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Abstract: Automatic clothes pattern recognition is important to assist visually impaired people and
for real-world applications such as e-commerce or personal fashion recommendation systems, and it
has attracted increased interest from researchers. It is a challenging texture classification problem in
that even images of the same texture class expose a high degree of intraclass variations. Moreover,
images of clothes patterns may be taken in an unconstrained illumination environment. Machine
learning methods proposed for this problem mostly rely on handcrafted features and traditional
classification methods. The research works that utilize the deep learning approach result in poor
recognition performance. We propose a deep learning method based on an ensemble of convolutional
neural networks where feature engineering is not required while extracting robust local and global
features of clothes patterns. The ensemble classifier employs a pre-trained ResNet50 with a non-local
(NL) block, a squeeze-and-excitation (SE) block, and a coordinate attention (CA) block as base learners.
To fuse the individual decisions of the base learners, we introduce a simple and effective fusing
technique based on entropy voting, which incorporates the uncertainties in the decisions of base
learners. We validate the proposed method on benchmark datasets for clothes patterns that have
six categories: solid, striped, checkered, dotted, zigzag, and floral. The proposed method achieves
promising results for limited computational and data resources. In terms of accuracy, it achieves
98.18% for the GoogleClothingDataset and 96.03% for the CCYN dataset.

Keywords: texture recognition; clothes pattern; deep learning; CNN; ensemble learning; entropy

1. Introduction

In recent years, the increased number of e-commerce platforms and online fashion
retailers such as clothing recommendation systems, inventory management, and fashion
trend analysis tackle vast amounts of image data in the textile and clothing field. This
requires robust solutions for recognizing and retrieving clothes with specific properties,
using machine learning algorithms to extract semantic information from images instead of
relying on manual annotations. From another perspective, by virtue of the information ex-
plosion in this era, raw data captured by mobile devices and fed into powerful computation
do not only facilitate daily life but can also increase the independence and confidentiality
of disabled persons. Choosing clothes with appropriate designs and patterns is one of
the challenging tasks for visually impaired people. Tackling this issue with an automatic
assistive technique instead of family help would be preferred. Generally, automated cloth-
ing pattern recognition can significantly enhance efficiency in industrial applications and
improve personalized fashion experiences.

Generally, as stated in [1], the texture of an image is identified by the variance in
the spatial distribution of pixel intensities. As a result, texture classification is the task of
identifying and recognizing this pattern distribution of pixels. To some extent, the texture
classification task is similar to the object recognition task in that the strong correlation
of pixel intensities is determined. However, the pixel arrangement in a small portion of
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an image is repeated within the whole image, and thus the pattern of the image can be
recognized even with small portions. On the other hand, in object recognition, the entire
object should appear for accurate recognition.

Determining the pattern of clothes is a texture classification task where repeated basic
primitives, such as dots, stripes, plaids, floral, etc., characterize the pattern. Figure 1 shows
some popular patterns in our clothes. In the context of the computer vision field, extracting
the pattern of clothing from natural photos is a challenging process due to variations in
lighting, angles, and zoom if taken as selfies or from advertising boards on city street
compared to professional photos.

Figure 1. Examples of six classes of clothes patterns: checkered, floral, dotted, solid, striped,
and zigzag.

Moreover, images of clothing patterns contain a high degree of intraclass variations
for the same pattern category compared to traditional texture images such as grass, wood,
leaves, etc., shown in popular texture datasets such as Brodatz [2] that express less intraclass
and intensity variation.

Traditional texture descriptors in the literature extract useful information related to
image texture and are represented as a feature vector before classification. Local Binary
Pattern (LBP) [3], Gray-Level Co-occurrence Matrices (GLCMs) [4], and Gabor filter banks
are some of the most relevant texture descriptors that are widely used, especially with insuf-
ficiency in resources. Recently, deep learning methods, usually using convolutional neural
networks (CNNs), have outperformed traditional techniques. CNNs are composed of
convolutional, pooling, and fully connected layers and learn hierarchical features using con-
volutional layers at different levels; lower layers extract low-level features, and higher-level
layers learn semantics. They have become popular due to their remarkably good perfor-
mance in a wide range of visual recognition tasks, such as object recognition, compared to
handcrafted features.

