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Featured Application: Evaluating the effect of train impact velocity, pedestrian position, and
station environment on head injury and run-over risk. Application to future safety device design.

Abstract: Introduction: Subway–pedestrian collisions are a significant and growing problem, but
they are poorly understood. This study presents the first subway–pedestrian collision model with
the aim of evaluating the baseline safety performance of an R160 NYC train and track combination
and the potential safety effects of drainage trough depth. Methods: A baseline simulation test
sample of 384 unique impacts (8 velocities (2–16 m/s), 24 positions (standing jumping and lying),
and 2 track types (flat and crossties)) was created in MADYMO. The full simulation test sample
(N = 1920) included with various depth drainage troughs (0–1 m). Head injuries and wheel and third
rail contacts were evaluated. Results: Limb–wheel contact occurred in 60% of scenarios. Primary
and secondary contact HIC15 showed similar high severity, with an HIC15 < 2000 (88% risk of AIS
4+) in 29% of results for both train and ground contact. Impact velocity strongly influences primary
contact HIC15 with limited effect on secondary contact. Impact velocities between 6 and 16 m/s
showed little change in wheel contact. Increasing the trough depth up to 0.5 m showed a decrease in
wheel contact probability with little increase in secondary contact. No further benefits were found
above 0.5 m. Conclusions: A subway–pedestrian collision model is presented which predicts that
wheel–pedestrian contact risk can be reduced with a 0.5 m drainage trough. The model suggests that
slower impact velocities may reduce head injury risk for primary contact; however, this will have less
effect on injuries caused by secondary and wheel contact.

Keywords: pedestrian safety; multibody modelling; head injury risk; subway train; rail safety; simulation

1. Introduction

The high number of pedestrian deaths worldwide is a well-documented problem, with
the World Health Organization reporting 280,000 pedestrian fatalities in 2022 [1]. Extensive
research has been conducted to improve pedestrian road vehicle safety, e.g., [2–6]. However,
much less attention has been given to pedestrian incidents involving subway trains, despite
deaths per 1,000,000 train miles increasing from 1.1 to 2.1 in the United States from 2013 to
2023 [7]. Existing subway crashworthiness research has focused on occupant protection
(e.g., [8–13]) for subway vehicles and does not address subway–pedestrian collisions. There
is thus a lack of published literature regarding this form of rail incident.

In automotive research, significant safety advances have been achieved by combining
accident data analysis, physical testing, computational modelling, and accident reconstruc-
tion. For example, car-to-bicycle crashes have been evaluated using four different real world
crash databases such as the German In-Depth Accident Study (GIDAS) [14]. The GIDAS
database has often been used to inform multibody modelling initial conditions [15]. Data
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from full-scale vehicle impact tests involving either a human dummy or a Post-Mortem
Human Surrogate (PMHS), e.g., [16–18], can be used for model validation. Optimum im-
pact parameters to reduce pedestrian risk have been evaluated using Multibody Modelling
(MB), Finite Element (FE) modelling, or coupled FE and MB models, e.g., [19–21]. Weighted
injury costs from multibody injury criteria have been used to assess the effects of vehicle
shape and braking on pedestrian injury outcomes [22].

A major challenge in replicating this approach for subway safety is the cost of physical
impact tests. Automotive pedestrian ground contact typically involves interaction with
a flat surface [2,20,23]. Recent street-level tram–pedestrian collision studies utilize flat
surfaces for secondary impact [24], or focus only on primary contact injuries [25]. In
contrast, secondary contact for subway–pedestrian collisions involve a more complex
geometry with different track types. These tracks introduce new dangers such as live
electrically charged running rails (third rail), sharp corners, and drainage troughs, which
may affect kinematics and run-over risk.

Drainage troughs (sometimes colloquially referred to as “suicide pits”) are channels be-
tween the tracks allowing for extra space such that an individual may avoid contact with the
train’s undercarriage or wheels. Recent analysis of NYC incident reports shows a substan-
tial number of cases with incapacitating injuries including amputation, likely resulting from
wheel contact [26]. First used in the London Underground in 1932 [27], drainage troughs
are present in many subway systems worldwide. Multiple analyses [28–30] of the effect of
drainage show that troughs show lower fatality rates in stations featuring them. However,
a recent paper showed a decline in references to these troughs since 2007 [31]. While
empirical evidence suggests that drainage troughs may act as a viable countermeasure in
reducing fatality rates, the results of such studies were unable to attribute the reduction in
fatality rates to drainage troughs due to the presence of confounding factors [32].

