of microservice architecture significantly impacts the cohesion and
coupling of system components. Several studies have introduced metrics designed to
assess these critical features of the system. For instance, de Freitas et al. [27] emphasized
metrics at both the individual service level and in aggregate. These metrics delve into the
frequency of interactions between microservices, patterns of relationships formed through
these interactions, the equilibrium of dependencies across services, and the significance
of each service within the architecture. Meanwhile, Moreira et al. [28] proposed three
metrics that focus on the internal perspective of services, assessing aspects such as the
consistency in parameters and return types across exposed interfaces, internal cohesion
based on inputs and outputs, and the overall cohesion within a service reflecting unity in
its operational implementations.

Moreover, Genfer et al. [29] considered mining software repositories to assess miroser-
vice evolutions. The focus is on the API and presents five high-level architectural metrics.
Also, their approach only applied regular expressions on the source code to connect mi-
croservices over endpoints, which is limiting and lacks deeper details about what is below
the API, which might be the core problem.

On the other hand, visualization is crucial for conveying architectural viewpoints and
their evolution to practitioners, allowing them to analyze and understand the properties
of architecture. The literature highlights various visualization approaches, such as those
in [30–33]. These studies present different approaches and rendering mediums for visual-
izing the same microservice viewpoint, mostly the service viewpoint, but each approach
has its own drawbacks, posing additional challenges for practitioners while investigating
the system and its evolution. This emphasizes the need for preliminary indicators to guide
practitioners as they navigate these visualizations.

The comparison in Table 1 outlines how our proposed method differs from the existing
approaches, emphasizing the distinct focus, extracted metrics, and analysis methods each
one utilizes. The methods in the existing literature have limitations when it comes to recon-
structing abstract system-centric views directly from the source code. In contrast, this paper
presents the construction and utilization of these views, which are subsequently mined
to extract comprehensive metrics that provide an insightful indicator and perspective on
the entire system. This methodology utilizes static analysis through source code parsers
tailored for microservice development frameworks. Rather than relying on regular expres-
sions, our method emphasizes the component-based architecture of microservices, typically
structured around key components like controllers, repositories, and services. These con-
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cepts are largely language-agnostic, enabling a more general and flexible model [34]. As
a result, the metrics in our methodology target the component layers, delving deeper to
capture the relationships between them from both the service and data viewpoints. This
approach enables a more profound understanding of microservice architecture evolution
and enhances the capacity for reasoning about it.

Table 1. Comparison of proposed method with existing approaches.

Study Focus of Analysis Extracted Metrics Analysis Methods

Bogner et al. [2]

Challenges in
microservice
evolution and system
dimensions

No specific metrics
introduced

High-level analysis,
surveys

Lercher et al. [12]
API change
propagation and
team communication

No metrics, analysis
of ripple effects Surverys

Maffort et al. [20]

Architecture
conformance through
detection of absences
and divergences from
the high-level
architectural model

No metrics, four
heuristics for
absences and
divergences

Static and historical
source code analysis

de Freitas et al. [27]

Frequency of
interactions between
microservices and
their significance

Service-level
interaction metrics

Static analysis,
empirical case studies

Soldani et al. [21] Microservice
deployment topology

Deployment topology
metrics (container
interactions)

Docker configuration
analysis

Genfer et al. [29]

Microservice
evolution based on
API and architectural
metrics

Five high-level
architectural metrics
(API endpoints)

Source code analysis
using regular
expressions

Proposed Method
(This Paper)

System-centric
analysis of
microservice
evolution

Seven system-centric
metrics focusing on
the component-based
architectural service
and data viewpoints.

Static analysis,
automated extraction

3. The Proposed Centric Metrics

The evolution of the system’s architecture is a direct consequence of the modifications
made to the source code. Source code modifications predominantly influence both the
service and data views. The two viewpoints we consider in this work are the service
and data viewpoints, which are focused on relevant concerns of services and the data.
The addition or removal of microservices, endpoints, and inter-service calls significantly
impacts the service view. Furthermore, an examination of the data model highlights the
duplication of data items within different bounded contexts of microservices. Notably, the
presence of multiple data item duplications in various microservices signifies a coupling
between those services.

3.1. Centric Metrics Methodology Overview

An architecture view is a collection of models representing the system architecture
relative to a set of architectural concerns. In particular, the service view constructs service
models specifying microservices, endpoints, and interactions. This essential view provides
the system’s holistic perspective [7] is used to explain the system dependencies and the
overall microservice ecosystem and becomes useful when assessing potential ripple effects
during microservice evolution [2]. Similarly, the data view uses data models to explain
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which data are used by which microservice and their interconnection. We can highlight the
presence of data entity overlaps, which signifies a coupling between particular services.

While architecture viewpoints serve as a frame of reference for addressing con-
cerns pertinent to the architecture description’s purpose [3], this approach utilizes SAR
approach [8,9] using static analysis for microservices to generate service and data views
corresponding to particular viewpoints. Consequently, analyzing these views yields a
timeline of the system’s evolution, facilitating an understanding of the motivations behind
modifications and the broader impact of these changes.