This work proposes a solution based on CNN models for the problem of clothes pat-
terns. Usually, there is a small-scale dataset for clothes patterns and limited computational
resources, which are not enough to train a deep CNN model and avoid the problem of over-
fitting. To overcome these issues, we propose an ensemble classifier that uses a pre-trained
ResNet50 with non-local block (NL), a squeeze-and-excitation (SE) block, and a coordinate
attention (CA) block as base learners. The predictions of base learners are fused using a
novel fusion technique based on entropy voting. Motivated by the observation that the
texture is defined as a set of repeated primitives along the whole picture, we propose
using a deep learning method that uses a ResNet50 [5] pre-trained model on a massive
dataset incorporating different blocks that embed global spatial information to capture
channel interdependencies and long-range dependencies to classify clothes pattern into
six categories: solid, striped, checkered, dotted, zigzag, and floral. Two methods for voting
are evaluated for the final prediction by the combined learners: max voting and entropy
voting. Moreover, different models are evaluated in ensemble learning, such as pre-trained
DenseNet, EfficientNet, and ResNet152 models. Two popular methods are employed to
reduce overfitting: data augmentation and dropout.
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The main contributions of the presented research work are as follows:

• A deep learning-based ensemble classifier is created that uses CNN models as base
learners and entropy voting as a fusion technique to recognize the clothes patterns.
To tackle the problem of small datasets and overfitting, the pre-trained CNN models
are adopted as base learners, which are fine-tuned to the clothes patterns.

• A simple and robust entropy voting-based fusion method is presented that fuses the
decisions taken by the base learners, taking into consideration their uncertainties in
decision making.

• The method is validated thoroughly using benchmark datasets for clothes pattern
recognition.

The rest of the paper is organized as follows. Section 2 gives an overview of the
state-of-the-art method proposed for clothes patterns. The proposed method is presented
in Section 3. Experimental results are given in Section 4 and discussed in Section 5. Finally,
Section 6 concludes the paper.

2. Related Works

Recently, there has been increased interest in the e-commerce fashion industry. Re-
searchers have addressed several clothes-related problems such as clothing classification [6–9],
attribute recognition [10–12], and fashion recommendation systems [13]. Some works have
addressed specific attribute recognition such as fiber identification [14,15]. Others classify
clothes images according to their pattern (texture) attribute [16–19].

As per image or texture recognition techniques, clothing pattern recognition methods
are categorized in two main groups. First are traditional methods that adopt handcrafted
feature extraction methods to extract useful features and then classify them using some
classifiers such as Support Vector Machine (SVM), neural networks (NNs), or other classi-
fiers. Moreover, texture feature extraction methods can either extract local features, such
as Scale-Invariant Feature Transformation (SIFT), Speeded Up Robust Features (SURFs),
and Histogram of Oriented Gradient (HOG), or global features, such as Radon Signature,
Discrete Wavelet Transform (DWT), Gray-Level Co-occurrence Matrix (GLCM), and Local
Binary Pattern (LBP). Yang et al. [16] proposed systems that used SIFT, Radon Signature,
and DWT to extract local and global features. However, in Manisha’s [17] work, SURF
was used to capture local features and the global features were captured using DWT and
GLCM, while both systems fed the extracted features into the SVM classifier. Loke [18]
also utilized GLCM to extract global features but fed them to a random forest classifier.
The second approach is the deep learning approach, which has been applied successfully
in texture recognition in general and for clothes specifically [14,19]. Lee Stearns et al. [19]
classified clothes images into one of six common patterns: solid, striped, checkered, dot-
ted, zigzag, and floral. They adopted the state-of-the-art convolutional neural network
model (ResNet-101 [5]) that was pre-trained on an ImageNet dataset [20]. Using a standard
transfer learning approach, they fixed all layers except for the final densely connected
classification layer and trained the weights for that layer using their dataset. Tena et al. [21]
proposed a modified convolutional neural network (MCNN) that employs a random tun-
ing strategy to optimize hyperparameters, specifically tailored to traditional Indonesian
woven fabrics. It demonstrates superior performance compared to several pre-trained
CNN models. Kumar et al. [22] proposed a network that employs LSTM to handle the
complexities of sequential patterns in fabric textures, resulting in improved fabric texture
classification and defect detection. The proposed method in [23] used a video-based fabric
pattern recognition approach with a Bayesian-optimized CNN (Bayes Opt-CNN). Video
streams of fabric surfaces are used to extract spatiotemporal features, while Bayesian opti-
mization selects the best hyperparameters to improve the accuracy of pattern recognition.
The work in [24] proposed a dual-branch network that incorporates local features extracted
from a pre-trained ResNet 50 model with global features extracted by Residual Pooling
Transformer (RPT) for general texture recognition.
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Most of the recent works that utilize deep learning approach identify clothes patterns
as one of several attributes resulting in poor pattern recognition accuracy. However, most
of the works carried out from the perspective of clothes patterns specifically relied on
handcrafted features combined with a machine learning classifier.