There have been no proposed baseline models of subway–pedestrian interactions and
there is no biomechanical analysis on the effect of drainage troughs on these events. While
infrastructure such as Platform Screen Doors (PSDs) has been installed in modern subway
systems, only 8.5% of NYC subway platforms were deemed feasible for this approach as
of 2020, with this number increasing to a maximum of 27% by 2033 [33]. This warrants
continued research into subway pedestrian safety. In particular, further research is needed
to better quantify the effect of drainage troughs on pedestrian safety. Of particular interest
is the required drainage trough depth to prevent wheel–pedestrian and third rail (high
voltage) contact risk and the potential effect on secondary head impact injury.

The aim of this paper is therefore to use the multibody modelling software MADYMO
(version 7.8) to create a New York City (NYC) subway–pedestrian model. The New York
City Subway system is one of the largest in the world, with 5.5 million daily passengers
and 185 subway train–pedestrian collisions in 2019 [26]. The purpose of the model is to
provide biomechanical insights into:

• The effect of impact velocity on train–pedestrian run-over risk.
• The effect of drainage trough depth on third rail contact and run-over probability as

well as the minimum trough depth needed to avoid wheel or undercarriage contact.
• The effect of impact velocity on both primary and secondary contact head injury risk.

2. Materials and Methods

Multibody modelling and injury weighting methods were used to create the baseline
model and assess the effects of speed, third rail, and drainage troughs on injury outcome.
Accordingly, the methodology addresses the following

• Multibody Train and Station Environments (2 track types)
• Adapted Multibody Pedestrian Model (AM50)
• Pedestrian Posture and Train Speed
• Simulation Test Sample (STS) with Injury Criteria, Contact Scores, and Weighted Scoring
• Sensitivity Study
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2.1. Multibody Train Model and Impact Velocity

The R160 train has the largest fleet within the NYC subway system (>1600 trains)
and is associated with the highest number of fatal subway–pedestrian interactions in the
NYC Subway in 2019 [26]. The multibody R160 train front was created in MADYMO
using thirteen cylinders and fourteen ellipsoids based on dimensions supplied by the
Federal Transit Administration (Figure 1). The train front was split into eight separate
groups for contacts (front panels, door, window, anti-climber, coupler, wheels, truck, and
undercarriage). As the train front is significantly stiffer than the human model, the contact
characteristics used were those of the MADYMO pedestrian model, i.e., the train was
treated as completely rigid. The track geometry simulated for this study is shown in
Figures 2 and 3.
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The most common estimated subway–pedestrian impact velocity is 40–47 km/h, but
low impact velocity may also be fatal due to the stiffness of the train front and the possibility
of wheel or third rail contact [26]. The impact velocities used in this study therefore range
from 2 to 16 m/s in 2 m/s increments [26]. Based on the available NYC event recorder data
supplied as part of a 2019 incident report analysis study [26], the R160 train’s emergency
braking was modelled as a linear deceleration of 1.43 m/s2.

2.2. Adapted MADYMO Human Pedestrian Model

The MADYMO pedestrian models are often used in kinematic studies involving
automotive pedestrian impacts [2,34,35]. Epidemiological studies found the average age
and sex distribution of 941 fatal NYC subway human collisions from 1990–2007 [28,29]
and 2019 [26,36,37] as 83% male with a mean age range of 35–45 years old. Based on these
findings, the MADYMO Adult Male 50th Percentile (AM50) ellipsoid model was chosen.
This model has been used extensively to assess the influence of vehicle impact velocity and
pedestrian posture during vehicle contact e.g., [34,38].

The MADYMO AM50 model consists of 52 rigid bodies connected by a kinematic joint.
Additionally, frangible joints are present in the legs to account for fracture. By default,
these joints remain locked until a fracture threshold is met, following which the connected
segments are free to rotate relative to each other. The AM50 model applies minor damping
forces to prevent numerical instabilities caused by gimbal lock, a phenomenon where
two rotational axes align and eliminate a degree of freedom, causing numerical problems.
However, preliminary analysis showed that due to the high impact force and complex
positioning used in this study, this damping force was insufficient to prevent gimbal lock.
Given the high likelihood of amputation caused by contact with a moving subway train
wheel, limb fracture was not the focus of this study. Thus, these joints remained locked to
allow simulations to run to completion and focus on head injuries. A sensitivity study was
conducted to assess the effect of this on the overall findings.

