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Abstract: The implantation of materials into in vivo peripheral nerves triggers the production of
scar tissue. A scar capsule progressively incorporates foreign bodies, which become insulated from
the surrounding environment. This phenomenon is particularly detrimental in the case of electrical
active sites enveloped within scar sheets, since the loss of contact with axons highly decreases the
effectiveness of neural interfaces. As a consequence, the in silico modelling of scar capsule evolution
may lead to improvements in the design of intraneural structures and enhancing their reliability
over time. In this work, a novel theoretical framework is proposed to model the evolution of capsule
thickness over time together with an improved optimisation procedure able to avoid apparently
suitable choices resulting from standard procedures. This framework provides a fast, simple, and
accurate modelling of experimental data (R2 = 0.97), definitely improving on previous approaches.

Keywords: neural implants; foreign body reaction; scar tissue; peripheral nerves

1. Introduction

Peripheral nerves provide the natural connection between the periphery of the body
and the brain [1]. They are extremely complex structures, which, nonetheless, can be
connected to external high-tech devices to record neural signals and evoke neural activity.
These devices, which are commonly referred as neural interfaces, have been designed to
be implanted around or directly inserted within the peripheral nerves [2–5], optionally
through microneedles [6–8]. Similarly, other kinds of electrodes (i.e., regenerative neural
interfaces) were investigated [2,9,10] and found to benefit from the ability of axons to
regenerate [11–14]. In particular, intraneural interfaces, despite their relative invasiveness,
were able to provide selective recording and stimulation.

However, the foreign body reaction (FBR) normally affects the interaction between
living tissues and synthetic materials [15,16]. In this case, the FBR influences the interaction
between peripheral nerve tissue [1,17–23] and the intraneural interface [24–26], leading
to the formation of a tissue capsule [27,28] around the implanted device that hampers its
functionality. Several works investigated the FBR and the main phases were described:
first, blood and plasma proteins (e.g., fibrinogen, fibronectin, albumin, and antibodies)
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are absorbed to the implant surface [29,30]; then, the adsorbed protein layer promotes
monocyte and leukocyte extravasation, attraction, and adhesion to the surface, together
with the coagulation cascade [31–33]. Furthermore, a matrix of fibrin was found to attract
leukocytes and macrophages around the surface of the implanted material through the
chemical attraction of chemokines [32,34]. Again, the extravasated monocytes differentiate
to macrophages and fuse together to form multinucleated foreign body giant cells (FBGCs),
which start releasing further inflammatory cytokines, boosting the inflammatory response
through a positive feedback mechanism [35,36]. Thus, the myofibroblasts trigger the
secretion of extracellular matrix (ECM) components [16,27,37]. Finally, the scar tissue
capsule was found to be impermeable to the nonspecific immune system and to many
chemicals [15,16,27].

Currently, a reliable prediction of the scar capsule thickness around an inserted mate-
rial is difficult because of the complexity of the FBR [15,16,27–38] and the unclear physical
and mechanical interactions with peripheral nerves [8,39–49]. Previous literature inves-
tigated the FBR evolution triggered by intraneural electrodes longitudinally implanted
(e.g., LIFE electrodes [50,51]) and studied the cellular composition and the thickness of
the fibrotic capsule up to 8 months [52,53]. These studies found that the increase in the
thickness of the scar capsule was directly related to the increase in the electrical impedance,
which resulted in the decrease in the signal-to-noise ratio [54], together with a drop in
recording and stimulation capabilities [36,55].

Again, the quantitative prediction of the scar tissue thickness emerged as crucial
knowledge to improve both the design and the implantation techniques of intraneural
interfaces, even if several interrelated FBR processes are partially hidden and their bio-
physical rules are not known in detail [15,16,27–38]. Therefore, there is a pressing issue
to investigate what kind of computational strategies could be able to model scar tissue
evolution, also for small experimental data sets with close experimental time points, which
are prone to be ill conditioned. In addition, the high complexity and the huge number of bio-
physical and biochemical processes may result in extremely complex and time-consuming
computational models.

As a consequence, in this work a novel phenomenological model is proposed to achieve
a physically compatible evolution of the mean capsule thickness together with time-saving
simulations able to start from a set of scattered experimental data with low cardinality [56].
Although the proposed phenomenological approach was previously successfully used [57,58],
here the previous numerical performances are clearly improved upon, while the computational
complexity is kept low. More specifically, this work is organised as follows: first, the novel
model is presented, and then an optimisation procedure, involving the use of standard
statistics, is performed as a benchmark. The suitable candidate functions, selected in the
previous analysis, are, then, validated with respect to their ability to model the experimental
data set with standard levels of statistical significance. Again, they are further tested
with respect to their physical consistency (in order to avoid nonphysical behaviours).
Thus, a novel metric is provided to identify the best form of the candidate function. A
sensitivity analysis of this function is performed to investigate how the global ability to
model experimental data is dependent on selected parameters, while a final optimisation
of all parameters of the best functional form is performed.

2. Methods

Parylene C double devices (20 mm long, 200 µm wide, and 10 µm thick) were longitu-
dinally implanted within the tibial branch of the sciatic nerve of female Sprague Dawley
rats (250–300 g, n = 6–8 for each group) [56] and resulted in the formation of a scar tissue
capsule. The thickness of this capsule formed around these implanted Parylene C devices
was examined at 0, 24, 48, 96, 336, 672, 1344, 2688, and 5376 h post-implant by light mi-
croscopy in 4x images and measured as the distance between each side of the device and
the closest myelinated axon though ImageJ software (version v1.51, National Institute of
Health, USA).
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The evolution of the scar tissue thickness over time was assumed to be modelled
through an unknown continuum function s(t) : A → B, where A, B ⊆ R+. However, here,
the subset S = {s(t1), . . . , s(t9)} of mean experimental values (with standard deviation)
coming from the whole experimental set [56] was used. Let Pi(ᾱ, t) be a polynomial function
defined as follows:

Pi(ᾱ, t) = {
n

∑
i=0

αiti|α0, . . . , αn ∈ R} (1)

while two supplementary functions are defined as follows:

g(t) = abs(t) (2)

h(t) = ln(t) (3)

where t is the time, while abs(t) and ln(t) are the absolute value and the natural logarithm
of t, respectively. Therefore, the operator M is defined as follows:

M[Pi(ᾱ, t), Fj(β̄, t), γ] = Pi(ᾱ, t) + γFj(β̄, t) (4)

where γ ∈ R and i and j are the maximum degree of the polynomial functions. The vectors
ᾱ = [α0, . . . , αi]

T and β̄ = [β0, . . . , β j]
T include the coefficients of the polynomial functions.

In addition,

Fj(β̄, t) = (h ◦ g ◦ Pj)(β̄, t) (5)

where “◦” is the composition operator among functions. As a consequence, the evolution
over time of the scar tissue thickness was modelled through the approximated function:

q(t, i, j, ᾱ, β̄, γ) = M[Pi(ᾱ, t), Fj(β̄, t), γ] (6)

Because of the polynomial nature of Pi(ᾱ, t) and the cardinality of the experimental data set
(n = 9), the minimum degree of polynomials resulting in Runge instability was i = 5 [57].
Thus, in this work, the attention was narrowed to candidate functions with i = 1, . . . , 5 and
j = 1, . . . , 5, while, in general, i ̸= j and ᾱ ̸= β̄. However, to reduce the number of elements
of vectors ᾱ, β̄ the candidate functions were chosen in order to satisfy the further constraints
αi = βi for i ≤ j. To test the ability of Equation (6) to model the experimental set of data,
the standard statistics RMSE(i, j), R2(i, j) were computed for each set of best ᾱ, β̄, resulting
from a standard optimisation procedure (nonlinear least-squares method, least absolute
residuals, Levemberg–Marquardt algorithm) in Matlab (Mathworks Inc. Academic licence).
In particular, each element of a 5 × 5 matrix W was defined as follows:

w(i, j) = log10[RMSE(i, j)] (7)

where each RMSE(i, j) was the value of the RMSE (Round Mean Square Error) related to
the fitting performances of the candidate function q(t, i, j, ᾱ, β̄), defined for the best set of
parameters ᾱ,β̄. Therefore, each element of a twin matrix LRR was defined as follows:

lrr(i, j) = log10[R2(i, j)] (8)

while the primary matrix RR was defined through

rr(i, j) = R2(i, j) (9)

where each R2(i, j) was the value of the standard R2 (coefficient of determination) related
to the fitting performances of the candidate function q(t, i, j, ᾱ, β̄), defined for the best set of
parameters ᾱ,β̄.
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All combinations of i and j resulting in small values of w(i, j) were related to potentially
suitable candidate functions, while those resulting in high values of w(i, j) were related to
unsuitable candidate functions. The W matrix was written as follows:

W =

(
WA1 WA2 WA3 WA4 WA5
WB1 WB2 WB3 WB4 WB5

)
(10)

where WAλ, λ = 1, . . . , 5, were block matrices of potentially suitable combinations, while
WBλ

were block matrices of unsuitable combinations of indexes i, j. Similarly, for the twin
matrix, defined through Equation (8),

LRR =

(
LRRA1 LRRA2 LRRA3 LRRA4 LRRA5
LRRB1 LRRB2 LRRB3 LRRB4 LRRB5

)
(11)

The same structure of the twin matrix was finally applied to the RR matrix, defined through
Equation (9), which was written as follows:

RR =

(
RRA1 RRA2 RRA3 RRA4 RRA5
RRB1 RRB2 RRB3 RRB4 RRB5

)
(12)

where RRAλ, λ = 1, . . . , 5, were block matrices related to potentially suitable combinations,
while RRBλ were block matrices of unsuitable combinations of indexes i, j. A comparison
between experimental data and in silico predictions coming from each candidate function
was used to validate each potentially suitable candidate function. The distribution of in
silico values coming from each candidate function was tested through the Shapiro–Francia
normality test with a confidence level of 0.05, while the statistical significance of the
difference between experimental data and in silico predictions was tested through an
unpaired Student t-test with both 0.05 and 0.01 confidence levels.

Nevertheless, since the use of Equation (6) to model the scar tissue evolution was novel,
the global effectiveness of the previous standard procedure was not totally expected. There-
fore, further tests were performed to investigate whether nonphysical effects were hidden
in potentially suitable candidate functions. With this aim, each single block was analysed
starting from RRA5 to end with the block RRA1. More specifically, nd(i, j) = card{Nd(i, j)}
was the cardinality of the set Nd(i, j), which for each candidate function accounted for the
discontinuity points

Nd(i, j) = {tη |limt→t−η
q(t, i, j, ᾱ, β̄, γ) ̸= limt→t+η

q(t, i, j, ᾱ, β̄, γ)} (13)

or accounted for the vertical asymptotes

Nd(i, j) = {tη |limt→t±,∓
i

q(t, i, j, ᾱ, β̄, γ) = ±∞} (14)

with η ∈ N. Furthermore, nz(i, j) = card{Nz(i, j)} was the cardinality of the set Nz(i, j),
which accounted for the stationary points and it was defined as:

Nz(i, j) = {tη |q̇(t, i, j, ᾱ, β̄, γ) = 0} (15)

Starting from the previous analysis, each element of a novel matrix Ξ(RR, nd, nz) was
defined for each combination of i and j as follows:

ξ[i, j, rr(i, j), nd(i, j), nz(i, j)] = rr(i, j)[1 − nd(i, j)][1 − nz(i, j)/10] (16)

Each element of the matrix ξ[i, j, rr(i, j), nd(i, j), nz(i, j)] was a novel metric, able to evaluate
at the same time both the standard performance and the presence of numerical singular-
ities for each trial function. This matrix was used to identify the best functional form of
the candidate function, resulting from the best combination of i, j indexes i∗ and j∗. In
addition, to further explore this functional form, the changes in shape were analysed for
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numerical changes in parameters ᾱ, β̄, γ, and a sensitivity analysis was performed. More
specifically, the increments ∆ᾱ, ∆β̄, ∆γ were used, where, in general, ∆ᾱ = [∆α0, . . . , ∆αi]

T ,
∆β̄ = [∆β0, . . . , ∆β j]

T , ∆αi = ∆c, ∆β j = ∆c, ∆γ = ∆c, for each relevant value of the i, j
indexes at a time, and ∆c = 0, 1, 5, 10, 50, 100, 500, 1000, were the different increments. The
sensitivity of the functional form with respect to each parameter was, then, defined as
follows [59,60]:

S[q(t, i∗, j∗, ᾱ + ∆ᾱ, β̄, γ)] =
q(t, i∗, j∗, ᾱ + ∆ᾱ, β̄, γ)− q(t, i∗, j∗, 1̄, 1̄, 1)

q(t, i∗, j∗, ᾱ + ∆ᾱ, β̄, γ)
(17)

S[q(t, i∗, j∗, ᾱ, β̄ + ∆β̄, γ)] =
q(t, i∗, j∗, ᾱ, β̄ + ∆β̄, γ)− q(t, i∗, j∗, 1̄, 1̄, 1)

q(t, i∗, j∗, ᾱ, β̄ + ∆β̄, γ)
(18)

S[q(t, i∗, j∗, ᾱ, β̄, γ + ∆γ] =
q(t, i∗, j∗, ᾱ, β̄, γ + ∆γ)− q(t, i∗, j∗, 1̄, 1̄, 1)

q(t, i∗, j∗, ᾱ, β̄, γ + ∆γ)
(19)

Finally, numeric instability effects due to the change in the γ parameters were studied with
reference to the variation in the modelling ability of the best candidate function. The best
value of the γ parameter was found through the optimisation of the standard R2 statistic.

3. Results
3.1. A Standard Approach to Discriminate Suitable Candidate Functions

A first discrimination between suitable and not suitable trial functions was performed
through the W matrix. More specifically, for the family of functions with i = 1 the values of
w(1, j) (with 1 ≤ j ≤ 5) ranged from 0.836 to 1.475, while for functions with i = 2 the values
w(2, j) varied from 0.805 to 3.029. Similarly, for i = 3 the w(3, j) values varied from 0.837 to
3.059, while for functions with i = 4 the range of variation in w(4, j) was between 0.686
and 3.068. Finally, for candidate functions with i = 5 the values w(5, j) varied between
0.943 and 3.205. Moreover, the main 5 × 5 W matrix was divided into two different
blocks, as shown in Figure 1a. The upper block matrix was formed by five submatrices
WA1 (4 × 1), WA2 (3 × 1), WA3 (3 × 1), WA4 (3 × 1), and WA5 (3 × 1), and it was related
to combinations of i and j indexes resulting in candidate functions potentially suitable to
model the experimental set of data (Figure 1b). On the contrary, the lower block matrix
was formed by five submatrices WB1(1 × 1), WB2 (2 × 1), WB3 (2 × 1), WB4 (2 × 1), and
WB5 (2 × 1), and it was related to the combinations of i and j indexes, which resulted in
candidate functions unsuitable to model the experimental set of data (Figure 1c).

Equivalently, within the LRR matrix (decimal logarithm of the coefficient of deter-
mination) for the family of functions with i = 1 the values of lrr(1, j) (with 1 ≤ j ≤ 5)
ranged from −0.029 to −0.056, while for functions with i = 2 the values lrr(2, j) varied
from −0.026 to −0.041. Furthermore, for i = 3 the lrr(3, j) values varied from −0.021 to
−0.046, while for functions with i = 4 the range of variation in lrr(4, j) was between −0.027
and 3.297. Finally, for candidate functions with i = 5 the values lrr(5, j) varied between
−0.503 and 0.417.