This work propose a clothes pattern recognizer that can be part of an assistive tool
for visually impaired people. It is an ensemble classifier that constitutes three sub-models:
a pre-trained ResNet50 model combined with a non-local block (NL), a squeeze-and-
excitation (SE) block, and a coordinate attention (CA) block where the voting is based
on entropy.

3. The Proposed Method

In this section, firstly, the problem of clothes pattern recognition is defined as a
supervised classification problem. The proposed approach based on CNN models and
entropy voting is then presented in detail.

3.1. Problem Definition and Formulation

The clothes pattern recognition problem is concerned with identifying the pattern of a
textile captured under different constraints. An image of a fabric is given, and its pattern
should be determined automatically according to predefined patterns. It is a multi-class,
single-label classification problem.

Let X ⊂ Rm×n be a set of clothes pattern images, each represented as a matrix of
size m × n, and Y = {0, 1, ..., c} be the set of predefined labels (patterns). The problem of
identifying clothes patterns is to design a mapping f : X −→ Y that predicts the label y ∈ Y
for an unknown pattern input (image) x ∈ X, i.e.,

f (x; θ) = y (1)

where θ are the learnable parameters. We validate the proposed method in two different
scenarios. In the first scenario, the number of labels (patterns) is six: checkered, patternless,
striped, zigzag, floral, and dotted (i.e., y = 1, 2, ..., 6). The other scenario consists of four
labels: checkered, patternless, irregular, and striped (i.e., y = 1, 2, 3, 4).

3.2. Ensemble CNN Model

We model f as an ensemble of CNN models and use entropy voting-based fusion i.e.,

f (x; θ) = ε( f1(x; θ1), f2(x; θ2)... fn(x; θn)) (2)

where fi, i = 1, 2, ...n are base learners, θi, i = 1, 2, ...n are their learnable parameters, and ε is
the fusion function. There are two possibilities to design the base learners. One approach is
to learn diverse base learners using the same model but different training sets drawn with,
e.g., bootstrap sampling. Another approach is to use diverse models but train with the
same dataset. We follow the second approach and employ CNNs to model fis. An overview
of the ensemble is shown in Figure 2.

A convolutional neural network (CNN) is a deep end-to-end learning model that
shows attractive performance in the computer vision field. It is typically composed of
three types of layers: convolution, pooling, and fully connected layers. As opposed to
conventional algorithms, CNNs do not require a prior human-crafted feature extraction.
Instead, hierarchical features are learned adaptively through the network, where low-level
information is involved in the shallow layers and high-level information is embedded in
deep layers.