To address the limited head contact data available for model validation, the default
MADYMO AM50’s head contact characteristics were altered to reflect those calculated
based on the ground contact for 6 published PMHS tests [2].

2.3. Pedestrian Position and Pose

Pedestrian impacts are highly sensitive to initial conditions, with minor changes in
pedestrian pre-impact pose sometimes having a significant effect (e.g., change of head
contact location from a soft to a stiff region) [39]. To improve the validity of our simulations,
we sourced real-world videos and employed pose estimation techniques to define plausible
pedestrian pre-impact poses. Firstly, 2D poses were manually annotated, defining the
pixel coordinates for each key point on the pedestrian. GAST-Net was then applied to
lift the 2D poses to 3D [40]. An inverse kinematics optimisation technique (KinePose)
developed to infer joint orientations in a user-customisable biomechanical model for 3D
pose estimates [41] has been previously applied to cyclist falls [42]. The approach was
adapted for use in the study presented herein with the MADYMO ellipsoid models using
reorientable joints [41]. The resulting poses are shown in Figure 4.

2.4. Simulation Test Sample (STS)
2.4.1. Full STS

A simulation test sample (STS) was developed to represent the range of possible
impact configurations in subway–pedestrian incidents, using NYC incident report data [26]
as the primary source. This resulted in 1920 unique Impact Scenarios (IS) across 24 positions,
8 velocities, 5 trough depths, and 2 track types. Furthermore, a weighting system was
applied to also address the likelihood of each scenario [43]. This weighted STS was then
used to assess the likelihood of wheel run-over across a range of impact positions, impact
velocities, and track geometries. The full STS conditions are presented in Table 1.
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Table 1. Full simulation test sample conditions.

Impact
Position Postures Impact Location Track Type Trough Depths

(m)
Impact Velocities

(m/s)
Total

Simulations

Lying Lying 1
Lying 2

Left
Right

Middle

Flat bed
Crossties

5
[0 0.25 0.5 0.75 1]

8
[2 4 6 8 10 12 14 16]

2 × 3 × 2 × 5
× 8 = 480

Mid Jump Jump 1
Jump 2

Left upper and lower
Right upper and lower

Middle upper and lower

Flat bed
Crossties

5
[0 0.25 0.5 0.75 1]

8
[2 4 6 8 10 12 14 16]

2 × 6 × 2 × 5
× 8 = 960

Standing Standing 1
Standing 2

Left
Right

Middle

Flat bed
Crossties

5
[0 0.25 0.5 0.75 1]

8
[2 4 6 8 10 12 14 16]

2 × 3 × 2 × 5
× 8 = 480

2.4.2. Baseline Simulation Test Sample (BSTS)

A subset of this STS was used to develop the baseline (as-is) risk for comparison.
This baseline simulation test sample (BSTS) consists of 24 impact positions, 8 velocities,
and 2 track types but with only one trough depth for each track type (0 m for flat track
bed (Figure 2) and 0.25 m for the track bed with crossties (Figure 3). This results in
384 impact scenarios representing the existing NYC subway environment. This BSTS
allows for comparisons to be drawn between the existing environment and one with a
different drainage trough depth and, in the future, potentially also the assessment of other
proposed countermeasures.

2.5. Injury Criteria and Contact Scores (CS)
2.5.1. Head Injury Criteria (HIC)

The Head Injury Criterion (HIC15) was used to quantify the head injury risk for each
simulation [44]. HIC scores are frequently used in automotive safety research, e.g., [45,46].
The primary impact time window for distinguishing primary head contact from either
secondary or run-over head contact was set at 0–0.4 s for lying, 0–0.5 s for jumping, and
0–0.28 s for standing impacts. An additional contact phase between the pedestrian and the
train is present in IS, which involves run-over.

Based on the calculated HIC scores, the probability of Abbreviated Injury Scale (AIS)
head injury risk was determined using correlation [47]. A nominal HIC15 threshold was set
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at 2000, corresponding to an 88% probability of an AIS4+ injury, and this was chosen as a
reasonable upper limit of survivability.

