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2 Department of Woodworking and Fundamentals of Machine Design, Faculty of Forestry and Wood
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Featured Application: A review of laboratory methods for measuring manual wheelchairs’ propul-
sion efficiency and user interactions supports the development of wheelchairs that are more
efficient, comfortable, and adaptable to individual needs.

Abstract: Self-propelled manual wheelchairs offer several advantages over electric wheelchairs,
including promoting physical activity and requiring less maintenance due to their simple design.
While theoretical analyses provide valuable insights, laboratory testing remains the most reliable
method for evaluating and improving the efficiency of manual wheelchair drives. This article
reviews and analyzes the laboratory methods for assessing the efficiency of wheelchair propulsion
documented in the scientific literature: (1) A wheelchair dynamometer that replicates real-world
driving scenarios, quantifies the wheelchair’s motion characteristics, and evaluates the physical
exertion required for propulsion. (2) Simultaneous measurements of body position, motion, and
upper limb EMG data to analyze biomechanics. (3) A method for determining the wheelchair’s
trajectory based on data from the dynamometer. (4) Measurements of the dynamic center of mass
(COM) of the human–wheelchair system to assess stability and efficiency; and (5) data analysis
techniques for parameterizing large datasets and determining the COM. The key takeaways include
the following: (1) manual wheelchairs offer benefits over electric ones but require customization
to suit individual user biomechanics; (2) the necessity of laboratory-based ergometer testing for
optimizing propulsion efficiency and safety; (3) the feasibility of replicating real-world driving
scenarios in laboratory settings; and (4) the importance of efficient data analysis techniques for
interpreting biomechanical studies.

Keywords: ergometer; motion analysis; EMG analysis; biomechanical analysis; personal transportation;
disability; ergonomics; assistive technology

1. Introduction

Wheelchairs are personal mobility aids designed to stabilize a seated body position and
enable movement. This makes them essential tools for people with disabilities or temporal
mobility impairments [1–3]. Wheelchairs can be customized to meet the specific needs of
individual users, or they can be used as versatile devices for the occasional transportation
of various individuals in institutional settings. Concerning power sources for movement,
three classes of wheelchairs are recognized: caregiver-controlled, electrically powered,
and manually propelled. These three power sources can be employed independently,
alternately, or simultaneously. The choice of wheelchair class depends on factors such
as the severity and type of disability, as well as the intended use of the wheelchair. For
instance, individuals with profound musculoskeletal impairments typically use caregiver-
controlled wheelchairs or electrically powered wheelchairs. Older people and people with
obesity, who rarely use wheelchairs daily due to their ability to walk independently, may
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employ electrically powered wheelchairs only for traversing challenging terrain or covering
longer distances [4].

A characteristic group of wheelchair users comprises individuals who cannot walk
independently but have partially or fully functional upper limbs. These individuals lead
active and independent lifestyles, relying on manual wheelchairs for mobility in various
aspects of their lives, both indoors and outdoors. Compared to their electrically powered
counterparts, manual wheelchairs offer several advantages, including increased physical
activity, more compact dimensions for easier maneuverability indoors and on public
transportation, and superior reliability and durability due to their simplified design [5].

Each wheelchair consists of a body support system and a drive system. In a manual
wheelchair, the main components of the body support system are a seat with a cushion, a
backrest, side guards, and a footrest with additional leg support components. The drive
system usually consists of two rear wheels with push-rims, two front self-aligning wheels,
and parking brakes. These two systems are marked with different colors and shown in
Figure 1.
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Smith, Sakakibara, and Miller [6] reviewed factors influencing wheelchair users’ in-
volvement in social and community activities. Although the cited article focuses primarily
on participation and does not address the efficiency of wheelchair propulsion, the au-
thors concluded that the physical effort required to propel a wheelchair is related to
the level of participation. If wheelchair propulsion requires excessive physical effort or
causes discomfort, users participate in social activities less frequently to avoid further
strain. This highlights the importance of continuous improvements in manual wheelchair
drive systems.