The methodology is outlined in Figure 1 as follows:

1. Intermediate Representation Construction (Section 3.2): This phase receives the
source code of the microservices projects. It extracts the architectural components
and constructs an intermediate representation for each of these two service and data
central viewpoints, as illustrated in Figure 2.

2. Metrics Definition (Section 3.3): It employs the constructed intermediate represen-
tations to introduce seven convenient and automated metrics derived and adapted
from both the service (S1, S2) and data (D1–D5) views. These metrics are designed
to quantify changes within both aspects of the architecture to serve as indicators
of the system’s main development stream and offer early insights into potential
architectural degradation.

3. Demonstrating Example (Section 3.4): It provides an example of how the methodol-
ogy operates to extract and calculate the proposed metrics.

Microservices
Source Code

   Service View IR

     Data Model IR

Intermediate Representation
Construction

Metrics Definition

S1: Number of Microservices

S2: Number of Microservices
Connections

D1: Number of Persistent Data
Entities

D2: Number of Transient Data
Entities

D3: Number of Relationships
between Data Entities

D4: Number of Merge Candidates
Data Entities

D5: Number of Merge Candidates
Relationships between Data Entities

Figure 1. Centric Metrics Methodology Overview.

The objective of employing this methodology is to regularly calculate these metrics to
provide practitioners and architects with a comprehensive understanding of the system
and its evolution, enabling informed decisions to optimize the architecture. This approach
aims to help practitioners to balance the integration of new features to the system with
ongoing maintenance. Additionally, it offers them indicators to help them while they
visually investigate the system and delve into the causes behind the metric fluctuations.

Moreover, these metrics provide a centralized explanation of system properties. They
can be tracked across different versions of the system to ensure that system properties align
with the changes made in each version. Practitioners can create a timeline of these metrics,
illustrating how system attributes evolve across various versions.
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Figure 2. Service view and data model intermediate representation construction process.

3.2. Intermediate Representation Construction

This methodology applies SAR by leveraging static code analysis techniques to con-
struct the service view and data model of the data view from the source code.

The methodology commences by iteratively examining project folders within the
system to identify standalone projects as microservices. This can be achieved through
parsing specific deployment or configuration scripts found in the project folders, such as
Docker Compose deployment files. Once identified, we harness the source code of each
microservice to create the corresponding views.

3.2.1. Service View Construction

The construction of the service view follows a two-phase process, as depicted in Figure 2
(upper part). In the first phase, known as Inter-service Detection, we employ static analysis
to extract endpoint declarations and endpoint requests initiated within the source code.
In the second phase, referred to as Signature Matching, we employ a regex-like approach
to match requests to their corresponding endpoints across different microservices. This
matching process considers attributes of endpoints and requests, including endpoint paths,
parameters, and HTTP method types, ultimately identifying connections between the source
and destination microservices. The extracted information is represented as an intermediate
representation (IR) of the service view.

3.2.2. Data Model View Construction

The construction of the data model view comprises three phases, as illustrated in Figure 2
(lower part). The first phase, termed Components Detection, focuses on identifying components,
which are individual units or classes, along with their attributes within the source code. In
the second phase, known as Entity Filtering, we select the data entities among the extracted
class components. Then, we distinguish data entities, both persistent and transient. Transient
entities are identified based on attributes such as setters and getters, which are used in the
responses of endpoint methods. Additionally, entity relationships are identified from attribute
fields that reference other entities within the system. The third phase, termed Entity Merging,
identifies entities that are candidates for merging from different microservices based on similar
names and matching data types between their fields. The resulting information is represented
as an intermediate representation (IR) of the data model view.

3.2.3. Intermediate Representation Formalization

The two IRs constructed from both views encompass vital attributes for depicting
the system’s inter-connections and data dependencies. These attributes can be expressed
using the following mathematical notations, which provide a precise and formal rep-
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resentation of the relationships within the system, along with the formulas for metrics
calculation accordingly:

S = {ms1, ms2, · · · , msn}; msi = ⟨Ei, Ci, Dpi , Dti ⟩

Ei = {⟨uj, rj, Pj⟩, · · · }; Ci = {⟨msj, uk, rk, Pk⟩, · · · };

Dpi = {⟨Fj, Rij⟩, · · · }; Dti = {⟨Fj, Rij⟩, · · · }

P = {⟨t, n⟩, · · · }; Fi = {⟨t, n⟩, · · · }

S - Microservice system
msi - Single microservice.
Ei - Endpoints defined in the microservice msi
Ci - Calls made from the microservice msi to all other microservices.
Dpi - Persistent data entities in the microservice msi.
Dti - Transient data entities in the microservice msi.
Rj - Relationships starting from a data entity j to other entities.
Fj - Fields in a data entity j.
P - Parameters in an endpoint or in a call.
u - URL path.
r - Return type.
t - Field data type.
n - Field name.

The constructed views and their properties can be elucidated by categorizing the
five main sets of extracted attributes. The process begins with a microservice system as
input and subsequently analyzes the system to yield the following sets of attributes per
each microservice. Firstly, a set of endpoints (E) is introduced within each microservice.
Secondly, a set of request calls (C) is initiated from each microservice towards endpoints in
other microservices. Lastly, the system yields two sets of data entities: one for the persistent
data entities (Dp) and the other for the transient data entities (Dt).