The transfer learning approach allows one to exploit and leverage the knowledge a
pre-trained model learned from a specific task to a related target task and dataset. As the
pre-trained models are trained on massive datasets, e.g., ImageNet, applying them to tasks
similar to the task at hand has been proven to result in improved performance with reduced
computational cost in terms of time and dataset size. In this work, we employ pre-trained
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CNN models as base learners. Transfer learning is utilized to fine-tune pre-trained models
where the task-dependent fully connected layer is replaced by another one whose neurons
are equal to the number of the classes of the current problem. More specifically, some of
the final layers are replaced by new trainable layers while the early layers’ learned weights
are kept as initial parameters. This procedure is motivated by the observation that the early
layers of a model seem to involve general features that can fit other tasks different than
the original one while the features in the final layers are problem-specific. As the model is
modified, it is retrained using the clothes pattern dataset where the early layers are frozen
and the newly added trainable layers are learned. Fine-tuning is performed by unfreezing
layers of the original model and training the model by continuing back-propagation using
the new dataset. This retraining should be at a very low learning rate to prevent significant
updates to the gradient and thus avoid overfitting while improving the performance.

Figure 2. High-level depiction of the architecture of the proposed ensemble classifier.

ResNet50 is used as the backbone model in the transfer learning paradigm. The
ResNet model [5] introduces a residual block where every few stacked convolution layers
are skipped, and “shortcut connections” are initiated to bypass the layers in between. It
addresses the problem of degrading accuracy with increased depth by reformulating the
original unreferenced mapping into residual mapping. That is, the original mapping is
reformulated into F(x) + x as optimizing the residual function F(x) is easier and capable
of enhancing the performance even with increased depth. To perform the element-wise
addition in the operation F(x)+ x, x can be an identity mapping if it has the same dimension
as F(x) or can be linearly projected using a 1 × 1 convolution layer.

3.3. Base Learner CNN Models

We used the pre-trained ResNet50 as a backbone model and enhanced it to design
three base models for the ensemble classifier by incorporating three blocks: a squeeze-
and-excitation block (SE), coordinate attention block (CA), and non-local block (NL).
The following paragraphs shed light on these blocks and the scheme of their inclusion
within ResNet50.

ResNet50 is part of the ResNet family, proposed to tackle the vanishing gradient prob-
lem associated with training deep convolutional networks. It achieves high performance
despite its relatively shallower depth compared to other types of ResNets, making it ideal
for a wide range of applications. It consists of 50 layers organized into five groups where
ResGi, i = 1, 2, ..., 5 (see the detail given in Table 1 and shown in Figure 3). The first group
ResG1 consists of a 7 × 7 convolutional layer followed by a MaxPooling layer. The basic
building block of the other four groups, ResGi, i = 2, 3, 4, 5, is a bottleneck residual block
as shown in Figure 4. ResG2, ResG3, ResG4, and ResG5 consist of three, four, six, and three
bottleneck blocks. The stride of the last layer of the last block of each group is two, which
downsamples the output of each group by a ration of two. The bottleneck architecture of
each block ensures more expressive power with smaller number of learnable parameters.
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Table 1. ResNet50 architecture, where fs, #f, s, mp, GAP, and FC stand for filter size, number of filters,
stride, max pooling, global average pooling, and fully connected layer.

Group Layer
(fs, #f, s) Input Output

ResG1
(7 × 7, 64, 2)
(3 × 3, mp, 2)

224 × 224 112 × 112

ResG2

 (1 × 1, 64, 1)
(3 × 3, 64, 1)
(1 × 1, 256, 1)

× 3 112 × 112 56 × 56

ResG3

(1 × 1, 128, 1)
(3 × 3, 128, 1)
(1 × 1, 512, 1)

× 4 56 × 56 28 × 28

ResG4

 (1 × 1, 256, 1)
(3 × 3, 256, 1)
(1 × 1, 1024, 1)

× 6 28 × 28 14 × 14

ResG5

 (1 × 1, 512, 1)
(3 × 3, 512, 1)
(1 × 1, 2048, 1)

× 3 14 × 14 7 × 7

GAP

FC+Softmax

 

FC+Softmax 

ResG5 ResG4 

ResG2 
 

ResG1 

ResG3 
 

Global Average Pooling  Max Pooling  

Figure 3. Detail of ResNet50 architecture.