2.5.2. Contact Score (CS)

To investigate the effect of track geometry on electrocution by the third rail, a contact
probability system was used. The contact score (CS) was defined as the number of sim-
ulations predicting at least one wheel/third rail contact, divided by the total number of
simulations for that configuration. Wheel and third rail contacts were defined as a binary
measure (1 for one or more contacts and 0 for no contacts).

2.6. Weighted Injury Score (WIS)

Not all impact scenarios occur at the same frequency [26]. NYC subway Public
Transportation Safety Board (PTSB) case reports were used to calculate the proportional
frequency of each simulated impact scenario [26]. There were 25 cases with both a recorded
impact velocity between 2–16 m/s and a recorded impact position of either standing,
jumping or lying. Over 40% of these incidents occurred at 12–14 m/s, while only 4%
occurred at 14–16 m/s, indicating the need for a Weighted Injury System (WIS) and
Weighted Contact Score (WCS).

The Impact Scenario Proportion (ISP) was defined as the product of the Impact Velocity
Proportion (IVP) and Impact Position Proportion (IPP), where the sum of each proportion
is equal to 1 (Equations (1) and (2)). The Weighted Contact Score was defined as the sum
of the products for the base CS with the associated ISP divided by the sum of the ISPs
(Equation (3)).

ISP = IVP ∗ IP (1)

N

∑
i=1

ISPi =
N

∑
i=1

IVPi =
N

∑
i=1

IPPi = 1 (2)

WCS =
∑N

i=1 CSi ∗ ISPi

∑N
i=1 ISPi

(3)

2.7. Sensitivity Study

A sensitivity study was conducted to assess the influence of contact hysteresis and frac-
ture joint damping on the relationship between trough depth, run-over risk, and head injury
risk. This assessment involved using a smaller subset of nine jumping impact scenarios.

3. Results
3.1. Sensitivity Study

The sensitivity study showed that the CSs vary by up to 30% with hysteresis; however,
the general relationship between the CS and trough depth remains the same. In particular,
with an increase in trough depth, the CSs drop regardless of the hysteresis value used (CS
reduction ranges between 73 and 82%). These results indicate that the model predictions
regarding the effect of drainage trough depth on run-over risk are not greatly influenced by
energy absorption.

Direct comparison of how the CS or HIC scores are affected by fracture joint changes
is not possible as the data are unavailable for simulations which failed due to gimbal lock.
Locking the fracture joints allows all simulations to run to completion. As leg injuries are
not considered, this approach was followed to allow the study to proceed. The following
results are therefore based on the AM50 model with locked leg fracture joints.

3.2. Baseline Run-Over Risk

Figure 5 shows the CS and WCS for the baseline simulation test sample (BSTS). The
modelling results suggest that a typical collision between an R160 subway train and a 50th
percentile male pedestrian in the existing NYC track environment has a contact likelihood
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of 59% for limb-to-wheel contact, 27% for body-to-wheel contact, 11% for head-to-wheel
contact, and 23% for third rail contact.
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Figure 6 shows the BSTS contact and weighted contact score separated by impact
conditions. Lying has the highest weighted contact score (WCS) across all regions while
jumping IS show a relatively lower WCS for the limbs compared to lying or standing. The
third rail contact scores are 0.2–0.3 for all impact positions.
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Figure 6. Contact scores and weighted contact scores for the baseline model for each impact position.

Figure 7 presents the relationship between the CS and impact velocity, where above
a train speed of 4 m/s, the impact velocity does not greatly affect the contact scores. The
weighted contact scores do not substantially differ from the unweighted contact scores,
implying that the CSs are independent of impact position and velocity.
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Figure 7. Contact scores and weighted contact scores shown as a function of impact velocity (weighted *).

3.3. Baseline Head Injury Risk

Figure 8 shows the range of primary and secondary HIC15 scores for the BSTS. The
shaded region shown in each box and whisker plot represents the 95% confidence interval
of the median value. The jumping ISs result in the highest range of HIC15 scores, while
the standing ISs show a smaller range but higher HIC15 values. Secondary contacts show
similar HIC15 scores in both jumping and standing and a lower dependency on impact
velocity. HIC15 scores above the 2000 threshold correspond to a greater than 88% probability
of AIS4+ head injury.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 15 
 

 
Figure 8. Baseline simulation test sample (BSTS) primary and secondary HIC15 scores for jumping 
and standing impacts. The 2000 HIC15 threshold is also shown. 