Factors related to the user, the design of the wheelchair, and environmental factors
impact the manual wheelchair’s drive system efficiency. Individual physical limitations and
functional abilities are pivotal wheelchair user-related factors. The muscular strength and
endurance, cardiovascular fitness, and medical conditions affecting these characteristics
affect the propelling of a manual wheelchair. The range of motion on the push-rim [7],
propulsion technique [8], including the position of the hands on the wheelchair’s push-
rims [9], the angle of the push, and the push frequency [10] influence the effectiveness of the
wheelchair’s motion. Good technique minimizes energy loss [11] and maximizes forward
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motion [12]. At the same time, experience and adaptation of the muscular system to the
specifics of the wheelchair drive system lead to improved performance over time [13,14].

The design of the wheelchair significantly impacts its drive efficiency [15]. Factors,
such as the quality of the dimensional fit of the wheelchair to the user, the rigidity of
the frame, the size of the wheels, the type of tires, the cushioning, and the weight of the
wheelchair, are essential. These factors are determined by the possibility of customizing
the body support system to the user’s size, disability, and preferences. Customization
options for wheelchairs often include seat height, seat angle, backrest height, and wheel
angle relative to the vertical axis (camber) [16]. The backrest height significantly affects
wheelchair user well-being. It influences posture, propulsion efficiency, and muscle activa-
tion. Adjusting the backrest angle influences the biomechanical efficiency of wheelchair
propulsion. A 10-degree recline in the backrest can increase biomechanical efficiency by
10% [17]. The ergonomic design of the backrest should aim to support the spine’s natural
curvature. A backward adjustable thoracic support helps maintain a neutral pelvic tilt
and higher lumbar lordosis, which are beneficial for posture. This adjustment also results
in lower back muscle activation, potentially reducing the risk of back pain [18]. Users
of ultralight wheelchairs often do not adjust the backrest height when purchasing a new
wheelchair. This suggests that user training is needed to maximize the benefits of backrest
height fit [19]. A lower backrest height reduces the risk of upper limb injuries in wheelchair
users, but it is also important to consider other factors. The choice of backrest height should
be tailored to the individual user’s needs and preferences [20]. The rear wheel camber
significantly affects push force during manual wheelchair propulsion. The push time, angle,
and abduction vary between 3 and 6 degrees of camber [21]. However, increased camber
angles, such as 15 degrees, lead to higher loading on the upper extremities, increasing the
risk of injury despite a larger push-rim effective force [22].

Proper maintenance of a wheelchair also affects the efficiency of the wheelchair propul-
sion [23]. Keeping all mechanisms in good condition and the tires inflated to the correct
pressure has a significant effect on the ease of use of the wheelchair [24]. Some wheelchair
users may use devices to assist with manual propulsion, such as gloves with grip-enhancing
materials or wheelchair accessories designed to improve performance.

Weather conditions, e.g., wind, rain, and temperature, are crucial when analyzing the
performance of the wheelchair drive system. Adverse weather conditions make it more
challenging to drive a wheelchair. The type of surface and terrain affects performance.
Smooth and level surfaces like sidewalks are more accessible to drive on than uneven
terrain. Side inclination, uphill, and downhill gradients also affect the power required for
propulsion [25].

Therefore, effective manual wheelchair propulsion is a multifaceted issue influenced
by a complex interplay of factors encompassing the user’s physical capabilities, wheelchair
design characteristics, and environmental conditions. Optimizing these factors leads to
a more comfortable and less physically demanding wheelchair experience for the user.
Emerging methods, described in scientific documents, intended for analyzing and opti-
mizing manual wheelchair drives hold the potential to significantly improve the quality
of life for wheelchair users. To substantiate this hypothesis, a comprehensive review and
analysis of laboratory methods documented in the scientific literature were conducted to
assess their efficiency in evaluating wheelchair propulsion [26].

The intricate interactions among these factors and the potential benefits of optimiza-
tion necessitate a comprehensive approach to laboratory measurement and analysis of
wheelchair propulsion. This study reviews experimental testing methods for manual
wheelchairs to identify valid and reliable test methods and strategies for optimizing man-
ual wheelchair drives.

The primary objective of this study is to critically evaluate and identify laboratory
experimental testing methods for manual wheelchairs that are supported by solid evidence
in scientific documents. The goal is to establish a foundation for developing and imple-
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menting evidence-based strategies to optimize manual wheelchair propulsion for improved
user comfort and reduced physical exertion.

This study employs a narrative literature review approach to gather relevant research
findings on experimental testing methods for manual wheelchairs. This review focuses on
identifying and critically evaluating studies that have employed objective and controlled
experimental protocols to assess the effectiveness of different wheelchair designs, user
techniques, and environmental factors on propulsion performance.