Figure 4. Architecture of bottleneck residual block.

3.3.1. ResNet50 with Squeeze-And-Excitation Block (ResNet_SE)

Squeeze-and-excitation (SE) block [25] improves the representation power of a CNN
by modeling the interdependencies between the channels in two steps: squeezing and
excitation. The squeeze step aggregates the feature maps across spatial dimensions to
produce a channel descriptor using global average pooling. This is followed by an excitation
operation, which learns the channel-wise importance of emphasizing the informative ones
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and suppressing the less important ones by the simple gating mechanism of a bottleneck
with two fully connected (FC) layers. The input feature maps are then re-weighted to
generate the output of the SE block, which can then be fed directly into subsequent layers.
We incorporate four SE blocks in a pre-trained ResNet50 model at the end of each stage,
as shown in Figure 5.

 

Output 

ResGi SE Block 

Figure 5. ResNet50 with SE Blocks. ResGi is the ith group of ResNet blocks.

3.3.2. ResNet50 with Coordinate Attention Block (ResNet_CA)

Channel attention has a considerable effect on improving network performance. Coor-
dinate attention [26] is an attention mechanism that embeds positional information into
channel attention. First, the channel attention is factorized into two parallel 1D poolings to
aggregate features along the width and height spatial dimensions to capture long-range
interactions spatially with precise positional information. In the second step, the coordinate
attention is generated by 1 × 1 convolutional transformations. We designed base learner
ResNet_CA by incorporating this block into the pre-trained backbone ResNet50 as shown
in Figure 6.

 

ResGi CA Block 

Output 

Figure 6. ResNet50 with CA block. ResGi is the ith group of ResNet blocks.

3.3.3. ResNet50 with Non-Local Block (ResNet_NL)

Non-local block [27] captures long-range dependencies directly and efficiently in one
shot instead of repeated convolutional layers. The response at each position is the weighted
sum of all other responses in that map. The non-local block is defined as

zi = Wiyi + xi (3)

yi =
1

C(x) ∑
∀j

f (xi, xj)g(xj) (4)

The unary function g in the above equation is a linear embedding that computes a
response at a position. Even though there are several choices for the binary function f that
computes the affinity between two responses, the enhanced performance of non-local mod-
els is attributed to the generic behavior of its operation, not to the choice of this function.
To design ResNet_NL to be used in the proposed method, a non-local block is incorporated
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in a pre-trained backbone ResNet50 before the last block of the third stage as shown in
Figure 7.

 

ResGi NL Block 

Output 

Figure 7. ResNet50 with NL block. ResGi is the ith group of ResNet blocks.

All three base models described above are diverse by design, with each incorporated
block contributing an aspect of diversity. The SE block acts as a self-attention mechanism
across channels, dynamically recalibrating each channel’s importance to emphasize infor-
mative features and suppress less useful ones. On the other hand, the NL block captures
contextual information across the entire input, making it particularly valuable for tasks
requiring global context, such as pattern recognition. Meanwhile, the CA block embeds
positional information into channel attention, aggregating features along two spatial di-
rections, which enhances spatial sensitivity for tasks such as pattern recognition. Thus,
incorporating these blocks provides rich contextual, spatial, and channel-wise attention
capabilities, strengthening feature representations. They are trained in such a way that the
incorporated block layers are learned while keeping the pre-trained ResNet50 layers frozen.
After the initial training of each block, all layers (including ResNet50 layers) of each base
model are kept unfrozen and fine-tuned with a very small learning rate.