Figure 9 shows the proportion of jumping and standing HIC15 scores that fall below 
the threshold HIC15 score of 2000. The models suggest that only 29% of incidents will re-
sult in an AIS4+ head injury probability of less than 88%. Primary impact shows a similar 
proportion of cases below this threshold (47% compared to 44% for secondary contact 
HIC15 scores). 

 
Figure 9. Baseline simulation test sample proportion of jumping and standing HIC15 < 2000. 

3.4. STS Run-Over Risk 
Figure 10 shows the relationship between drainage trough depth and wheel/third rail 

contact for the full simulation test sample. There is a general reduction in CSs with in-
creasing drainage trough depth. This relationship is strongest for jumping, with less effect 
for standing or lying. Jumping scenarios also show the lowest CS for limbs, body, and 
third rail contact, with similar head CSs to standing. There is no clear relationship between 
drainage trough depth and wheel/third rail contact probability for lying. Overall, the 
model shows a general decline in wheel and third rail contact as trough depth increases 
for the limbs and, in some cases, for the head and body. This relationship is most promi-
nent between 0–0.5 m of trough depth, with little to no additional benefit beyond 0.5 m. 

0.47

0.44

0.29

0.0000 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0.3500 0.4000 0.4500 0.5000

Primary

Secondary

Both

Proportion of HIC15 Below 2000 (Jumping & Sanding)

Figure 8. Baseline simulation test sample (BSTS) primary and secondary HIC15 scores for jumping
and standing impacts. The 2000 HIC15 threshold is also shown.

Figure 9 shows the proportion of jumping and standing HIC15 scores that fall below
the threshold HIC15 score of 2000. The models suggest that only 29% of incidents will
result in an AIS4+ head injury probability of less than 88%. Primary impact shows a similar
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proportion of cases below this threshold (47% compared to 44% for secondary contact
HIC15 scores).
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3.4. STS Run-Over Risk

Figure 10 shows the relationship between drainage trough depth and wheel/third
rail contact for the full simulation test sample. There is a general reduction in CSs with
increasing drainage trough depth. This relationship is strongest for jumping, with less
effect for standing or lying. Jumping scenarios also show the lowest CS for limbs, body,
and third rail contact, with similar head CSs to standing. There is no clear relationship
between drainage trough depth and wheel/third rail contact probability for lying. Overall,
the model shows a general decline in wheel and third rail contact as trough depth increases
for the limbs and, in some cases, for the head and body. This relationship is most prominent
between 0–0.5 m of trough depth, with little to no additional benefit beyond 0.5 m.
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Figure 10. Full simulation test sample contact scores separated by impact position and drainage
trough depth.

3.5. STS Head Injury Risk

Figure 11 shows the effect of drainage trough depth on secondary contact HIC15 score
for jumping and standing scenarios. There are only small changes in the median HIC15
score with each increment in trough depth, but a significant difference with 95% confidence
for jumping can be found when comparing HIC15 at 0 m and 1 m trough depth. The
significance level is based on a normal distribution assumption.
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Figure 11. Relationship between drainage trough depth and secondary contact HIC15 score for
jumping and standing impact scenarios.

4. Discussion

Subway–pedestrian collisions are becoming more frequent [7], but there is a lack of
biomechanical analyses and proposed interventions. To the best of our knowledge, this is
the first model of subway–pedestrian collision interactions. As there is no validation data
against which to assess this model, predicted trends offer more significance than absolute
values, similar to the approach taken in [48].

The sensitivity study shows that the trends in modelling results are not greatly sen-
sitive to the uncertainty in contact hysteresis. Furthermore, locked leg fracture joints are
required for modelling to proceed.