3.3. Metrics Definition

The seven metrics utilize centralized attributes extracted from the system. Metrics
S1 and S2 pertain to the service view, as detailed in Table 2. Metrics D1 through D5 are
associated with the data view, as shown in Table 3. Each metric quantifies certain attributes
to describe a centric perspective of the microservice system and to assist in the reasoning
about its evolution.

Table 2. Service view metric definitions.

S1: Number of Microservices (#µs)

Description: The count of microservices in the system.
Value: #µs = |S|.
Goal: Provides a quantitative measure of the system’s scale or complexity in terms
of microservices.
Motivation: Provides insights into the system’s modularity evolution by showing expan-
sions or contractions in high-level components between subsequent releases.

S2: Number of Microservice Connections (#Cµs)

Description: Number of endpoint calls between microservices in the system.
Value: ∑n

i=1 |Ci|; where n = |S|.
Goal: Provides a measure of the communication intensity between microservices in
the system.
Motivation: Reveals changes in the dependency view across system releases and identi-
fies potential bottlenecks, such as excessive connections to a single service.
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Table 3. Data view metric definitions.

D1: Number of Persistent Data Entities (#PDEs)

Description: The count of relational and non-relational persistent data entities in the system.
Value: ∑n

i=1 |Dpi |; where n = |S|.
Goal: Provides insight into the scale of persistent data entities within the system.
Motivation: Provides insights into a data perspective, i.e., the storage approach per each microser-
vice. In addition to the data model, modularity changes throughout releases.

D2: Number of Transient Data Entities (#TDEs)

Description: Number of data entities used as data transfer objects (DTOs) across microservices
(not persistent in storage).
Value: ∑n

i=1 |Dti |; where n = |S|.
Goal: Provides an indication of the usage scale of data transfer objects.
Motivation: Illustrates the evolution of additional entities created for customizing responses and
data transfer purposes but not involved in domain/business logic. It indicates whether each
microservice consumes or delivers more data models to others.

D3: Number of Relationships between Data Entities (#RDEs)

Description: The count of relationships between data entities in each microservice’s data model.
Value: |MR|/2; such that MR =

⋃n
i=1

⋃m
j=1{r, f (r) | r ∈ ⋃

l Rijl}; where n = |S|,
m = |Dpi |+ |Dti |, f (r) is a function that reverses relationships to prevent duplicate counting of
both the relationship and its reverse counterpart.
Goal: Provides a measure of the complexity and interconnectedness of data entities within each
microservice’s data model.
Motivation: Demonstrates the evolution of data model complexity and the presence of cohesive
models within each microservice over different releases.

D4: Number of Merge Candidate Data Entities (#MDEs)

Description: The count of entities duplicated in multiple bounded contexts. These entities may
retain different fields based on the purpose of each bounded context.
Value: (∑n

i=1 |Dpi|+ |Dti|)− |DE|; where DE = { fd(d) | d ∈ ⋃n
i=1 Dpi + Dti},

n = |S|, fd(d) is a function that receives an entity and returns the corresponding entity after the
Entity Merging phase; it is defined as

fd(d) =

{
d if d not merged
d′ if d was merged into d′

Goal: Provides insight into the level of duplication across bounded contexts, highlighting potential
opportunities for consolidation or optimization.
Motivation: Shows bounded context changes over system evolution; it reveals data dependencies
among microservices.

D5: Number of Merge Candidate Relationships between Data Entities (#MRDEs)

Description: The count of relationships that are candidates for merging based on the merge
candidates between entities (#MDEs).
Value: (∑n

i=1 ∑m
j=1 |Rij|)− |RDE|; where RDE = { fr(r) | r ∈ ⋃n

i=1
⋃m

j=1 Rij},
n = |S|, m = |Dpi |+ |Dti |, fr(r) is a function that receive a relationship and returns the corre-
sponding relationship after the Entity Merging phase, it is defined as

fr(r) =

{
r if r not merged
r′ if r was merged into r′

Goal: Indicates potential opportunities for merging relationships between entities based on
identified merge candidates.
Motivation: Provides a holistic data model view of the microservice system and showcases
changes in data fragments across different system releases.
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3.4. Demonstrating Example

This section illustrates the proposed metrics examples. Consider four microservices
MS-1 · · · MS-4, where each microservice contains data entities, either persistent (P) or
transient (T). These entities have relationships with each other, and the connections be-
tween microservices are depicted with arrows linking two transient entities that facilitate
data transfer through these connections. Refer to Figure 3 for a visual representation of
this example.

Figure 3. Demonstrating example for metrics. (P: Persistent Entity, T: Transient Entity).

Regarding the metrics related to the service view, we can observe that the number of
microservices in the system is four (#µs = 4). Additionally, there are three request calls
(#Cµs = 3), which occur as follows: MS-1 → MS-2, MS-3 → MS-2, and MS-4 → MS-2.

In the context of data view metrics, there are 12 persistent data entities (#PDEs = 12).
Specifically, MS-1 through MS-4 contain three, four, two, and three persistent data entities,
respectively. On the other hand, there are five transient data entities (#TDEs = 5). MS-2 has
two transient data entities, while other microservices have one each. Furthermore, there
are 14 relationships between these data entities (#RDEs = 14): three relationships for each
of MS-1 and MS-4, six relationships in MS-2, and two relationships in MS-3.