3.4. Fusion Based on Entropy Voting

Each base model j is trained independently, yielding a predicted label yj and a vector
of probabilities pj = (p1

j , p2
j , ...pc

j ) which is fused for the final prediction of unseen patterns.
The base models are trained independently, and the predictions from these models

are fused to determine the final prediction. The simplest and most commonly used fusion
method is max voting (i.e., majority voting), where the label of a test sample is given
according to the number of classifiers who vote for some specific label. The main drawback
of this approach is that it does not consider the uncertainties in base learners’ decisions.
We propose a new fusion method in this work: entropy voting. Entropy measures the
uncertainty in that the higher the entropy, the higher the uncertainty. For any unknown
sample x, each base learner j computes the vector pj = [p1,x

j , p2,x
j , ..., pc,x

j ]T of posterior
probabilities belonging to each label. These probabilities are used to compute the entropy
ex

j for classifier j according to the following equation [28]:

ex
j =

|C|

∑
i=1

pi,x
j log(pi,x

j ), j = 1, 2, ..., k (5)

where C is the number of labels (classes) and pi,x
j is the probability that a test sample x

belongs to class i predicted by classifier j, and k is the number of base learners.
The label of a classifier with the lowest entropy is chosen as the predicted label for a test

sample as the decision of this classifier involves the lowest uncertainty. Formally, let ex
j be

the entropy calculated for a test sample x by the classifier j, then the set E = {ex
j , ∀j ∈ 1...k}



Appl. Sci. 2024, 14, 10730 9 of 15

represents the set of entropies for all k base learners of the ensemble. The predicted label
assigned to the sample x by entropy voting is calculated as follows:

J = argminj{ex
j } (6)

and the predicted label of x is
ℓ = ℓJ (7)

ℓJ = argmaxC{p1,x
j , p2,x

j , ..., pc,x
j } (8)

The predicted label lJ is based on the base model, which has the least uncertainty and
the highest level of confidence.

4. Experiments and Results

In this section, we provide details of the experimental setup and describe the datasets
used to evaluate the performance of the proposed method. We then present the results of
the experiments that were conducted to validate the effectiveness of the proposed method.

4.1. Experimental Setup

All layers of the core model (ResNet50) were frozen, and the weights of classification
layers and the incorporated blocks (SE, CA, or NL) were initialized by the Lecun initializer.
We used the Adam optimizer with a mini-batch size of 100 and a learning rate of 0.0001.
The models were then fine-tuned where all layers were unfrozen, and the learning rate
was set to 1 × 10−6. The proposed system was implemented and evaluated in the Python
programming language using the Keras library in the Google Colab cloud service. It was
tested against two datasets. The first one was used in [19], was collected from Google,
and contains 317–584 images per class (2764 images total) of size 224 × 224. The number
of clothing pattern designs in this dataset is six: solid, striped, checkered, dotted, zigzag,
and floral. The other dataset was CCYN [16], which includes 627 images of four clothing
pattern designs: plaid, striped, patternless, and irregular, with 156, 157, 156, and 158 images
in each category. The resolution of each image is 140 × 140. Both datasets were split
into 60%, 20%, and 20% for training, validation, and testing, respectively. To overcome
the overfitting problem due to insufficient training datasets, the simplest approach was
to employ geometric transformations to generate additional samples. The geometric
transformations specifications shown in Table 2 were applied.

Table 2. Geometric transformation.

Zoom Range Rotation Range Shear Range Horizontal Flip

0.3 30 0.2 True

4.2. Experimental Results

We conducted several experiments to examine the effect of the ensemble classifier
by measuring the accuracy (Acc) on the test dataset. We considered widely used high-
performance CNN architectures (ResNet152, DenseNet201, EfficientNetB0) as base learners
to show the effectiveness of the proposed CNN architectures (ResNet50_CA, ResNet50_SE,
ResNet50_NL) as base learners. Further, to show the effectiveness of our proposed fusion
method, we performed experiments with max voting and entropy voting.

4.2.1. The Effect of Base Learners

First, we performed experiments with individual CNN models; the results are shown
in Table 3. The ResNet152, DenseNet201, and EfficientNetB0 models performed better than
the ResNet50_CA, ResNet50_SE, and ResNet50_NL models.