This justifies the following research questions.

1. What laboratory testing methods have been employed in scientific research to evaluate
the effectiveness of manual wheelchair propulsion?

2. Which laboratory testing methods are most valid and reliable for assessing wheelchair
propulsion performance?

3. What future research directions are needed to enhance understanding of manual
wheelchair propulsion further and optimize its drive effectiveness?

2. Experimental Testing Methods
2.1. Dynamometer

A wheelchair dynamometer is a stationary testing device used to measure the propul-
sion parameters of manual wheelchairs. There are three primary methods for measuring
these parameters [27]: mobile ergometers, based on an electromagnetic brake mounted in
the wheelchair [28]; stationary ergometers in which the wheelchair is set on a treadmill [29];
and stationary roller ergometers [30].

De Klerk et al. in 2020 [31] compared 50 wheelchair ergometers and highlighted the
advantages and disadvantages of different ergometers used to test wheelchair propulsion
under laboratory conditions. They noticed that each type of ergometer has advantages
and limitations, and the choice of equipment should depend on specific research goals and
requirements. The cited authors also emphasize the diversity and lack of consensus in
this respect, which suggests the need for further research and standardization efforts to
improve the usefulness of laboratory tests of wheelchair drives. However, it is highlighted
that roller ergometers allow the use of a personal wheelchair, which can be significant in
studying the interaction of a specific person’s wheelchair with their wheelchair.

Wheelchair treadmills are commonly used to investigate wheelchair propulsion per-
formance. Unlike traditional treadmills designed for runners, wheelchair treadmills feature
a platform to accommodate a wheelchair, enabling users to propel themselves against the
treadmill belt while seated. These treadmills can be adjusted to simulate various terrains,
including hills and flat surfaces [32]. Wheelchair treadmills offer an effective alternative
to instrumented push-rims for measuring temporal and kinetic parameters. Research has
demonstrated strong correlations between measurements obtained from treadmills and
during driving [33].

As part of Poznan University of Technology’s scientific activities in Poland, a stationary
roller dynamometer was developed to measure wheelchair drive characteristics, such as
torque, speed, and energy consumption as a function of time. Such a specialized test stand
was patented, built, and validated [34]. This test stand records the rotational parameters of
a wheelchair’s driving wheels and can simulate inclined surfaces. Additionally, the stand
has sensors to measure critical biomechanical parameters of propelling the wheelchair.
Figure 2 illustrates the information flow within the dynamometer system.

The stationary roller dynamometer shown in Figure 3 consists of a support frame (1) to
which a weighing pan (3) is attached using strain gauges (2). The strain gauges measure the
pressures under each wheel of the wheelchair, and based on this, the position of the center
of mass (COM) of the human–wheelchair system is determined. Due to the sensitivity of
strain gauge scales to longitudinal loads, three linear guides (4) are used to allow only
vertical movement of the weighing scales relative to the support frame. The weighing pan
is equipped with a wheelchair frame clamping system (5) and two double traction rollers
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(6) that ensure slip-free contact with the wheelchair’s driving wheels, a critical factor in
accurate testing.
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Figure 3. View of the stationary roller dynamometer with details of the most essential elements (own
study): 1—support frame, 2—strain gauges, 3—weighing pan, 4—linear guides, 5—clamping system,
6—traction rollers, 7—BLDC motor, 8—encoder.

The wheelchair frame clamping element, shown in Figure 4, allows the wheelchair
to tilt in the sagittal plane. Each traction roller system consists of two rubber-covered,
truncated cone-shaped rollers that taper towards the center of the stand. A brushless
DC electric motor (BLDC) is attached to the front of each system, making it an active
roller. During the test, active rollers receive rotational energy from the wheelchair’s driving
wheels, which simulates rolling resistance. They can also drive the wheels, which simulate
the wheelchair’s descent down an incline. The rear roller of the traction roller system is a
passive roller whose function is solely to support the wheelchair. Two encoders (8) convert
the rotational motion parameters of the driving wheels into electrical signals, enabling
independent measurement of the left and right wheels.
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Figure 4. Wheelchair secured to the stationary roller dynamometer (source: own study): (A)—traction
rollers, (B)—weight-scale lever, (C)—safety pin, (D)—clamps securing the wheelchair frame,
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Figure 4 illustrates the method used to secure the wheelchair for testing. To clamp
the wheelchair, it is rolled onto the traction rollers (A). The wheelchair frame (F) is then
fixed using clamps (D). The wheelchair frame clamping element has two adjustments. The
first allows tilting the weight-scale lever (B). The tilt angle is set using a perforated disc
and the safety pin (C). This adjustment allows one to simulate the ascents or descents of
a hill. The second adjustment (E) adjusts the height of the lever arm to the height of the
wheelchair frame.