To illustrate the two metrics related to merge candidates, we demonstrated an entity
merging process to identify potential merge candidates between data entities, as depicted
in Figure 4. These resulting entities were generated by tracing the connections between
transient data entities among microservices and the relationships between these transient
and persistent data entities. In these two figures, entities with the same color represent
similar entities that exist in multiple microservices’ bounded contexts. By merging these
similar entities into a single entity, the total number of data entity merge candidates is
four (#MDEs = 4). These candidates are (T-1.1 and T-2.1), (P-1.3 and P-2.1), (P-2.3 and
T-3.2), and (P-2.4 and P-4.1). Additionally, there are one relationship merge candidate
(#MRDEs = 1), which is produced by a merge of the relationship between (T-1.1 and P-1.3)
and (T-2.1 and P-2.1). These two relationships were merged because the merging process
occurred in both of the entities they connected (T-1.1 and T-2.1) and (P-1.3 and P-2.1).
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Figure 4. Entity Merging in the demonstrating example. (P: Persistent Entity, T: Transient Entity).

4. Evaluation Case Study

In this section, we showcase the application of our proposed methodology to facilitate
reasoning about system evolution. While the proposed metrics provide insights into central
system perspectives, they do not inherently reveal the underlying reasons for variations
between different system versions. Consequently, these metric values serve as indicators,
prompting architects and practitioners to explore the drivers of system changes.

We have implemented the proposed metrics in a prototype and applied them to an
open-source testbench to assess and discuss its architectural evolution characteristics. This
case study serves the following two objectives:

• Evaluating the feasibility of applying the proposed metrics to quantify a real-life
system architecture as part of a proof of concept.

• Emphasizing the significance of the proposed metric measurements in guiding practi-
tioners to investigate specific aspects of the system.

4.1. Experiment Setup

This section details the case study setup, including the software test bench sourced
from open-source projects with multiple versions available, as well as the prototype we
developed to assess the proposed metrics.

4.1.1. TestBench

We utilized a TrainTicket [35] microservice testbench to demonstrate the case study. It
is commonly used in the research community as a representative of real-life microservice
systems. Its repository contains seven releases (at the time of this paper written). To demon-
strate the evolution impact on the system architecture, this case study selects the following
three different releases (versions): v0.0.1 (v0.0.1: https://github.com/FudanSELab/train-
ticket/tree/0.0.1, accessed on 20 July 2024), v0.2.0 (0.2.0: https://github.com/FudanSELab/
train-ticket/tree/v0.2.0, accessed on 20 July 2024) and v1.0.0 (v1.0.0: https://github.com/
FudanSELab/train-ticket/tree/v1.0.0, accessed on 20 July 2024). Those versions show a
progressive evolution of the system starting from the first release (v0.0.1) until the current
latest release (v1.0.0).

https://github.com/FudanSELab/train-ticket/tree/0.0.1
https://github.com/FudanSELab/train-ticket/tree/0.0.1
https://github.com/FudanSELab/train-ticket/tree/v0.2.0
https://github.com/FudanSELab/train-ticket/tree/v0.2.0
https://github.com/FudanSELab/train-ticket/tree/v1.0.0
https://github.com/FudanSELab/train-ticket/tree/v1.0.0
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4.1.2. Prototype Implementation

We implemented a proof of concept of the proposed approach in a prototype (Pro-
totype: https://zenodo.org/records/11215210, accessed on 20 July 2024). It is built for
analyzing Java-based microservices projects that use the Spring Boot framework [36]. It
utilized static source code analysis techniques to extract the data necessary for calcu-
lating the metrics and also for constructing the intermediate representations of the ser-
vice view and data view. The extracted data are published at an online dataset (Dataset:
https://zenodo.org/records/10052375, accessed on 20 July 2024).

It accepts as its input a GitHub repository containing microservices-based projects. It
scans each microservice to find the Spring Boot REST client (i.e., RestTemplate client) and
detect HTTP calls between the services. It matches the detected calls with the endpoints.
Moreover, it extracts the bounded context data model of the individual microservices.
It scans all local classes in the project using a source code analyzer. To filter this list
down to classes serving as persistent and transient data entities, it checks for persistence
annotations (i.e., JPA standard entity annotations such as @Entity and @Document), and
also, for annotations from Lombok [37] (i.e., @Data), a tool for automatically creating
entity objects. To check merge candidates, it uses the WS4J project [38], which uses the
WordNet project [39] to detect name and field similarity. This prototype outputs a JSON
representation for the service and data views intermediate representations.

4.2. Results

These results quantify the proposed metrics using the TrainTicket testbench. The
prototype was applied to the three distinct testbench releases. The seven proposed metrics
are listed in Table 4 and plotted in Figure 5.

With these metrics at our disposal, we can interpret the system’s evolution across the
three versions from both the service and data viewpoints, as outlined below.

Table 4. TrainTicket metric values.