4.1. Main Findings

The risk of direct contact with the wheels is highest for the limbs and lowest for the
head. Lying on the tracks is not surprisingly generally worse than jumping or standing
(Figure 6), although this does not account for any voluntary movement such as inten-
tional positioning in the centre of the track. The models therefore more closely resemble a
pedestrian falling onto the tracks and not moving. Third rail contact occurs about 20% of
the time; however, this is likely an overestimation due to high penetration into the third
rail guard, which is a modelling limitation. There is a weak impact velocity dependency
on contact scores for impact velocities above 4 ms−1 (Figure 7). There is a strong impact
velocity dependency on primary contact HIC15 scores but not on secondary contact HIC15
(Figure 8), which is similar to findings from vehicle–pedestrian collisions [20]. Regarding
head injury risk, about 30% of the Baseline Simulation Test Sample (BSTS) cases are poten-
tially survivable, with a HIC15 < 2000 for both primary and secondary impacts (Figure 9).
The contact scores decrease with drainage trough depth up to 0.5 m, with the largest benefit
observed in jumping impact scenarios (Figure 10). Increasing the trough depth beyond
0.5 m shows little benefit. Trough depth shows a significant difference in secondary contact
HIC15 between 0 and 0.5 m trough depth (Figure 11), and this is likely caused by a deeper
trough reducing the likelihood of a pedestrian hitting the ground headfirst. This does not
account for any potential change in other body region injuries.
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4.2. Baseline Run-Over Risk

The current risk of a subway–pedestrian interaction resulting in a limb amputation is
almost 60% for the full baseline impact scenarios (Figure 5). The pre-impact position is an
influencing factor in calculating this risk. The limb contact risk varies between 69% and 46%
for lying and jumping impact scenarios, respectively (Figure 6). The high contact scores for
lying impact scenarios are expected as the left and right lying positions are in the direct
path of the train wheels for primary contact. The standing and jumping impact scenarios
result in a primary impact location higher up on the train front, requiring an additional
train contact phase for run-over to occur. Potential actions taken by the pedestrian to avoid
contact (such as lying between the rails) have not been modelled, as the models are passive.

Figure 7 shows that impact velocity has a marginal influence on contact scores. Impact
velocities between 6 and 16 m/s show little to no change in contact scores. However,
the contact score is significantly lower between 2 and 4 m/s. This may be caused by the
complete absence of a run-over due to the emergency braking of 1.43 m/s2. This suggests
that train–pedestrian impacts pose similar run-over risks independent of the impact velocity
at speeds above 4 m/s. A recent study found that the most common impact velocity on the
NYC subway was 12 m/s [26]. This suggests that this impact velocity must be decreased to
below 4 m/s before any substantial benefit will be found in reducing pedestrian–wheel
contact injuries. Given the passive nature of the pedestrian models, the lower velocity
(<4 m/s) contact scores are likely an overestimation as no active avoidance manoeuvres are
made by the pedestrian model. During a real pedestrian collision at 2 m/s, sufficient time
might be available to physically manoeuvre into a more advantageous position. At higher
impact velocities, the ability to move out of the path of the wheels is less likely.

4.3. Effect of Drainage Trough Depth on Run-Over Risk

Figure 10 shows that contact scores for jumping impact scenarios are heavily influenced
by drainage trough depth. The limb contact score falls from 44% to 18% as the trough depth
increases from 0 to 1 m. Contact scores from standing and lying show less dependency
on trough depth. The secondary contact phase for a jumping pedestrian occurs later than
for standing and lying. This yields two benefits: there is additional time for the train to
decelerate before run-over can occur and there is more time for the pedestrian to fall into
the trough before roll-over.

The greatest change in contact scores can be seen between as trough depth increases
from 0–0.5 m, while additional trough depths yield little further benefit. This is likely due
to the secondary contact position of the pedestrian. Cases which yielded no benefit from
a 0.5 m trough due to their secondary contact positioning are unlikely to benefit from a
1 m trough. Conversely, pedestrians who avoided the train due to a 0.5 m trough will
not further benefit from a 1 m trough. Third rail contact does not significantly depend on
trough depth, with a 2% reduction between 0 and 0.5 m, and the contact score for third rail
contacts remains between 20 and 25% for the full simulation test sample. Due to the nature
of rigid multibody modelling, this is likely an overestimation as the pedestrian’s limbs or
other body regions cannot be severed. This can cause the pedestrian in the model to be
dragged along the rails, increasing the likelihood of third rail contact. Overall, a drainage
trough with a depth of 0.5 m may reduce the risk of wheel–pedestrian contact but will offer
no benefit for third rail contact prevention. Future studies optimising the geometry of the
trough through both width, depth, and curvature may offer further insights into the safety
benefit. This research could be used to inform future track design policy.