The system for measuring the electromyographic muscle activity of the person driving
the wheelchair is a separate component that can work independently of the stand. However,
its use during the tests expands the results and allows for more complete conclusions.

2.2. Test Stand and Method of Motion Capture

The kinematics of human body segments is one of the most essential biomechanical
parameters during wheelchair propulsion [35–39]. The propulsion cycle of a manual
wheelchair can be divided into two phases, i.e., the push phase and the recovery phase [40].
During the push phase, mechanical energy is transferred to the wheel’s push-rim through
hand contact with the rim; during the recovery phase, the hand is displaced in preparation
for the next push phase. During the push phase, the hand moves along with the rim. In the
recovery phase, the hand can move along different paths, which can be classified based on
the shape of the hand projection on the sagittal plane [41]. The literature distinguishes four
stroke patterns: semicircular, single-looping, arc, and double-looping [35]. These stroke
patterns are shown in Figure 5.

Analyzing the kinematics of body segments of a person driving a wheelchair requires
the development of a measurement stand and a data processing method. A method, along
with the stand, is described in the publication The method of measuring motion capture in
wheelchairs during actual use–description of the method and model of measuring signal process-
ing [42]. The method employed an OpenCV algorithm called AruCo to locate markers
(QR codes) placed on the filmed upper limb. By utilizing readily available algorithms, the
authors developed a low-cost and user-friendly test apparatus consisting of a modular
attachment that can be integrated with a wheelchair. This module, shown in Figure 6,
consists of a GoPro HERO 7 camera (a) and a light (b) mounted on a boom (c) permanently
connected to the wheelchair frame. During the tests, the human body was equipped with
markers (d), and, in addition, it was possible to use electrodes that measured the EMG
signal (e). The apparatus designed in this way makes it possible to relate the measured
muscle activity to the kinematics of the human body.
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Due to the implementation of OpenCV class algorithms [43,44] in a new application
and the prototype nature of the test apparatus, the correctness of the operation of this
apparatus was first verified, and its accuracy was determined. The results of this research
were published in a paper titled The effects of AruCo marker velocity and size on motion capture
detection and accuracy in the context of human body kinematics analysis [45]. This study found
that a potential error in marker detection was related to the quality of the camera and the
speed of marker movement. At the same time, the speed of movement of the marker had
the most dominant influence on the value of the error and the risk of its occurrence. This
relationship is shown in Figure 7.

Based on analysis of the test results, both the apparatus and the data acquisition
method were valid, as the relative error for different hand speeds during wheelchair
propulsion did not exceed 6% [45].
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Figure 7. Relative error (A) and number of detection points (B) as a function of marker speed (adapted
from [45]).

2.3. Determining Wheelchair Trajectory Based on Dynamometer Data

Using fixed wheelchair dynamometers in biomechanical testing can limit the ability
to capture the dynamic movement of the human–wheelchair system during propulsion.
Traditional wheelchairs employ differential steering, where individual wheel speeds control
direction and movement [46]. Replicating this user-controlled steering in laboratory settings
can be challenging, especially when users lack sensory feedback, which may disrupt the
study. To address this, it is crucial to inform participants about the intended wheelchair
trajectory during testing. A method for determining such a trajectory, known as the
trapezoid method, is described in detail in two articles, Methods of Determining Trajectory for
Wheelchair with Manual Pushrims Drive [47] and Bézier curve based trajectory planning for an
intelligent wheelchair to pass a doorway [48], and is called the trapezoid method. This method
divides the wheelchair’s movement into trapezoidal segments based on the differential
steering principle. The turning radius (R) is determined by the speed difference between
the left (vL) and right (vP) drive wheels and the wheelbase (L) (Figure 8).
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When measuring the kinematic parameters of the wheelchair, the left wheel path sL
and right wheel path sP were measured independently in the same unit of time t, dividing
the movement of the wheelchair into equal intervals and modeling these intervals as
trapezoids, in which the base is equal to the wheelbase L and the sides are equal to the
lengths of the distance traveled by the left wheel sL and the right wheel sP (Figure 9A,B).