Again, the main 5 × 5 LRR matrix was divided into two different blocks, as shown
in Figure 1d. The upper block matrix was formed by five submatrices LRRA1 (4 × 1),
LRRA2 (3 × 1), LRRA3 (3 × 1), LRRA4 (3 × 1), and LRRA5 (3 × 1), and it was related
to combinations of i and j indexes resulting in candidate functions apparently suitable to
model the experimental set of data (Figure 1e). The lower block matrix was formed by the
submatrices LRRB1(1 × 1), LRRB2 (2 × 1), LRRB3 (2 × 1), LRRB4 (2 × 1), and LRRB5
(2 × 1), which were related to the combinations of i and j indexes resulting in functions
not suitable to model the experimental set of data (Figure 1f).

The same division in submatrices was applied to the matrix RR, resulting in the
following blocks, RRA1(4 × 1), RRA2 (3 × 1), RRA3 (3 × 1) , RRA4 (3 × 1), and RRA5
(3 × 1), which were related to suitable combinations of i and j indexes. Correspondingly,
the lower block matrix was formed by RRB1 (1 × 1), RRB2 (2 × 1), RRB3 (2 × 1),
RRB4 (2 × 1), and RRB5 (2 × 1). The latter blocks (B type) were excluded from further
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investigations, while the former ones were explored in more depth, starting from the RRAi
blocks with higher values.
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Figure 1. (a) The W color matrix [decimal logarithm of RMSE (Root Mean Square Error)] was able to
select potentially suitable combinations of i and j indexes. (b) The block matrix of potentially suitable
combinations was divided into five submatrices WA1(4 × 1), WA2 (3 × 1), WA3 (3 × 1), WA4 (3 × 1),
and WA5 (3 × 1). (c) The block of not suitable combinations was divided into five submatrices
WB1(1 × 1), WB2 (2 × 1), WB3 (2 × 1), WB4 (2 × 1), and WB5 (2 × 1). (d) The twin LRR color matrix
[base 10 logarithm of R2]. (e) Potentially suitable combinations were divided into five submatrices
LRRA1(4 × 1), LRRA2 (3 × 1), LRRA3 (3 × 1), LRRA4 (3 × 1), and LRRA5 (3 × 1). (f) The block of
not suitable combinations was divided into five submatrices LRRB1(1 × 1), LRRB2 (2 × 1), LRRB3

(2 × 1), LRRB4 (2 × 1), and LRRB5 (2 × 1). (g) The same structure was applied to the RR matrix (R2

values): potentially suitable combinations were divided into five submatrices RRA1(4 × 1), RRA2

(3 × 1), RRA3 (3 × 1), RRA4 (3 × 1), and RRA5 (3 × 1). (h) Not suitable combinations were divided
in block matrices RRB1(1 × 1), RRB2 (2 × 1), RRB3 (2 × 1), RRB4 (2 × 1), and RRB5 (2 × 1).

3.2. Standard and Not Standard Analysis of Different Families of Candidate Functions

The in silico predictions resulting from all suitable combinations were compared to
experimental data to validate them. In addition, the form of their distribution was tested for
normality and compared to experimental data to quantify eventually significant differences.
Then, the continuum evolution of each candidate function was explored to reveal eventual
nonphysical behaviours.
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In particular, the RR value referring to the candidate function with i = 1 and j = 5 was
quite elevated (RRA5(1) = 0.9343), while the residuals between experimental and predicted
values oscillated between −5.385 and 10.641 µm (Table S1 and Figure S1). This function
was able to show a good positive correlation between predictions and experimental data
(R2 = 0.94, Figure 2a). The Shapiro–Francia normality test resulted in p = 0.94 for in silico
values, while in p = 0.48 for experimental data (Figure 2b). Furthermore, an unpaired
Student t-test between experimental data and in silico predictions resulted in p = 0.86
(Figure 2c). Nevertheless, a complete plot of the function within the experimental time
range showed two vertical asymptotes at t = 24.000 and at t = 47.338 h, together with
three stationary points at t = 0, t = 17.106, and t = 40.171 h (Figure 2d and Figure 2d inset).
Then, recalling Equations (13)–(15), for this function, nd = 2 and nz = 3.

The RR value associated with the candidate function with i = 2 and j = 5 was
high (RRA5(2) = 0.9406), while the residuals between experimental and predicted values
oscillated between −5.963 and 8.414 µm (Table S2 and Figure S2). This function provided a
similar correlation (R2 = 0.94) between experimental and predicted data (Figure 2e). The
Shapiro–Francia normality test resulted in p = 0.57 for in silico values (Figure 2f), while
an unpaired Student t-test between experimental data and in silico predictions resulted
in p = 0.99 (Figure 2g). However, the complete plot showed two vertical asymptotes at
t = 24.000 and t = 47.338 h, together with three stationary points at t = 0, t = 17.106, and
t = 40.171 h (Figure 2h and Figure 2h inset). Therefore, for this function nd = 1 and nz = 1.

Similarly, the RR value pertaining to the candidate function deriving from the combi-
nation of i = 3 and j = 5 was elevated (RRA5(3) = 0.952), and the residuals between experi-
mental and predicted values oscillated between −4.171 and 4.955 µm (Table S3 and Figure S3).
This function showed a quite high correlation (R2 = 0.98) between experimental and pre-
dicted data (Figure 2i). The Shapiro–Francia normality test resulted in p = 0.48 for in
silico values (Figure 2j), while an unpaired Student t-test between experimental data and
in silico predictions resulted in p = 0.98 (Figure 2k). A graphical representation of the
function showed a vertical asymptote at t = 19.539 h, together with a stationary point at
t = 4218.948 h (Figure 2l and Figure 2l inset). As a consequence, for this function nd = 1
and nz = 1. The numeric values of the ᾱ and β̄ elements are detailed in Table 1 for the
functions q(t, 1, 5, ᾱ, β̄, γ), q(t, 2, 5, ᾱ, β̄, γ), and q(t, 3, 5, ᾱ, β̄, γ).

Table 1. The numeric values of each element of ᾱ and β̄ vectors for the functions q(t, 1, 5, ᾱ, β̄, γ),
q(t, 2, 5, ᾱ, β̄, γ), and q(t, 3, 5, ᾱ, β̄, γ) are listed in columns 1, 2, and 3, respectively.

q(t, 1, 5, ᾱ,β̄,γ) q(t, 2, 5, ᾱ,β̄,γ) q(t, 3, 5, ᾱ,β̄,γ)