Metric v0.0.1 v0.2.0 v1.0.0

S1. #µs 46 40 42
}

Service ViewS2. #Cµs 135 91 90
D1. #PDEs 31 27 27

Data View
D2. #TDEs 0 182 81
D3. #RDEs 0 41 43
D4. #MDEs 11 139 32
D5. #MRDEs 0 17 19

0

50

100

150

200

V0.0.1 V0.2.0 V1.0.0

#μs

#Cμs

#PDEs

#TDEs

#MDEs

#RDEs

#MRDEs

Figure 5. Results of applying the metrics to the evolving TrainTicket system.

https://zenodo.org/records/11215210
https://zenodo.org/records/10052375
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4.3. Service View Metric Results

The results of the two service view metrics (S1 and S2) demonstrate the evolution
across the three versions in terms of microservice growth and communication intensity of
their connections.

S1: Number of Microservices (#µs).

It decreased from 46 in v0.0.1 to 40 in v0.2.0 and then slightly increased to 42 in
v1.0.0. This indicates a reduction in the system’s high-level components or a consolidation
of functionality.

S2: Number of Microservices Connections (#Cµs).

It decreased from 135 in v0.0.1 to 91 in v0.2.0 and remained relatively stable at 90 in
v1.0.0. This suggests a decrease in the interdependence between microservices or a more
optimized communication pattern.

4.4. Data View Metric Results

The results of the five data view metrics (D1–D5) highlight the evolution across the
three versions of TrainTicket, with a focus on both persistent and transient data entities
and their evolving relationships. Additionally, these metrics emphasize the overlap and
potential merging of entities across microservices as the system evolves from one version
to the next.

D1: Number of Persistent Data Entities (#PDEs).

It remained relatively constant across all versions, starting at 31 in v0.0.1 and remaining
consistent at 27 in both other versions. This indicates stability in the storage approach and
data model for the microservices.

D2: Number of Transient Data Entities (#TDEs).

It increased significantly from 0 in v0.0.1 to 182 in v0.2.0 and dramatically decreased to
81 in v1.0.0. This suggests the introduction of additional entities for customizing responses
and data transfer purposes, which decreased in the latest version to optimize the usage of
entities across microservices.

D3: Number of Relationships between Data Entities (#RDEs).

It started at 0 in v0.0.1, grew to 41 in v0.2.0, and 43 in v1.0.0, suggesting the evolution
of the data model complexity and the establishment of relationships between entities.

D4: Number of Merge Candidate Data Entities (#MDEs).

It increased from 11 in v0.0.1 to 139 in v0.2.0 and decreased to 32 in v1.0.0. This indicates
a growing complexity in the bounded contexts and the need for merging similar entities.

D5: Number of Merge Candidate Relationships between Data Entities (#MRDEs).

It started at 0 in v0.0.1, increased to 17 in v0.2.0, and further increased to 19 in
v1.0.0. This indicates the emergence of candidate relationships for merging based on
similar entities.

Analysis of these metrics offers valuable insights into the system’s evolution, shed-
ding light on shifts in microservice counts, connections, diverse data entities, and their
relationships across the entire system. A more profound understanding can be achieved
when considering the relationships between these metrics and exploring the cause behind
these metrics indicators.

4.5. Case Study Discussion

System architects and practitioners need to consider not only the raw metrics but also
the underlying architectural changes and design decisions that influence these metrics.
The interconnected nature of microservices means that changes in one area can have
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ripple effects throughout the system. Further analysis and exploration of the relationships
between these metrics can provide a more comprehensive understanding of the system’s
evolution and its implications for quality and performance.

This section builds upon the findings of the case study to explore three reasoning ap-
proaches: question-based reasoning, resolution-based reasoning, and human-centric reasoning.

4.5.1. Question-Based Reasoning

Analyzing metric values raises questions about the system’s properties during its evo-
lution. While team members familiar with the system might know the answers, practition-
ers often need to examine the individual source code of each microservice for investigation.
Visualization helps practitioners in exploring and reasoning about these metrics at various
levels of detail. Therefore, an intermediate representation is provided in a universal JSON
format, ready to be integrated into visualization tools such as those described in [19,32].

The following case study reasoning questions (CQ) have emerged to demonstrate how
to follow the indicators provided by metrics to investigate the reasons through the system’s
source code.

CQ1. What factors contributed to the high number of connections in the v0.0.1 service
view compared to the other two versions?

CQ2. What explains the disparity between the number of relationships and entities?
CQ3. Why are there no relationships and transient entities in v0.0.1?
CQ4. What is the reason for the substantial number of merged entity candidates (#MDEs),

particularly in v0.2.0?

In response to CQ1, the reduced number of connections in v0.0.1 can be attributed to
the presence of multiple composite microservices that require communication with other
services to fulfill their functionalities. This can be exemplified by considering two services,
ts-preserve-service and ts-station-service. The former, ts-preserve-service, lacks persistence
storage but relies on 12 other microservices to accomplish its functions. Conversely, the
latter, ts-station-service, has no dependent services but boasts 21 dependencies.