According to the trapezoid method, the wheelchair movement should first be divided
into equal time intervals for which the paths of the left wheel sL and the right wheel sP are
known (Figure 6a,b). Then, it is required to calculate the angle α of inclination relative to
the horizontal straight line connecting the ends of the left wheel path sL and the right wheel
sP (1).

α = atan

(
si

L − si
P

L

)
(1)
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The trajectory of a wheelchair can be described as a change in the position in the
space of a point that is the center of the rear axle of the driving wheels. Therefore, for each
trapezoid describing the path in equal time intervals t, you should determine the path of
the center of the axis sC, which is the average of the paths traveled by the left wheel sL and
the right wheel sP (2).

si
C =

si
P − si

L
2

(2)

To model wheelchair movement using the trapezoidal method, the entire wheelchair
path is approximated by a series of trapezoids. The initial trapezoid, which encloses the
wheels’ paths and the axle’s center, has a base parallel to the x-axis. The point representing
the center of the axle at time t = 0 serves as the origin of the coordinate system. Subsequent
trapezoids are constructed such that their bases align with the line connecting the endpoints
of the left sL and right wheel sP paths from the preceding propulsion cycle. Additionally,
the center points of the driving wheel axle from the previous interval’s end and the new
interval’s beginning must coincide, as illustrated in point B of Figure 9.

To specify the trajectory of a wheelchair movement, it is sufficient to determine the
coordinates of the position of the center point of the drive wheel axle for the end of each of
the separated propulsion compartments (Figure 6d). The coordinates x0 = 0 and y0 = 0 are
taken as the first point. The coordinates of the second point are x1 = 0 and y1 = sC1. The
coordinates of each subsequent point are determined using Equation (3):

xi = xi−1 + si
C·sin (βi)

yi = yi−1 + si
C·cos (βi)

(3)

The angle β, representing the overall curvature of the wheelchair’s trajectory, is
determined by summing the angular deviations between the wheelchair’s centerline and
the line connecting the ends of the left wheel path (sL) and the right wheel path (sP). (4).

βi = βi−1 + αi−1 (4)

The described trapezoid method simulates wheelchair driving with a dynamometer
more similar to real-world conditions.
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2.4. Determining Changes in the Position of the Center of Mass (COM)

One of the most essential biomechanical parameters impacting the efficiency of
wheelchair propulsion is the position of the COM of the human–wheelchair system. This
parameter directly impacts both the propulsion efficiency and stability of the wheelchair. In
the so-called active wheelchairs, intentional instability of the human–wheelchair system is
deliberately incorporated into the wheelchair’s design to reduce reliance on torso balancing
while maintaining proper push-rim propulsion. This intentional instability enhances ma-
neuverability and obstacle-crossing capabilities [4]. However, because active wheelchairs
are less stable, they require specific skills from the user to control them effectively. As a
result, active wheelchairs are typically tailored for individuals with enhanced physical
fitness and maneuvering abilities, enabling them to fully capitalize on the advantages of
this intentional instability.

In human–wheelchair anthropo-technical systems, studying changes in the COM
under dynamic conditions is essential. Numerous factors influence the current position
of the COM. In addition to the constantly changing position of the torso, the wheelchair
frame dynamics are influenced by the moving masses of the user’s arms during manual
wheelchair propulsion [49]. Measuring the COM position under dynamic conditions has
been extensively documented in the literature [50–52].

The method presented in [53] involves determining the COM (barycenter) of the
person–wheelchair system using four strain-gauge-measuring scales (Figure 10). Each scale
measures the vertical reaction Ri at one of the four support points of the system. These
signals allow for determining the projections of the COM in the XY plane, simplifying the
analysis to a two-dimensional area.
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scales in four measurement planes (source: [34]).

To determine the position of the COM, the distances f 12, f 23, f 43, and f 14 between
successive points of applied reaction forces Ri are measured, balancing the moments in
each of the four analyzed planes πi (Figure 11). These distances indicate the distribution of
forces between pairs of scales, simplifying the calculations to a one-dimensional space.