α0 = β0 = −1.433 · 10−03 α0 = β0 = −7.820 · 10−00 α0 = β0 = −3.611 · 10−07

α1 = β1 = 1.021 · 10−01 α1 = β1 = 4.718 · 10−02 α1 = β1 = −1.314 · 10−05

β2 = −1.619 · 10−00 α2 = β2 = 4.964 · 10−02 α2 = β2 = 1.825 · 10−09

β3 = −1.433 · 10−01 β3 = −1.765 · 10−06 α3 = β3 = −1.439 · 10−05

β4 = 2.768 · 10−03 β4 = 1.487 · 10−02 β4 = 2.647 · 10−02

β5 = −7.636 · 10−01 β5 = −6.130 · 10−01 β5 = 2.432 · 10−00

The family of candidate functions with j = 4 was then tested. The RR value related
to the candidate function with i = 1 and j = 4 was high (RRA4(1) = 0.9272), while
the residuals between experimental and predicted values oscillated between −5.519 and
5.457 µm at the experimental times (Table S4 and Figure S4). This function was able to
show a good positive correlation between predictions and experimental data (R2 = 0.97,
Figure 3a), and the Shapiro–Francia normality test resulted in p = 0.69 for in silico values
(Figure 3b). Furthermore, an unpaired Student t-test between experimental data and in
silico predictions resulted in p = 0.96 (Figure 3c). Nevertheless, the complete plot of
the function in the experimental range showed three vertical asymptotes at t = 10.872,
t = 30.972, and t = 659.550 h, together with two stationary points at t = 22.453 and
t = 491.255 h (Figure 3d and Figure 3d inset). Then, for this function nd = 3 and nz = 2.
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Figure 2. (a) Correlation between experimental and predicted values of scar tissue thickness for
the function q(t, 1, 5, ᾱ, β̄, γ). (b) QQ plot of experimental data and in silico prediction distributions
(p = 0.48 and p = 0.94, Shapiro–Francia normality test with α = 0.05 ,respectively). (c) Box plots of
both experimental data and in silico predictions (unpaired Student t-test p = 0.86). (d) Continuum
evolution over time of q(t, 1, 5, ᾱ, β̄, γ): two vertical asymptotes and three stationary points were
detected (see inset). (e) Correlation between experimental and predicted values of scar tissue thickness
for the function q(t, 2, 5, ᾱ, β̄, γ). (f) QQ plot of experimental data and in silico prediction distributions
(p = 0.48 and p = 0.57, Shapiro–Francia normality test with α = 0.05, respectively). (g) Box plots for
both experimental data and in silico predictions (unpaired Student t-test p = 0.99). (h) Continuum
evolution over time of q(t, 2, 5, ᾱ, β̄, γ): a vertical asymptote and a stationary point were detected
(see inset). (i) Correlation between experimental and predicted values of scar tissue thickness for
the function q(t, 3, 5, ᾱ, β̄, γ). (j) QQ plot of experimental data and in silico prediction distributions
(p = 0.48 and p = 0.48, Shapiro–Francia normality test with α = 0.05, respectively). (k) Box plots for
both experimental data and in silico predictions (unpaired Student t-test p = 0.98). (l) Continuum
evolution over time of q(t, 3, 5, ᾱ, β̄, γ): a vertical asymptote and a stationary point were detected
(see inset).

The RR value referring to the candidate function with i = 2 and j = 4 was also elevated
(RRA4(2) = 0.95), while while the residuals between experimental and predicted values
oscillated between −4.564 and 9.647 µm (Table S5 and Figure S5). This candidate showed
a positive correlation (R2 = 0.95) between experimental and predicted data (Figure 3e).
The Shapiro–Francia normality test resulted in p = 0.36 for in silico values (Figure 3f),
while an unpaired Student t-test between experimental data and in silico predictions
resulted in p = 0.94 (Figure 3g). However, the complete plot showed a vertical asymptote
at t = 23.995 h, together with two stationary points at t = 18.867 and t = 4023.990 h
(Figure 3h and Figure 3h inset). Therefore, for this function nd = 1 and nz = 2.
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Figure 3. (a) Correlation between experimental and predicted values of scar tissue thickness for
the function q(t, 1, 4, ᾱ, β̄, γ). (b) QQ plot of experimental data and in silico prediction distributions
(p = 0.48 and p = 0.69, Shapiro–Francia normality test with α = 0.05, respectively). (c) Box plots of
both experimental data and in silico predictions (unpaired Student t-test p = 0.96). (d) Continuum
evolution over time of q(t, 1, 4, ᾱ, β̄, γ): three vertical asymptotes together with two stationary point
were detected (see inset). (e) Correlation between experimental and predicted values of scar tissue
thickness for the function q(t, 2, 4, ᾱ, β̄, γ). (f) QQ plot of experimental data and in silico prediction
distributions (p = 0.48 and p = 0.35, Shapiro–Francia normality test with α = 0.05, respectively).
(g) Box plots for both experimental data and in silico predictions (unpaired Student t-test p = 0.94).
(h) Continuum evolution over time of q(t, 2, 4, ᾱ, β̄, γ): a vertical asymptote together two stationary
points was detected (see inset). (i) Correlation between experimental and predicted values of scar
tissue thickness for the function q(t, 3, 4, ᾱ, β̄). (j) QQ plot of experimental data and in silico prediction
distributions (p = 0.48 and p = 0.50, Shapiro–Francia normality test with α = 0.05, respectively).
(k) Box plots for both experimental data and in silico predictions (unpaired Student t-test p = 0.99).
(l) Continuum evolution over time of q(t, 3, 4, ᾱ, β̄, γ): a vertical asymptote and a stationary point
were detected (see inset).

Equivalently, the RR value pertaining to the candidate function with i = 3 and j = 4
was considerable (RRA4(3) = 0.9538), while the residuals between experimental and
predicted values oscillated between −4.679 and 4.469 µm (Table S6 and Figure S6). This
function resulted in a positive high correlation (R2 = 0.98) between experimental and
predicted data (Figure 3i), while the Shapiro–Francia normality test resulted in p = 0.50 for
in silico values (Figure 3j). Again, an unpaired Student t-test between experimental data
and in silico predictions resulted in p = 0.99 (Figure 3k). The complete plot of the function
was able to underline a vertical asymptote at t = 19.627 h, together with a stationary
point at t = 4217.266 h (Figure 3l and Figure 3l inset). As a consequence, for this function
nd = 1 and nz = 1. The numeric values of the ᾱ and β̄ elements are listed in Table 2 for the
functions q(t, 1, 4, ᾱ, β̄, γ), q(t, 2, 4, ᾱ, β̄, γ), and q(t, 3, 4, ᾱ, β̄, γ).
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Table 2. The numeric values of the elements of the ᾱ and β̄ vectors for the functions q(t, 1, 4, ᾱ, β̄, γ),
q(t, 2, 4, ᾱ, β̄, γ), and q(t, 3, 4, ᾱ, β̄, γ) are shown in columns 1, 2, and 3, respectively.

q(t, 1, 4, ᾱ, β̄, γ) q(t, 2, 4, ᾱ, β̄, γ) q(t, 3, 4, ᾱ, β̄, γ)

α0 = β0 = −1.433 · 10−03 α0 = β0 = −7.820 · 10−00 α0 = β0 = −3.611 · 10−07

α1 = β1 = 1.021 · 10−01 α1 = β1 = 4.718 · 10−02 α1 = β1 = −1.314 · 10−05

β2 = −1.619 · 10−00 α2 = β2 = 4.964 · 10−02 α2 = β2 = 1.825 · 10−09

β3 = −1.433 · 10−01 β3 = −1.765 · 10−06 α3 = β3 = −1.439 · 10−05

β4 = 2.768 · 10−03 β4 = 1.487 · 10−02 β4 = 2.647 · 10−02

β5 = −7.636 · 10−01 β5 = −6.130 · 10−01 β5 = 2.432 · 10−00

Moreover, the family of candidate functions with j = 3 was tested. The RR value asso-
ciated with the candidate function with i = 1 and j = 3 was elevated (RRA3(1) = 0.9271),
while the residuals between experimental and predicted values oscillated between −4.248
and 6.877 µm at the experimental times (Table S7 and Figure S7). This function was able to
show a good positive correlation between predictions and experimental data (R2 = 0.94,
Figure 4a), and the Shapiro–Francia normality test resulted in p = 0.88 for in silico values
(Figure 4b). Furthermore, an unpaired Student t-test between experimental data and in
silico predictions resulted in p = 0.82 (Figure 4c). Nevertheless, the function had a vertical
asymptote at t = 21.176 h, together with two stationary points at t = 0 and t = 12.134 h
(Figure 4d and Figure 4d inset). Then, for this function nd = 1 and nz = 2.

The RR value related to the trial function with i = 2 and j = 3 was also high
(RRA3(2) = 0.92), while the residuals between experimental and predicted values os-
cillated between −10.530 and 3.007 µm (Table S8 and Figure S8). This function was able to
show a good positive correlation between predictions and experimental data (R2 = 0.94,
Figure 4e), and the Shapiro–Francia normality test resulted in p = 0.46 for in silico values
(Figure 4f). Furthermore, an unpaired Student t-test between experimental data and in
silico predictions resulted in p = 0.85 (Figure 4g). However, the complete plot showed a
vertical asymptote at t = 18.708 h, together with two stationary points at t = 0.207 and
t = 4000.265 h (Figure 4h and Figure 4h inset). Therefore, for this function nd = 1 and
nz = 2.