Furthermore, addressing CQ2, the logical relationships between entities rather than
direct connections can explain the metrics indication. For instance, the Listing 1 demon-
strates that the FoodStore entity within ts-food-service utilizes the stationId field to store the
ID value of a Station entity, even though no established relationship formally links the
two entities. Additionally, the structure of certain microservices, such as ts-station-service,
featuring persistent storage, while others, like ts-preserve-service, lack this feature, can add
more justification to this question.

Listing 1. Logical relationship (ts-food-service: FoodStore entity).

1 @Data
2 public class FoodStore {
3 private UUID id;
4 // logical relationship
5 private String stationId;
6 }

Answering CQ3 involves two aspects. First, the absence of transient data entities in
v0.0.1, unlike the other two versions, is attributed to the fact that v0.0.1 does not employ
Lombok annotations to annotate their transient data classes. Consequently, the prototype
could not guarantee other hypotheses for identifying transient entity types. Furthermore,
upon investigation, it was revealed that v0.0.1 uses some of the persistent data entities for
the purpose of transferring data between microservices. While this may appear as a limita-
tion in the prototype’s implementation, after investigation, it highlights an evolutionary
perspective on the diverse techniques and strategies employed by v0.0.1 for handling tran-
sient data entities, distinct from the approaches taken in the other two versions. The second
aspect of this question pertains to the different types of persistent data entities. In v0.0.1,
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in addition to the absence of transient data entities, no relationships were extracted. This
is because v0.0.1 utilizes a non-relational database, MongoDB, for persistence storage. As
summarized in Table 5, the system transitioned from non-relational to relational databases
in the latest version.

Addressing CQ4, this study provides insights into the process of merging entities
across multiple bounded contexts. As highlighted in Table 6, v0.2.0 contains a total of
209 entities (#PDEs + #TDEs) within its bounded context. However, this number of entities
is significantly reduced to 70 entities within the context map after merging 139 candidate
entities. Upon closer examination of the system’s source code, it becomes apparent that
39 entities are duplicated across multiple microservices in v0.2.0. This duplication is
particularly evident in v1.0.0, where 39 entities are consolidated into a single shared
microservice named ts-common to address this concern. This is demonstrated in Figure 6,
illustrating three related entities (Food, TrainFood, FoodStore) that are duplicated within the
bounded contexts of ts-food-service and ts-food-map-service.

Table 5. Data entity types.

Data Entity v0.0.1 v0.2.0 v1.0.0

NoSQL 29 27 0
}

SumSQL 2 0 27

#PDE s (Total) 31 27 27

Table 6. Merging Data Entities.

Data Entity v0.0.1 v0.2.0 v1.0.0

#PDEs 31 27 27
Merge#TDEs 0 182 81

#MDEs 11 139 32

Context Map (Merged) 20 70 76

(a) Entities in ts-food-service (b) Entities in ts-food-map-service
Figure 6. An example of duplicating entities in microservices (visualized using [40]). Entities are
represented in boxes with titles and attributes, connected by directed arrows indicating multiplicity
(1 for one and * for many).
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4.5.2. Resolution-Based Reasoning

In addition to the case study questions, it is essential to delve into the issues present
in v0.0.1 and the resolutions in v1.0.0. The initial system design exhibited some problem-
atic tendencies; there are many small nano-services, which is a recognized anti-pattern
for microservices. It can also be described as a microservice greedy anti-pattern, where
new microservices were created for each feature, even when they were unnecessary, as
evident in later versions when they were merged and consolidated. Furthermore, in v0.0.1,
only half of these microservices defined data entities, while the other half appeared to
serve as transfer services in the business layer. This approach can be characterized as a
wrong cuts anti-pattern, dividing the system into layers based on functionality rather than
domain and business considerations, as confirmed by Walker et al. [41] when analyzed the
same testbench.

An important observation lies within Table 6. While most dynamic analysis tools
consider service calls as the foundation for service connections, the merge entity candidates
can indicate another dimension of connectivity when many entities within the system rep-
resent the same concept. This presents an efficient mechanism for connecting microservices
beyond service calls. v0.2.0 contains 209 scattered entities across the system that reduced
to 70 within the context map. Such a process is non-trivial for human-based analysis and
would require manual merging with each system change.

4.5.3. Human-Centric Reasoning

The flexibility of the presented intermediate representation allows it to adapt and
be visualized through various visualization tools. These visualizations can significantly
reduce the effort required to investigate and understand the source code. The intermediate
representation provides holistic viewpoints (service and data) through tailored approaches.
We utilized the heat matrix visualization presented in [32] to depict the number of de-
pendency connections between pairs of microservices in TrainTicket v1.0.0, as shown
in Figure 7. Moreover, for the same version, we utilized the matrix visualization to dis-
play data viewpoints through the relationships between data entities and identify merge
candidates among microservices, as depicted in Figure 8. The shown matrices display
the number of corresponding dependencies within the cells, using color depth to visually
represent them—darker colors indicate more dependencies between each pair. The IDs in
the visualization matrices correspond to the microservices listed in Table 7.

Table 7. List of TrainTicket v1.0.0 microservices and their corresponding IDs used for visualization.