Next, we performed experiments to show the effectiveness of the proposed ensemble
classifier (ensemble classifier 2) in comparison with ensemble classifier 1 based on the
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ResNet152, DenseNet201, and EfficientNetB0 models. Figure 8 and Table 3 show the
performance of the individual models along with the performance of ensemble classifiers.
As shown in the figure, the accuracy of individual models does not exceed 94%, while the
ensemble classifiers show improvement in performance. Ensemble classifier 1, based on
the three popular high-performance models (ResNet152, DenseNet101, and EfficientNetB0),
enhances the accuracy by about 0.6%, as shown in Figure 8a.

(a)

(b)

Figure 8. The performance of two ensemble classifiers. (a) The performance in terms of accuracy
of ensemble learner 1 and the base learners. (b) The performance in terms of accuracy of ensemble
learner 2 and the base learners.

However, ensemble classifier 2, which integrates the pre-trained RseNet50 with the SE
attention block, RseNet50 with the CA block, and RseNet50 with the NL block, improves
the accuracy up to 4%, as shown in Figure 8b. Though the performance of the base learners
in the case of ensemble classifier 2 is not better than that of the ResNet152, DenseNet201,
and EfficientNetB0 models, the performance of ensemble classifier 2 is better than that
of ensemble classifier 1. This is in accordance with the theory of ensemble learning,
which recommends the use of weak and diverse base learners. As the ResNet50_CA,
ResNet50_SE, ResNet50_NL models exhibit weak and diverse performances, as shown in
Table 3, ensemble classifier 2, based on these models, significantly outperforms ensemble
classifier 1. The Venn diagrams in Figure 9 show the error analysis of each individual base
learner. The non-overlapping areas represent samples misclassified by only one learner,
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while the two-circle overlap indicates samples misclassified by two learners, with the
possibility that the third learner correctly classifies them. A three-circle overlap signifies
that all three learners failed to classify those samples. Figure 9b shows a slight overlap
between the errors made by the base learners of ensemble classifier 2. While ResNet50
with the SE block has mostly unique errors, ResNet50 learners with the NL and CA
blocks share about 50% of their errors. Analyzing the contributions of each classifier using
the proposed entropy-based voting method, the base learners with the SE, NL, and CA
blocks contributed to 23%, 47%, and 30% of the classifications, with error rates of 0.8%,
2.3%, and 1.8%, respectively. In contrast, Figure 9a shows a greater overlap between the
errors of the base learners, indicating fewer opportunities for the ensemble classifier to
improve performance on these samples. Furthermore, using the proposed entropy-based
voting method, the base learners contribute with proportions of about 89%, 9%, and 2%
for ResNet152, DenseNet, and EfficientNet, respectively. The dominance of ResNet152,
combined with the increased overlap, explains the limited performance improvement of
ensemble classifier 1.

Table 3. Results summary for the ensemble learners (ELs).

Method Accuracy

ResNet152 94.7%
DensNet201 94.5%

EfficientNetB0 94.36%
Ensemble classifier 1 + Max voting 95.27%

Ensemble classifier 1 + Entropy voting 95.63%

ResNet50_CA 93.63%
ResNet50_SE 93.45%
ResNet50_NL 94%

Ensemble classifier 2 + Max voting 97.27%
Ensemble classifier 2 + Entropy voting 98.18%

ResNet152 Ef cientNetB0

DensNet201

(a)

ResNet50_SE ResNet50_NL

ResNet50_CA

(b)

Figure 9. Venn diagram of base learners’ errors. (a) Error analysis of base learners of ensemble
classifier 1. (b) Error analysis of base learners of ensemble classifier 2.

4.2.2. The Effect of Fusion Techniques

Further, we performed experiments to show the effectiveness of the proposed fusion
method. The rightmost two bars in Figure 8a,b compare the ensemble classifiers using
two different voting methods: max voting and entropy voting. The max voting shows
less enhancement in performance for the ensemble classifier; the reason is that it does not
consider how much the model is confident about its decision. The superior performance of
entropy voting is due to the fact that it takes into account the certainty of a model in its
classification decision.
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4.2.3. The Analysis of the Performance of the Ensemble Classifier