Correspondingly, the RR value pertaining to the trial function with i = 3 and j = 3
was considerably lower (RRA3(3) = 0.4345), while the residuals between experimental
and predicted values oscillated between −2.250 and 11.407 µm (Table S9 and Figure S9).
This function was able to show a highly positive correlation between predictions and
experimental data (R2 = 0.98, Figure 4i), and the Shapiro–Francia normality test resulted
in p = 0.29 for in silico values (Figure 4j). Furthermore an unpaired Student t-test between
experimental data and in silico predictions resulted in p = 0.77 (Figure 4k). The complete
plot of the function revealed a stationary point at t = 4747.488 h (Figure 4l). As a conse-
quence, for this function nd = 0 and nz = 1. The numeric values of the ᾱ and β̄ elements are
detailed in Table 3 for the functions q(t, 1, 3, ᾱ, β̄, γ), q(t, 2, 3, ᾱ, β̄, γ), and q(t, 3, 3, ᾱ, β̄, γ).

Table 3. The numeric values of the elements of ᾱ and β̄ vectors for the functions q(t, 1, 3, ᾱ, β̄, γ),
q(t, 2, 3, ᾱ, β̄, γ), and q(t, 3, 3, ᾱ, β̄, γ) are shown in columns 1, 2, and 3, respectively.

q(t, 1, 3, ᾱ,β̄,γ) q(t, 2, 3, ᾱ,β̄,γ) q(t, 3, 3, ᾱ,β̄,γ)

α0 = β0 = −1.823 · 10−00 α0 = β0 = −2.384 · 10−00 α0 = β0 = 8.617 · 10−01

α1 = β1 = 2.598 · 10−03 α1 = β1 = 7.752 · 10−03 α1 = β1 = 6.852 · 10−03

β2 = −2.365 · 10−02 α2 = β2 = −1.191 · 10−06 α2 = β2 = −3.883 · 10−07

β3 = 1.303 · 10−03 β3 = 3.420 · 10−04 α3 = β3 = −4.681 · 10−11
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Figure 4. (a) Correlation between experimental and predicted values of scar tissue thickness for
the function q(t, 1, 3, ᾱ, β̄, γ). (b) QQ plot of experimental data and in silico prediction distributions
(p = 0.48 and p = 0.88, Shapiro–Francia normality test with α = 0.05, respectively). (c) Box plots of
both experimental data and in silico predictions (unpaired Student t-test p = 0.82). (d) Continuum
evolution over time of q(t, 1, 3, ᾱ, β̄, γ): three vertical asymptotes together with two stationary points
were detected (see inset). (e) Correlation between experimental and predicted values of scar tissue
thickness for the function q(t, 2, 3, ᾱ, β̄, γ). (f) QQ plot of experimental data and in silico prediction
distributions (p = 0.48 and p = 0.46, Shapiro–Francia normality test with α = 0.05, respectively).
(g) Box plots for both experimental data and in silico predictions (unpaired Student t-test p = 0.85).
(h) Continuum evolution over time of q(t, 2, 3, ᾱ, β̄, γ): a vertical asymptote together two stationary
points was detected (see inset). (i) Correlation between experimental and predicted values of scar
tissue thickness for the function q(t, 3, 3, ᾱ, β̄, γ). (j) QQ plot of experimental data and in silico
prediction distributions (p = 0.48 and p = 0.29, Shapiro–Francia normality test with α = 0.05,
respectively). (k) Box plots for both experimental data and in silico predictions (unpaired Student
t-test p = 0.78). (l) Continuum evolution over time of q(t, 3, 3, ᾱ, β̄, γ): no vertical asymptotes and a
stationary point were detected (see inset).

In addition, the family of candidate functions with j = 2 was tested. The RR value
relating to the candidate function with i = 1 and j = 2 was high (RRA2(1) = 0.9215), while
the residuals between experimental and predicted values oscillated between −4.073 and
7.253 µm at the experimental times (Table S10 and Figure S10). This function was able to
show a good positive correlation between predictions and experimental data (R2 = 0.94,
Figure 5a), and the Shapiro–Francia normality test resulted in p = 0.84 for in silico values
(Figure 5b). Furthermore, an unpaired Student t-test between experimental data and in
silico predictions resulted in p = 0.85 (Figure 5c). Nevertheless, a plot of the function in the
experimental range showed that no vertical asymptotes or stationary points were present
(Figure 5d). Then, for this function nd = 0 and nz = 0.
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Figure 5. (a) Correlation between experimental and predicted values of scar tissue thickness for
the function q(t, 1, 2, ᾱ, β̄, γ). (b) QQ plot of experimental data and in silico prediction distributions
(p = 0.48 and p = 0.84, Shapiro–Francia normality test with α = 0.05, respectively). (c) Box plots of
both experimental data and in silico predictions (unpaired Student t-test p = 0.85). (d) Continuum
evolution over time of q(t, 1, 2, ᾱ, β̄, γ): no vertical asymptotes and no stationary points were detected
(see inset). (e) Correlation between experimental and predicted values of scar tissue thickness for
the function q(t, 2, 2, ᾱ, β̄, γ). (f) QQ plot of experimental data and in silico prediction distributions
(p = 0.48 and p = 0.16, Shapiro–Francia normality test with α = 0.05, respectively). (g) Box plots for
both experimental data and in silico predictions (unpaired Student t-test p = 0.86). (h) Continuum
evolution over time of q(t, 2, 2, ᾱ, β̄): no vertical asymptotes and a stationary point were detected
(see inset). (i) Correlation between experimental and predicted values of scar tissue thickness for
the function q(t, 3, 2, ᾱ, β̄, γ). (j) QQ plot of experimental data and in silico prediction distributions
(p = 0.48 and p = 0.11, Shapiro–Francia normality test with α = 0.05, respectively). (k) Box plots for
both experimental data and in silico predictions (unpaired Student t-test p = 0.78). (l) Continuum
evolution over time of q(t, 3, 2, ᾱ, β̄): no vertical asymptotes and a stationary point were detected
(see inset).

The RR value associated with the candidate function with i = 2 and j = 2 was
elevated (RRA2(2) = 0.9136), while the residuals between experimental and predicted
values oscillated between −3.966 and 11.714 µm (Table S11 and Figure S11). This function
was able to show a good positive correlation between predictions and experimental data
(R2 = 0.94, Figure 5e), and the Shapiro–Francia normality test resulted in p = 0.16 for in
silico values (Figure 5f). Furthermore an unpaired Student t-test between experimental
data and in silico predictions resulted in p = 0.86 (Figure 5g). However, a complete plot
revealed a stationary point at t = 4027.717 h (Figure 5h). Therefore, for this function nd = 0
and nz = 1.

The RR value referring to the candidate function with i = 3 and j = 2 was considerable
(RRA2(3) = 0.8982), while the residuals between experimental and predicted values
oscillated between −1.593 and 13.359 µm (Table S12 and Figure S12). This function was able
to show a clear positive correlation between predictions and experimental data (R2 = 0.93,
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Figure 5i), and the Shapiro–Francia normality test resulted in p = 0.11 for in silico values
(Figure 5j). Furthermore, an unpaired Student t-test between experimental data and in
silico predictions resulted in p = 0.78 (Figure 5k). The complete plot of the function
showed a stationary point at t = 4112.742 h (Figure 5l). Thus, for this function nd = 0 and
nz = 1. The numeric values of the ᾱ and β̄ elements are detailed in Table 4 for the functions
q(t, 1, 2, ᾱ, β̄, γ), q(t, 2, 2, ᾱ, β̄, γ), and q(t, 3, 2, ᾱ, β̄, γ).