ID Name ID Name ID Name

1 ts-common 15 ts-order-service 29 ts-admin-route-service

2 ts-travel-service 16 ts-price-service 30 ts-admin-travel-service

3 ts-travel2-service 17 ts-route-service 31 ts-consign-price-service

4 ts-assurance-service 18 ts-station-service 32 ts-delivery-service

5 ts-auth-service 19 ts-food-delivery-service 33 ts-execute-service

6 ts-user-service 20 ts-station-food-service 34 ts-preserve-other-service

7 ts-config-service 21 ts-train-food-service 35 ts-preserve-service

8 ts-consign-service 22 ts-train-service 36 ts-route-plan-service

9 ts-contacts-service 23 ts-admin-user-service 37 ts-seat-service

10 ts-food-service 24 ts-rebook-service 38 ts-security-service

11 ts-payment-service 25 ts-basic-service 39 ts-travel-plan-service

12 ts-inside-payment-service 26 ts-cancel-service 40 ts-verification-code-service

13 ts-notification-service 27 ts-admin-basic-info-service 41 ts-wait-order-service

14 ts-order-other-service 28 ts-admin-order-service 42 ts-gateway-service
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Although visual representation is not the primary focus of this study, our method
generates and formalizes a holistic representation to support such tools. We applied
the findings from this case study to these visualizations to showcase the results. These
visual representations are crucial for analyzing system evolution, offering visual-centric
perspectives that aid in understanding and reasoning about architectural changes as the
system evolves.

Figure 7. Matrix visualization for service view of TrainTicket v1.0.0.

Figure 8. Matrix visualization for data view of TrainTicket v1.0.0.

5. Discussion and Answers to RQs

This study adopts a centric perspective to examine the architectural evolution of
microservices using their service and data viewpoints. In pursuit of this objective, a set
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of seven metrics is introduced and employed to quantify diverse properties within these
two viewpoints. Two metrics focus on aspects of the service view, such as microservice
count and inter-service connections (addressing RQ1), while five metrics pertain to the data
view, including data entity types and relationships, including duplicates across different
bounded contexts (addressing RQ2). As a result, these metrics offer valuable insights into
elucidating the system’s evolution.

Furthermore, the study leverages intermediate representations derived from the sys-
tem’s source code for these two views. These representations can be analyzed to extract
metrics and visually presented using customized techniques for deeper exploration and
reasoning. The primary aim is to facilitate practitioners’ exploration and understanding of
the system’s central properties.

Metrics as Indicators. The significance of these metrics lies in their ability to serve
as indicators of system evolution, offering insights across various dimensions. While the
metrics provide indicators about the relative changes when compared across different
versions, they also play a vital role in exploring relationships between different metrics
within the same version. This enables the reasoning about specific system features and the
detection of patterns within the system, as demonstrated in the case study.

Metric Granularity. The proposed metrics present abstract indicators of the holistic
perspective of service and data viewpoints, and their granularity can be tailored to different
levels within the system. This granularity can be examined at the individual microservice
level, allowing the metrics to indicate correlations between microservices within the same
version and a single microservice across multiple versions. Furthermore, the granularity
can be extended from a technological standpoint, considering the polyglot architecture of
microservice systems utilizing various programming languages and technologies. These
metrics can offer insight into the evolution of service and data viewpoints in an additional
dimension of heterogeneity.

At the same time, granularity can be fine-tuned for each individual metric. For
example, the metric of the number of persistent data entities (#PDEs) can be further
divided into relational and non-relational data entities, as demonstrated in the case study.
However, this study has chosen the current level of granularity to provide a direct indicator
of persistence, with the option to explore different types if the metric values indicate the
need for further investigation. A similar granularity approach can be applied to the metric
of the number of microservice connections (#Cµ), differentiating between synchronous and
asynchronous calls, depending on the specific analysis requirements.

Intermediate Representation Extension. The proposed intermediate representations
of the system views contain essential information used for metric extraction and viewpoint
visualization. While the proposed methodology primarily employs static source code
analysis, dynamic analysis is another valuable technique. Dynamic analysis involves
runtime data, which can construct the service viewpoint from the execution perspective.
Previous studies have utilized dynamic analysis to extract the service view based on remote
procedure calls gathered from logs and traces and to detect anomalies in microservice-based
systems [42,43]. Therefore, extending the intermediate representation to include dynamic
data analysis alongside the static representation, particularly for the service view, can offer
additional metrics to illustrate the system’s runtime behavior evolution.

Furthermore, the described methodology can be expanded to include event-based
connections. The current representation predominantly focuses on endpoint connections,
whereas event-based connections may require additional considerations and interpreta-
tions, given the potential one-to-many relationships between a single producer and multiple
consumers in an indirect communication manner. Additionally, the intermediate represen-
tation can be augmented to encompass system viewpoints, including the technology view
and operational view.

Intermediate Representation as a Supportive Infrastructure. The proposed method-
ology presents metrics as indicators of system evolution and also the intermediate repre-
sentation of the centric service and data views. The interpretation and visualization of the



Appl. Sci. 2024, 14, 10725 19 of 22

intermediate representation serve as a valuable tool for practitioners, enabling them to
visually analyze key system aspects, as demonstrated in Figures 7 and 8.