4.4. Baseline Head Injury Risk

Figure 8 shows a strong dependency of primary impact HIC15 score on train impact
velocity, while secondary impact HIC15 scores show little velocity dependency between 6
and 16 m/s. Impact velocities between 12 and 16 m/s show a significant difference with
95% confidence in the median primary HIC15 scores for jumping (lower primary HIC15
scores) compared to standing (higher primary HIC15 scores) impacts. There are more
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outliers detected for secondary contacts as the variability in impact conditions is much
greater, as previously observed for secondary contact for vehicle–pedestrian collisions [20].

Figure 9 shows that 29% of the jumping and standing impacts result in a HIC15 score of
less than 2000 for both primary and secondary impacts. This implies that countermeasure
design must incorporate both primary and secondary impact mitigation to be effective.

Figure 11 shows that the secondary contact HIC15 surprisingly decreases with trough
depth. Upon further investigation, it was found that the addition of the trough changes
the kinematics of the ground contact reducing the likelihood of headfirst collisions, thus
reducing pedestrian head–ground contact velocity. This does not account for any change
in injury probability associated with other body regions, such as the chest or spine. Re-
garding HIC15 scores alone, these findings show no negative consequence of increasing
trough depth.

4.5. Limitations

There are several limitations to this work. The lack of experimental data needed
for model validation means that the results are focused on trends rather than individual
simulations. However, the sensitivity study to assess the dependency of these trends
on unknown factors showed no significant reliance. Future model validation research
utilizing full-scale staged tests would be most beneficial; however, the financial cost of
such tests would be high. Retrospective injury analysis of similar impact cases to those
used in the STS would advance model validation; however, NYC medical examiner records
and injury data were not available at the time of this study. While multibody modelling
allowed for a large simulation test sample to be evaluated, it prevented the simulation of
deformations and amputations, meaning that decapitations and bisections could not be
modelled. This may cause an overestimation of third rail contact likelihood as the body
can be dragged alongside the train instead of becoming separated from the body region
in contact with the wheels. Furthermore, the subway environment includes more sharp
or edge contacts compared to automotive collisions. For primary contact, potential sharp
interactions include the anticlimber, coupler, and train wheels. For secondary contact, sharp
interactions could include the rails, crossties, and trough edges. The contact characteristics
used in this study are based on force–penetration relationships and as such, any change
in head acceleration due to the object’s geometric sharpness is not considered in head
injury risk calculations. The initial conditions, track environment, and train front geometry
used in this study are based on the NYC subway system. At the time of the study, the
NYC subway is one of the largest subways in the world and offers the most up-to-date
pedestrian incident information [26]. However, to represent the growing global issue of
subway–pedestrian collisions, further studies using different pedestrian characteristics
such as sex, height, and weight as well as track and train types are needed, and this will be
the focus of future work.

Notwithstanding these limitations, this paper offers the first model of subway–train
interactions and assesses the effect of drainage troughs as a potential means of improving
pedestrian safety.

5. Conclusions

A model of subway–pedestrian collisions is presented, taking into account variability
in impact configurations. The model predicts a substantial risk of wheel contact during
run-over and shows this is not strongly speed dependent, except at very low speeds. On
the other hand, increasing the drainage trough depth reduces the likelihood of contact
with both the wheel and the third rail. Furthermore, the model shows that increasing
the drainage trough depth does not significantly influence the injury risk in secondary
contact with the ground. Similar to vehicle–pedestrian collisions, primary contact with
the subway is much more sensitive to subway speed than secondary contact with the
ground. Finally, the high injury severity predicted by the model for both primary and
secondary contact indicates that pedestrian protection interventions must address both
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of these impact phases. The results of this model offer a baseline injury risk against
which future countermeasure studies may be compared. For potential subway–pedestrian
safety advancements, roll-over likelihood would be reduced with the implementation of a
drainage trough with a minimum depth of 0.5 m. This may inform future subway track
design policies incorporating pedestrian safety into drainage trough systems. Reducing
the approach velocity of incoming subway trains into the station would decrease primary
contact head injury risk, but a substantial velocity reduction (station entry velocity < 4 m/s)
would be required to reduce run-over likelihood. Countermeasures to address secondary
contact head injury risk are required. Future studies of track guards utilizing the available
drainage trough space while providing softer ground contact surfaces may be a promising
area of research.
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