Table 4. The numeric values of the elements of ᾱ and β̄ vectors for the functions q(t, 1, 2, ᾱ, β̄, γ),
q(t, 2, 2, ᾱ, β̄, γ), and q(t, 3, 2, ᾱ, β̄, γ) are shown in columns 1, 2, and 3, respectively.

q(t, 1, 2, ᾱ,β̄,γ) q(t, 2, 2, ᾱ,β̄,γ) q(t, 3, 2, ᾱ,β̄,γ)

α0 = β0 = 7.707 · 10−01 α0 = β0 = 8.033 · 10−01 α0 = β0 = 8.469 · 10−01

α1 = β1 = 2.449 · 10−03 α1 = β1 = 1.86 · 10−02 α1 = β1 = 1.058 · 10−02

β2 = 2.469 · 10−03 α2 = β2 = −2.309 · 10−06 α2 = β2 = 1.011 · 10−06

α3 = −4.032 · 10−10

Moreover, the family of candidate functions with j = 1 was tested. The RR value
related to the candidate function with i = 1 and j = 1 was considerable (RRA1(1) = 0.88),
while the residuals between experimental and predicted values oscillated between −11.781
and 4.457 µm at the experimental times (Table S13 and Figure S13). This function was able
to show a good positive correlation between predictions and experimental data (R2 = 0.88,
Figure 6a), and the Shapiro–Francia normality test resulted in p = 0.27 for in silico values
(Figure 6b). Furthermore an unpaired Student t-test between experimental data and in
silico predictions resulted in p = 0.84 (Figure 6c). In addition, a graphical representation of
the function within the experimental range showed a stationary point at t = 3869.891 h
(Figure 6d), so, for this function, nd = 0 and nz = 1.

The RR value associated with the candidate function with i = 2 and j = 1 was
high (RRA1(2) = 0.9093), while the residuals between experimental and predicted values
oscillated between −3.728 and 12.131 µm (Table S14 and Figure S14). This candidate
function was able to show a good positive correlation between predictions and experimental
data (R2 = 0.92, Figure 6e), and the Shapiro–Francia normality test resulted in p = 0.15 for
in silico values (Figure 6f). Furthermore, an unpaired Student t-test between experimental
data and in silico predictions resulted in p = 0.85 (Figure 6g). However, a complete plot
showed a stationary point at t = 4023.043 h (Figure 6h). Therefore, for this function nd = 0
and nz = 1.

Similarly, the RR value referring to the candidate function with i = 3 and j = 1 was
considerable (RRA1(3) = 0.899), while the residuals between experimental and predicted
values oscillated between −1.307 and 12.569 µm (Table S15 and Figure S15). This function
was able to show a good positive correlation between predictions and experimental data
(R2 = 0.90, Figure 6i), and the Shapiro–Francia normality test resulted in p = 0.075 for in
silico values (Figure 6j). Furthermore, an unpaired Student t-test between experimental
data and in silico predictions resulted in p = 0.85 (Figure 6k). The complete plot of the
function showed a stationary point at t = 4118.667 h (Figure 6l). Thus, also for this function
nd = 0 and nz = 1.

Finally, the RR value pertaining to the candidate function with i = 4 and j = 1 was
high (RRA1(4) = 0.93), while the residuals between experimental and predicted values
oscillated between −11.242 and 3.514 µm (Table S16 and Figure S16). This function was able
to show a good positive correlation between predictions and experimental data (R2 = 0.93,
Figure 6m), and the Shapiro–Francia normality test resulted in p = 0.44 for in silico values
(Figure 6n). Furthermore, an unpaired Student t-test between experimental data and in
silico predictions resulted in p = 0.92 (Figure 6o). However, the complete plot of the
function showed three stationary points at t = 868.540, t = 1677.503, and t = 4445.434 h
(Figure 6p). As a consequence, for this function nd = 0 and nz = 3. The numeric values of
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the ᾱ and β̄ elements are listed in Table 5 for the functions q(t, 1, 1, ᾱ, β̄, γ), q(t, 2, 1, ᾱ, β̄, γ),
q(t, 3, 1, ᾱ, β̄, γ), and q(t, 4, 1, ᾱ, β̄, γ).
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Figure 6. (a) Correlation between experimental and predicted values of scar tissue thickness for
the function q(t, 1, 1, ᾱ, β̄, γ). (b) QQ plot of experimental data and in silico prediction distributions
(p = 0.48 and p = 0.26, Shapiro–Francia normality test with α = 0.05, respectively). (c) Box plots of
both experimental data and in silico predictions (unpaired Student t-test p = 0.84). (d) Continuum
evolution over time of q(t, 1, 1, ᾱ, β̄, γ): no vertical asymptotes and a stationary point were detected
(see inset). (e) Correlation between experimental and predicted values of scar tissue thickness for
the function q(t, 2, 1, ᾱ, β̄, γ). (f) QQ plot of experimental data and in silico prediction distributions
(p = 0.48 and p = 0.15, Shapiro–Francia normality test with α = 0.05, respectively). (g) Box plots for
both experimental data and in silico predictions (unpaired Student t-test p = 0.85). (h) Continuum
evolution over time of q(t, 2, 1, ᾱ, β̄, γ): no vertical asymptotes and a stationary point were detected
(see inset). (i) Correlation between experimental and predicted values of scar tissue thickness for
the function q(t, 3, 1, ᾱ, β̄, γ). (j) QQ plot of experimental data and in silico prediction distributions
(p = 0.48 and p = 0.07, Shapiro–Francia normality test with α = 0.05, respectively). (k) Box plots for
both experimental data and in silico predictions (unpaired Student t-test p = 0.35). (l) Continuum
evolution over time of q(t, 3, 1, ᾱ, β̄, γ): no vertical asymptotes and a stationary point were detected
(see inset). (m) Correlation between experimental and predicted values of scar tissue thickness for
the function q(t, 4, 1, ᾱ, β̄, γ). (n) QQ plot of experimental data and in silico prediction distributions
(p = 0.48 and p = 0.44, Shapiro–Francia normality test with α = 0.05, respectively). (o) Box plots for
both experimental data and in silico predictions (unpaired Student t-test p = 0.92). (p) Continuum
evolution over time of q(t, 4, 1, ᾱ, β̄, γ): no vertical asymptotes and three stationary points were
detected (see inset).



Appl. Sci. 2024, 14, 10741 15 of 23

Table 5. The numeric values of the elements of ᾱ and β̄ vectors for the functions q(t, 1, 1, ᾱ, β̄, γ),
q(t, 2, 1, ᾱ, β̄, γ), q(t, 3, 1, ᾱ, β̄, γ), and q(t, 4, 1, ᾱ, β̄, γ) are shown in columns 1, 2, 3, and 4, respectively.

q(t, 1, 1, ᾱ, β̄, γ) q(t, 2, 1, ᾱ, β̄, γ) q(t, 3, 1, ᾱ, β̄, γ) q(t, 4, 1, ᾱ, β̄, γ)

α0 = β0 = −1.047 · 10−03 α0 = β0 = 7.879 · 10−01 α0 = β0 = 8.575 · 10−01 α0 = β0 = 4.432 · 10−01

α1 = β1 = −5.603 · 10−03 α1 = β1 = 1.898 · 10−02 α1 = β1 = 9.782 · 10−03 α1 = β1 = 7.756 · 10−02

α2 = −2.46 · 10−06 α2 = 1.405 · 10−06 α2 = −7.827 · 10−05

α3 = −4.457 · 10−10 α3 = 2.874 · 10−08

α4 = −3.09 · 10−12

3.3. A Novel Metric to Discriminate Compatible Functional Forms

The previous analysis of each candidate function was able to link the standard statistics
R2 accounted for in the matrix RR to the indexes nd and nz. This knowledge was condensed
in the novel matrix Ξ(RR, nd, nz) (Figure 7). This kind of matrix, which was formed by a
3 × 5 matrix together with a singleton 1 × 1 related to the combination i = 4 and j = 1,
was able to account for the novel metric in Equation (16), which was used to assess the
suitability of each candidate function. More specifically, this metric ranged between −1.483
for the candidate with i = 1, j = 4 and 0.9215 for the candidate with i = 1, j = 2, while it
was zero for the candidate functions with i = 1, 2 for the family with j = 3. Similarly, it
was zero both for i = 2, 3 and the families with j = 4 and j = 5. The families with positive
values of the Ξ metric were j = 1 and j = 2, together with the combination i = 3, j = 3 and
the singleton matrix (Figure 7).