Additionally, other visualization techniques, such as augmented reality, 2D, and 3D
models discussed in [6,19,31], can be applied. These approaches utilize different models,
such as UML (unified modeling language) and graph models, to represent the constructed
views as a dependency graph. Therefore, the proposed intermediate representation paves
the way for advancing knowledge in the field and integrating multiple parts together for a
more holistic view for practitioners.

Moreover, the proposed calculations can be integrated into continuous integration
and continuous delivery (CI/CD) pipelines within practitioners’ workspaces. This would
provide insights into system evolution and offer visual representations for each new change
before it is deployed to different environments through the CI/CD process.

Positioning Our Approach Among Existing Methods. It is important to compare
and position our approach with existing methods, such as those in the study by Genfer
et al. [29]. Their methods rely on using regular expressions to detect patterns in source
code, which is effective for solving relatively straightforward problems. In contrast, our
approach leverages static code analysis through source code parsers specifically designed
for microservice development frameworks. Unlike regular expression-based methods, our
approach focuses on the component-based architecture of microservices, where microser-
vices are typically built around key components like controllers, repositories, and services.
These concepts are largely language-agnostic, allowing us to build a more generalized
and adaptable model [34]. Our method traverses an abstract syntax tree (AST) to identify
system components and their interconnections. This enables us to approximate microser-
vice dependencies by analyzing remote calls, endpoint signatures, and data overlaps. The
resulting system representation is built from these interconnected components, providing
a comprehensive view of the microservices and their relationships. Additionally, our ap-
proach allows for the inclusion of further artifacts, such as deployment descriptors and
build files, ensuring a holistic system view.

Unlike other approaches in the literature, such as Tight et al. [44], which focus on
issues like technical debt and antipatterns, our contribution presents holistic quantitative
metrics to evaluate both the service and data viewpoints within cloud-native microservice
systems. This enables more refined reasoning about system behavior and maintainability,
which is a well-established area in monolithic systems but less explored in microservice
architectures. Our approach provides developers with timely feedback, enabling them
to assess the impact of their changes before deployment and ensuring system integrity
throughout its evolution.

6. Threats to Validity

The potential validity threats consider Wohlins classification [45]. For Construct Validity,
our methodology focuses on constructing service and data viewpoints. We utilize the
TrainTicket testbench, a widely accepted benchmark in the microservices community.

In terms of Internal Validity, manual analysis for validating the extracted data is
performed by the authors. To ensure unbiased analysis, the data validation and the
prototype are executed by different authors. However, potential threats may arise from
the testbench project’s structure and conversion. For instance, some entities in v0.0.1 lack
Lombok annotations, causing our methodology to miss them. This inconsistency can lead
to inaccurate indicators of extracted data entities, necessitating further investigation. Also,
the prototype does not detect event-based communication, although it does occur a few
times within the assessed testbench, where the main connections primarily rely on REST
endpoint calls. However, this does not affect the metrics’ evolution, as these communication
patterns remain consistent across different versions.

Regarding External Validity, our methodology offers general processes for constructing
service and data viewpoints, applicable regardless of the programming language or frame-
work. However, the implemented prototype is specific to the Java language and the Spring
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Boot framework. Adapting it to different languages would require non-trivial changes to
the underlying logic. Additionally, the choice of TrainTicket as the case study testbench is a
limitation since being a testbench rather than a real-world microservices system somewhat
limits its authenticity in reflecting actual system evolution. Nonetheless, we selected a
broad range of system versions to emphasize the evolutionary changes.

Conclusion Validity is drawn from the case study’s results, which illustrate the analysis
capabilities of our method concerning specific architectural views. The case study encom-
passes multiple reasoning approaches, thereby validating and justifying our methodology
for reasoning about architectural evolution. The results clearly demonstrate modifications
in the system architecture and the resolution of multiple issues as the system evolves.

7. Conclusions

This paper addresses current gaps in the evolution of microservice systems by utilizing
two established architectural viewpoints: service and data. It provides a detailed process
for analyzing and quantifying system evolution. An intermediate representation was con-
structed to capture the essential attributes of both viewpoints. Seven metrics were defined
to serve as indicators, providing a holistic understanding of system attributes and changes
and enabling more effective reasoning about system evolution and version comparisons.

An evaluation case study was conducted to demonstrate and evaluate the method-
ology, emphasizing the significance of metrics in improving the understanding of system
evolution properties. The study revealed that changes in system architecture can be
approached from different levels of granularity, providing holistic insights for various
reasoning perspectives. A visualization approach, adapted from the literature, was used to
illustrate the intermediate representation, enabling human-centric reasoning and enhancing
system analysis.

Future work will involve applying these metrics at various granularity levels, includ-
ing architectural component granularity and change-level granularity. This approach will
allow us to track the system’s evolution with each modification and assess how these
changes impact the metrics. Additionally, we plan to extend the intermediate representa-
tion to incorporate event-driven calls and dynamic data, providing a more detailed view of
the system’s behavior during runtime.

Furthermore, we aim to include other architectural viewpoints, such as technology and
deployment viewpoints, to offer a more comprehensive understanding of the system by ad-
dressing additional aspects of its structure and operation. We will also explore the visualiza-
tion methods previously highlighted, tailoring them to present information more effectively
to practitioners and enhancing the overall usability of our approach representation.
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