The distances fi (Figure 12) are marked on the sides of the rectangle defined by the
points of application of the reaction forces
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Ri. Then, through points Pi on the sides of the rectangle, two lines can be drawn that
intersect at a single point in the XY plane, determining the coordinates of the COM of the
person–wheelchair system for a single measurement (Equations (5) and (6)).

x =
− L2 f12

f43− f12
− f14(

f23− f14
L1

)
−
(

L2
f43− f12

) (5)

y =

(
f23− f14

L1

)(
L2 f12

f43− f12

)
−
(

f23− f14
L1

)
f14(

f23− f14
L1

)
−
(

L2
f43− f12

) + f14 (6)

The described method allows the coordinates of the position of the COM in the
horizontal plane to be determined [53–55]. Considering the use of this method in the
stand described in Section 2.1, the measurement signal from the strain gauges is accessed.
Delivering a measurement signal at 100 Hz is of significance in this case. Due to a simple
method of converting the measurement signal and a high measurement frequency, it
was possible to measure changes in the position of the COM under dynamic conditions
characteristic of wheelchair propulsion. The disadvantage of the above method is that it
does not measure the position of the COM in the vertical plane. However, this problem was
solved by analytically determining the position of the COM vertically using data obtained
from human body motion capture (Section 2.2).
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3. Methods of Result Analysis

Analyzing experimental data provides valuable information about how different
wheelchair features and their adjustments affect user comfort and overall wheelchair
performance. This information helps to make informed decisions about which wheelchair
best fits a particular user [56]. Conducting biomechanical research that evaluates the effects
of a wheelchair’s drive system on the human body requires the development of specialized
methods for analyzing the research results. Such a need has been identified in the analysis
of changes in the position of the COM of the human sitting in a wheelchair.

The variation in the position of the COM is imaged using a point cloud that is difficult
to interpret statistically and implement into mathematical models. Therefore, a method
of describing a set of points with elliptical areas was worked out. The exact algorithm
of the method and its application to the analysis of selected experiments are described
in a publication titled “Describing a Set of Points with Elliptical Areas: Mathematical
Description and Verification on Operational Tests of Technical Devices” [57].

Representing a set of points using elliptical areas enables replacing any number of
points with an ellipse that depicts their distribution on a plane (Figure 13). This method is
particularly effective for sets of points in which the number of vectors leading to points

Ri (11) larger than the average length of the leading vector
→
R (12) is similar to the number

of vectors smaller than the average length of the leading vector. This relationship can be
verified by calculating the value of the distribution uniformity coefficient ∆P (Equation (9))

for the analyzed points P(xi; yi) relative to the geometric COM
→
P(x; y) of the analyzed set

(Equations (10) and (11)). For the method to be effective, the value of the ∆P factor should
be close to 0.5.

Ri =
√

x2
i + y2

i (7)

R =
∑n

i=1 Ri

n
(8)

∆P =
nmin

n
(9)

x =
∑n

i=1 xi

n
(10)
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y =
∑n

i=1 yi

n
(11)
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Figure 13. Schematic illustration of the method of replacing an arbitrary set of points (a) with an
ellipse defining the area of points on the analyzed plane (b) (source: [57]).

Applying the method on a set of points that satisfies the properties described above
results in its replacement by an ellipse defined by the five parameters of the position of the
center of the ellipse xCOG (12) and yCOG (13), the angle of inclination of the directional line
α (14), the length of the half-axis a (15) parallel to the directional line and the length of the
half-axis b (16) perpendicular to the directional line.

xCOG =
∑n

i=1 xi

n
(12)

yCOG =
∑n

i=1 yi

n
(13)

α = tan−1

(
∑n

i=1 (xi − x)(yi − y)

∑n
i=1(xi − x)2

)
(14)

a = 2σx = 2

√√√√∑n
i=1

(
x′i − x′

)2

n
(15)

b = 2σy = 2

√√√√∑n
i=1

(
y′i − y′

)2

n
(16)

The position of the COM within the human–wheelchair system significantly influences
propulsion efficiency and fall risk [4]. Given the complex interactions between the human
and the wheelchair, experimentally studying the dynamic changes in the COM position is
crucial. Rapidly determining the COM location can enhance user well-being and overall
wheelchair performance.