  

                                         
1 5

1

2

3

4

2 3 4

+ 0.5

+ 0.0

- 0.5

- 1.0

j

i
X

Best 
combination

Compatible
combinations

High RR values

Low
RR value

Runge
instability

1 Asymptote

More asymptotes

   3              2

Figure 7. The Ξ matrix, which accounts for the novel metric, is represented by a 3 × 5 matrix together
with a singleton matrix for the combination i = 4, j = 1. In particular, on the left side of the Ξ
matrix, some suitable combinations are identified (in yellow) and, among them, the best one (light
yellow, i = 1, j = 2). On the contrary, on the right side of the matrix are grouped some unsuitable
combinations, due to the presence of one or more vertical asymptotes in the continuum evolution of
the candidate function. In addition, the candidate with i = 3 and j = 3 shows a low value of the RR
matrix, while the combination i = 4, j = 1 results in Runge instability.

3.4. Sensitivity Analysis of the Best Functional Form

The best functional form previously identified was q(t, 1, 2, ᾱ, β̄, γ). To further explore
the influence of each parameter on the global evolution of this function, the increase in
α0 through ∆α0 was tested for changes in the curve shape (Figure 8a). In addition, the
sensitivity of the candidate function to ∆α0 (Equation (17)) was studied (Figure 8b) and
resulted in a time-variant evolution increasing with ∆α0 and decreasing with time. Similarly,
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the changes in shape for the increase in α1 through ∆α1 were investigated (Figure 8c), while
the sensitivity with respect to the increase in ∆α1 (Equation (18)) is plotted in Figure 8d, and
stabilised with time. Again, the changes in the curve shape for changes in β2 through the
increase in ∆β2 are explored in Figure 8e, and the sensitivity with respect to ∆β2 is plotted in
Figure 8f and vanishes with the time increase. Finally, the shape changes of the best functional
form through the increase in ∆γ are studied in Figure 8g, while the sensitivity with respect to
∆γ (Equation (19)) is plotted in Figure 8h and decreases with time.
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Figure 8. Shape changes and sensitivity of the best functional form q(t, 1, 2, ᾱ, β̄, γ) with respect
to numerical changes in parameters α0, α1, β2, γ (legends): (a) Change in shape of q(t, 1, 2, ᾱ, β̄, γ)

for increasing values of ∆α0 (arrow). (b) Sensitivity of q(t, 1, 2, ᾱ, β̄, γ) for increasing values of ∆α0

(arrow) when α1, β2, γ = 1. (c) Shape change of q(t, 1, 2, ᾱ, β̄, γ) for increasing values of ∆α1 (arrow).
(d) Sensitivity of q(t, 1, 2, ᾱ, β̄, γ) for increasing values of ∆α1 (arrow) when α0, β2, γ = 1. (e) Change
in shape of q(t, 1, 2, ᾱ, β̄, γ) for increasing values of ∆β2 (arrow). (f) Sensitivity of q(t, 1, 2, ᾱ, β̄, γ)

for increasing values of ∆β2 (arrow) when α0, α1, γ = 1. (g) Change in shape of q(t, 1, 2, ᾱ, β̄, γ) for
increasing values of ∆γ (arrow). (h) Sensitivity of q(t, 1, 2, ᾱ, β̄, γ) for increasing values of ∆γ (arrow)
when α0, α1, β2 = 1 .
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3.5. Optimisation of Parameters of the Best Functional Form

Once the general influence of the parameters α0, α1, β2, γ on the best candidate function
q(t, 1, 2, ᾱ, β̄, γ) was studied, their optimisation was performed. In particular, the ability of
this function to model the experimental set of data was tested with respect to the variation
in the standard R2 statistic with the γ parameter. The trend in the R2 value decreased (from
around 0.86 to 0.75) with the increase in γ from around 5.65 to 7.00, except for the presence
of sudden changes at around 5.82 to 6.1, and at around 6.5 to 6.75. In these intervals, the
R2 value increased beyond 0.95 (see Figure 9a). More specifically, the maximum value
(R2 = 0.9716, RMSE = 3.247) was reached for γ̄ = 6.5575. For γ = γ̄, the element of
the parameter vectors was α0 = −1.201, α1 = −2.004 · 10−3, and β2 = −5.023 · 10−4.
Finally, the modelling capabilities of the best candidate function q(t, 1, 2, α0, α1, β2, γ̄) were
tested. This function resulted in a correlation between experimental data and predictions
(R2 = 0.90) for experimental determination times (Figure 9b), and it was also able to
maintain the amount of residuals between −14.388 and 2.167. The form of distribution of
in silico predictions was compared to the form of distribution of experimental data and
resulted in p = 0.3 (Shapiro–Francia normality test α = 0.05, Figure 9c). The box plots
of both experimental data and in silico predictions were compared (Figure 9d) through
an unpaired Student t-test, which resulted in p = 0.77. The time evolution of the best
candidate function was, then, studied and resulted in a smooth and continuum function,
which was plotted with 99.95% confidence predictions bounds, and compared to the mean
experimental data (mean values ± standard deviation). Finally, the increment in the R2

standard statistics achieved in this work was calculated with reference to previous literature
works [57,58] (Figure 9f).
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Figure 9. (a) Dependence of the best candidate function of the parameter γ: the influence of the
change in γ on the ability to model the experimental data was investigated. A global decreasing trend
(from around 0.86 to around 0.75) was observed for increasing values of the γ parameter, together
with some sudden R2 transitions and plateau-like values. (b) Correlation between experimental
and predicted values (R2 = 0.9) narrowed to experimental determinations. (c) QQ plot showing
the form of distribution for both experimental data and in silico predictions (p = 0.48 and p = 0.3,
Shapiro–Francia normality test with α = 0.05, respectively). (d) Box plots for both experimental data
and in silico predictions (unpaired Student t-test p = 0.77). (e) Comparison between experimental
data and predictions for the continuum evolution over time of the best candidate function with i = 1,
j = 2, γ = 6.5575. Mean experimental data are shown with error bars (±1 standard deviation), while
the mean in silico prediction (red bold line) is shown with 99.95% confidence prediction bounds.
(f) Increment in the R2 standard statistics in this work with respect to previous literature works (i.e.,
Refs. [57,58]).

4. Discussion

In this work, a computationally light and powerful approach was proposed to model
the outgrowth of the scar tissue layer around implanted Parylene C devices over a time
range of around 5400 h.

4.1. Some Restrictions Due to the Low Cardinality of the Experimental Set

The low cardinality of the experimental data set made the analysis of the potentially
suitable candidate functions complex, because of the limited range of variation of both i
and j indexes, which decreased the number of possible functional choices. More specifically,
both indexes ranged between 1 and 5, since 1 is the minimum value for polynomials to
provide a time-variant evolution, while 5 was previously known to be the minimum degree
for polynomials to allow the onset of Runge instability, for a similar low-cardinality set
(n = 9) [57].

4.2. The Standard Optimisation Process

A standard optimisation was performed through a high-performance computational
software (Matlab, R2022 64-bit, Academic, The MathWorks, Inc. USA) providing a selection
between potentially suitable and not suitable combinations of the i and j indexes. The
W and twin LRR matrices were used for this aim. Indeed, the W matrix provided the
base 10 logarithm of the standard RMSE statistics, while the LRR matrix provided the base
10 logarithm of the standard R2 statistics. Unsuitable candidates were recognisable through
values greater than 1 of the W matrix elements (see Figure 1a). These values derived from a
lack of convergence, because of the rise in Runge instability [61], which resulted in large
numerical oscillations (e.g., all the functions with i = 5 and the functions with i = 4 and
2 ≤ j ≤ 5, see Figure 1b,c). The same nonlinear scale (base 10 logarithm) was applied to
the twin LRR, which accounted for the standard statistics R2. As a consequence, the same
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pattern of potentially suitable and not suitable combinations of indexes was transferred to
the LRR matrix. Similarly, since this division between potentially suitable and not suitable
candidate functions was invariant with respect to the change in scale, the same pattern was
also applied to the RR matrix, which was used as the main reference in this work.