Figure 10 shows the confusion matrix of the ensemble classifier based on the base
learners: RseNet50 with the SE attention block, RseNet50 with the CA attention block,
and RseNet50 with the NL block. This matrix shows that the proposed method correctly
classifies almost all classes; there are just a few misclassifications. All checkered and floral
patterns are correctly classified. Only 1% of striped patterns are misclassified as checkered,
floral, solid, and zigzag each. Further, 1% and 2% of zigzag patterns are misclassified as
striped and floral, respectively. About 2% of dotted patterns are misclassified as solid and
striped each. Only 1% of solid patterns are incorrectly classified as zigzag.
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Figure 10. Confusion matrix showing the decision making of the ensemble classifier.

5. Discussion

The end-to-end deep learning technique used in this work proves its effectiveness in
capturing discriminative features outperforming the hand-engineered features. As shown
in Table 4, the entropy-based ensemble learner shows a significant improvement compared
with most related works that rely on a single clothes attribute: its pattern. It shows its
robustness as it generalizes well and gives good performance when used on two differ-
ent datasets.

Table 4. Comparison with state-of-the-art works.

Dataset Ref Method Accuracy

CCYN [16]
Yang et al. [16] (SIFT+STA+RanonSig) + SVM 92.55 %
Manisha [17] (SURF+GLCM+DWT) + SVM 76.25%

CNN–Ensemble learner 96.03%

Collected from Google [19] Stearns et al. [19] CNN (ResNet101)–Transfer learning 91.7%
CNN–Ensemble learner 98.18%

The experimental results show the effectiveness of the fused learning algorithms in
comparison with using each one separately. This improvement in performance definitely
requires that each individual classifier is performing well. Incorporating different blocks
with the pre-trained model (ResNet50) as a participating model resulted in diverse mod-
els, each of which extracts pattern features from different angles, yielding more reliable
complementary prediction. Analyzing each pattern (label) classification performance in
each individual model in Figure 11, it can be deduced that the classifiers are diverse in
a way that each classifier tackles the data differently as they perform differently in some
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patterns. For example, “solid”-labeled clothes are classified much better in the model that
incorporates the non-local (NL) block than the one that incorporate coordinate attention
(CA). This could be because CA embedded positional information which can be confused
for “solid”-labeled clothes since, even they are solid, the type of the fabric itself may affect
the prediction and be considered as checkered or dotted, such as in some kinds of fabrics
like knitted wool or linen. Furthermore, it can be shown that ResNet50 incorporated with
the CA block performs the best among the other models in capturing “stripes” and “zigzag”
patterns, which span the whole shot by their nature.

75

80

85

90

95

100

Checkered Dotted Floral Solid Striped Zigzag

SE Non-Local CA

Figure 11. Performance of the base learners for each class.

As per any deep learning method, the crucial consideration for success is the volume
and diversity of the training dataset. This work can be improved using a more efficient
approach to augment training data, such as active learning, used in [28], where the learner
can determine what the instances will be trained on according to some ‘worthiness’ in-
dicator. Moreover, a massive clothes dataset with comprehensive annotations used for
multi-attribute clothes recognition such as DeepFashion [8] can be used to train the pro-
posed system. However, in this work, it is only tested against available single-attribute
works’ datasets.

6. Conclusions

This paper presented an ensemble classifier based on CNN models as base learners
and entropy voting as a fusion technique for clothes pattern classification. To evaluate the
usefulness of the proposed method, we examined two design approaches: an ensemble
classifier based on high-performance complex CNN models (ResNet152, DenseNet101,
and EfficientNetB0) and an ensemble classifier based on custom-designed simple variants
of ResNet50, incorporating building blocks such as NL block, SE block, and CA block. Also,
to show the effectiveness of the proposed new fusion method, two fusion methods were
evaluated: one that depends on the popular majority voting technique and is called max
voting and a new proposed one that depends on the certainty of a model to label a new
test sample, referred to as entropy voting. The results indicate that the second ensemble
approach, where the variants of ResNet50 are used as base learners and entropy voting is
used for fusion, outperforms the other approaches.
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