4. Summary and Conclusions

Analysis of the scientific literature reveals that laboratory methods for measuring
wheelchair propulsion can be broadly categorized into two primary approaches: wheelchair
dynamometer-based and biomechanical analysis. The wheelchair dynamometer-based
methods analyze propulsion efficiency, total muscle effort, power output during propulsion
cycles, and energy expenditure. Biomechanical analysis methods assess body position and
posture, joint angles, muscle activity, center of mass (COM) changes, and the trajectory of
wheelchair movement during propulsion.

While real-world propulsion measurement has various methodological limitations,
wheelchair dynamometers remain the most reliable laboratory apparatus for assessing
propulsion efficiency. This is because they measure the forces and torques the wheelchair
generates during propulsion, which are the key determinants of these performance met-
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rics. Biomechanical analysis methods can also provide valuable insights into wheelchair
propulsion performance, but they are generally considered less valid and reliable than
dynamometer-based methods. Biomechanical measurements are often indirect and can be
influenced by factors such as joint alignment and muscle activation patterns. Both groups
of laboratory testing methods require the efficient processing of large datasets to extract
meaningful insights. Integrating diverse methods for wheelchair drive measurement is
considered the most effective approach for comprehensive evaluation and analysis.

Based on the literature analyses presented, the following conclusions can be drawn:

1. Manual wheelchairs have many advantages and cannot be entirely replaced by electric
wheelchairs, so developing ways to power them efficiently is worth learning about [58].
There is a noticeable trend of adapting the manual propulsion system to the individual
physical capabilities of the user. This is achieved through hybrid drives or add-on
modules like the anti-rollback system.

2. Multiple factors, including human characteristics, wheelchair design, and environ-
mental conditions, influence the efficiency, safety, and comfort of manual wheelchair
propulsion for individuals with mobility limitations [59]. Optimizing these factors
can enhance the overall experience of using a manual wheelchair.

3. A wheelchair dynamometer has two functions: to simulate the actual operation condi-
tions during laboratory testing and to measure several biomechanical parameters [31].
The simulation is achieved by changing the tilt angle of the wheelchair and controlling
the dynamic force applied to the driving wheel of the wheelchair. The biomechanical
parameters measured by the dynamometer include the COM position, measurement
of wheelchair and human body kinematics, measurement of muscle effort using
surface electromyography, and analysis of exhaled gases. Such a comprehensive
evaluation of wheelchairs allows for gaining new knowledge for wheelchair design,
user adjustment and fitting, and propulsion technique training.

The dynamometer eliminates the physical linear motion of the wheelchair. Lack
of sensation of wheelchair motion may interfere with the tests performed and lead to
erroneous results [60]. It is, therefore, necessary to provide the user with information about
the trajectory of the wheelchair during laboratory testing [47].

The location of the COM within the human–wheelchair biomechanical system is
pivotal in determining propulsion efficiency and overall stability. For this reason, it is
essential to study changes in the position of the COM under dynamic conditions [55].

Conducting biomechanical tests means collecting data at high frequency. This results
in a large amount of data on which to base an analysis of the impact of the technical measure
on humans. Working with large datasets is challenging and requires a lot of computational
resources. Therefore, it is necessary to develop analysis methods that replace datasets
located in a three-dimensional space with several parameters describing a geometric figure
approximating the range of variation in the measured data [57].

Further research is needed to develop more personalized wheelchair designs that
better accommodate users’ physical characteristics and needs. This could involve ad-
vancements in adjustable features, seating systems, and manual and hybrid propulsion
mechanisms [61].

Technological advancements drive changes in laboratory testing methods. Wearable
sensors hold immense potential in optimizing manual wheelchair propulsion. The real-time
tracking of a user’s propulsion parameters, like push force, stroke rate, and efficiency, allows
for the development of personalized optimization strategies for propulsion, empowering
users to improve their performance and maximize comfort over time [62].

The growing trend of electric drives in individual transportation, progressively re-
placing or complementing human muscle power, is becoming more prevalent [63,64].
Environmental concerns, technological advancements, and the pursuit of convenience
drive the trend toward electric vehicles. This shift is noticeable across various vehicles,
such as bicycles, scooters, and other mobility devices, designed for people with disabili-
ties. This trend has been associated with the mechanization of wheelchair propulsion and
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steering [65]. Nevertheless, the scientific literature raises questions about whether this path
is optimal and advocates for innovative solutions that utilize human muscle power more
efficiently [61,66]. This approach aligns well with current sustainability principles.
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