4.3. The Standard Validation of Potentially Suitable Candidate Functions

The validation of potentially suitable candidates was performed by comparing their
in silico predictions for optimised values of ᾱ, β̄, and γ (nonlinear least-squares method,
least absolute residuals, Levemberg–Marquardt algorithm, see Tables 1–5 ) to the set of
experimental data. In all cases, a quite strong positive correlation were found, since the
standard R2 statistics ranged between 0.88 and 0.98 for all potentially suitable combi-
nations (see Figures 2a,e,i, 3a,e,i, 4a,e,i, 5a,e,i and 6a,e,i,m). In addition, the statistical
significance of the difference between in silico predictions and experimental data was
tested. First, the form of the in silico distribution was explored through a Shapiro–Francia
normality test (α = 0.05), which resulted in p values ranging from 0.07 and 0.94 (see
Figures 2b,f,j, 3b,f,j, 4b,f,j, 5b,f,j and 6b,f,j,n) confirming the normal distribution of both in
silico predictions and experimental data (p = 0.48). Then, the significance of the difference
between predictions and data was explored through an unpaired Student t-test, which resulted
in p values ranging from 0.35 to 0.99 (see Figures 2c,g,k, 3c,g,k, 4c,g,k, 5c,g,k and 6c,g,k,o), con-
firming the absence of any statistically significant difference between in silico predictions
and experimental data. An explanation of this unexpected confounding phenomenon is
related to the low cardinality of the experimental data set, due to the coarse time interval
between experiments. In other words, several candidate functions, arising from different
combinations, were able to replicate in a satisfactory way the experimental data just for
selected experimental time points. Nevertheless, through this kind of analysis, no informa-
tion was obtained about the behaviour of the candidate functions between two consecutive
experimental time points.

4.4. Further Validation of Potentially Suitable Candidate Functions

Therefore, the exclusion of not suitable combinations of i and j through the standard
procedure was not enough, because of the novelty of the proposed approach. As a conse-
quence, each previously selected suitable candidate function was continuously plotted over
the whole experimental time range. Through this further analysis, two different behaviours
with inconsistent physical meaning (or with unclear physical meaning) were discovered:
some candidate functions presented vertical asymptotes, while others had two or more
stationary points along their evolution. The presence of vertical asymptotes was highly
nonphysical, since it contradicted the continuity of the candidate function and predicted an
infinite thickness of the scar tissue capsule. Similarly, the presence of two or more stationary
points (i.e., points where the first derivative of the thickness over time with respect to the
time was zero) was likely due to numeric oscillations, since alternate phases of thickness
increase and decrease were not supported by experimental data.

4.5. The Novel Ξ Metric

The presence of nonphysical behaviours was accounted for in the novel metric ex-
pressed through Equation (16), where the numbers of vertical asymptotes and of stationary
points were both considered for each candidate function to offset the apparent high values
of the RR matrix. Through this novel metric, a different picture of the global suitability of
each candidate function arose (see Figure 7). More specifically, this matrix was represented
by a 3 × 5 matrix together with a singleton matrix for the combination i = 4, j = 1. In
particular, on the right side of the matrix were grouped some combinations, which were
unsuitable because of the presence of one ore more vertical asymptotes in the continuum
evolution of the candidate function. In particular, the candidate functions resulting from
the combinations i = 1, j = 4, and i = 1, j = 5 presented three and two vertical asymptotes,
respectively. Differently, the candidate with i = 3 and j = 3 presented a low value of
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the RR matrix, while the combination i = 4, j = 1 resulted in numerical instability due
to the Runge phenomenon. On the contrary, the left side of the Ξ matrix grouped some
potentially suitable combinations, which were all compatible with the physical evolution
of the thickness outgrowth, and among them was the best candidate function, for the
combination i = 1, j = 2.

4.6. Sensitivity and Optimisation of the Best Candidate Function

Both the shape change and the sensitivity of the best functional form q(t, 1, 2, ᾱ, β̄, γ)
were then explored with respect to numerical changes in relevant parameters belonging to
the ᾱ and β̄ vectors (i.e., α0, α1, β2), as well as with respect to the γ value (see Figure 8). First,
the change in shape of q(t, 1, 2, ᾱ, β̄, γ) for increasing values of ∆α0 was studied and resulted
in a shift in the curve towards higher values, while the sensitivity of the candidate function
started from 1 and decreased over time. Similarly, for increments in ∆α1 the shape of the
curve was progressively more steep, while the sensitivity with respect to these changes
stabilised over time towards an increasing steady value near to 1. On the contrary, the
shape of q(t, 1, 2, ᾱ, β̄, γ) was practically unaffected by increasing changes in ∆β2, while the
sensitivity with respect to theses changes started from around 0.1 and decreased over time.
Finally, the changes in ∆γ affected the curvature of the best candidate function, as well as
the sensitivity of the curve, which started from values increasing with ∆γ and decreased
over time. As a consequence, this analysis was able to show that the influence of the α1
parameter dominated the shape changes of the best candidate function, while the influence
of γ was greater than the influence of α0, which is, in its turn, greater than the influence
β2. In addition, the value of the standard statistics R2 was measured for different values
of the γ parameter. A global decreasing trend was found together with a second, more
complex, transition phenomenon. Indeed, the value of R2 suddenly increased by 0.144
when γ increased by 0.001, while it suddenly decreased by around 0.13 when γ increased
by 0.05. Similarly, a second similar transition was found, where the R2 value suddenly
increased by 0.1 when γ increased by 0.001 and decreased by 0.2 for an increment of 0.3.
Moreover, the value of R2 was almost constant (even if slightly decreasing) for two numeric
intervals (see Figure 9a). This novel kind of numeric instability was likely related to a
boundary condition problem. Indeed, the candidate functions should not only model the
experimental behaviour along the experimental time range, but they should also respect the
initial boundary conditions. The proposed framework resulted in nonlinear initial boundary
conditions; thus, standard numeric optimisation procedures, which provide algebraical
approximations of transcendent functions, could become unstable around given values of
the γ parameters, creating a sudden numerical transition of the R2 values. Therefore, the
values of α0, α1, β2 and γ were optimised (nonlinear least-squares method, least absolute
residuals, Levemberg–Marquardt algorithm) in order to keep the best candidate function
within the stability range of the γ parameter. This best candidate function was able to
provide a good positive correlation with experimental data (see Figure 9b). In addition,
the form of the distribution of in silico predictions was normal (p = 0.3, Shapiro–Francia
normality test with α = 0.05), and it was not statistically different from experimental data
(p = 0.77 unpaired Student t-test). The magnitude of the p value of this test was so high
that any difference was excluded for every standard level of statistical significance (e.g.,
α = 0.05, as well as α = 0.01). Moreover, the continuum evolution of the best candidate
function was able to provide a good modelling of the mean experimental data R2 = 0.97,
while the 99.95% confidence prediction bounds were able to include the data error bars (see
Figure 9e).

5. Conclusions

In this work, a novel theoretical framework was proposed to model the evolution of
the capsule thickness over time together with an improved optimisation procedure able
to avoid apparently suitable choices, as provided by standard numeric procedures. The
proposed framework resulted in an fast, simple, and accurate modelling of experimental
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data (R2 = 0.97), definitely improving on previous literature approaches [57,58] (R2 = 0.86
and R2 = 0.92, respectively (see Figure 9f)). Although the proposed approach was experi-
mentally validated for rat peripheral nerves and inserted Parylene C devices, it may be,
more generally, able to model the evolution of the scar tissue thickness around implanted
polymeric structures in vivo. Indeed, the formulation of this novel phenomenological
approach was not related to the specificity of the tissue, while the selected suitable (compat-
ible and best) functional forms were able to considerably change their shape for changes
in values of vectors ᾱ, β̄. Moreover, the selected functional forms were also able to be
superimposed to model more complex behaviours. As a consequence, it could be used as a
benchmark to compare the immune response of peripheral nerves to more complex devices,
involving both mechanical and electrical stimuli and resulting in scar tissue production.
Similarly, once the relationship between scar tissue thickness and the impedance of devices
is known, it may also be used to assess their possible lifetime, in order to prevent their
electrical failure.
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