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Abstract: In the context of carbon neutrality and emission reduction goals, energy consumption
optimization in the oil and gas industry is crucial for reducing carbon emissions and improving
energy efficiency. As a key component in drilling operations, optimizing the energy consumption
of drilling pumps has significant potential for energy savings. However, due to the complex and
variable geological conditions, diverse operational parameters, and inherent nonlinear relationships
in the drilling process, accurately predicting energy consumption presents considerable challenges.
This study proposes a novel Long Short-Term Memory Attention model for precise prediction of
drilling pump energy consumption. By integrating Long Short-Term Memory (LSTM) networks
with the Attention mechanism, the model effectively captures complex nonlinear relationships and
long-term dependencies in energy consumption data. Comparative experiments with traditional
LSTM and Convolutional Neural Network (CNN) models demonstrate that the LSTM-Attention
model outperforms these models across multiple evaluation metrics, significantly reducing prediction
errors and enhancing robustness and adaptability. The proposed model achieved Mean Absolute
Error (MAE) values ranging from 5.19 to 10.20 and R2 values close to one (0.95 to 0.98) in four test
scenarios, demonstrating excellent predictive performance under complex conditions. The high-
precision prediction of drilling pump energy consumption based on this method can support energy
optimization and provide guidance for field operations.

Keywords: energy consumption prediction; LSTM-Attention; drilling pump; time series data prediction

1. Introduction

In the context of the growing global energy demand, fossil fuels, particularly oil
and natural gas, continue to dominate total energy consumption despite the historically
rapid growth of renewable energy sources [1]. During the oil and gas extraction process,
energy consumption at drilling sites accounts for a significant portion of the total energy
expenditure associated with hydrocarbon extraction. Among the various components of
this process [2], the drilling pump serves as one of the key pieces of equipment, ensuring the
transportation of drilling mud into the wellbore, maintaining pressure balance within the
well, removing cuttings from the bottom of the well, and providing cooling and lubrication
to the drill bit. The energy consumption of drilling pumps constitutes a substantial share of
overall drilling energy usage [3], making the study of their energy consumption prediction
crucial for optimizing drilling energy efficiency.

By collecting operational data from drilling pumps [4], it becomes possible to accu-
rately predict energy consumption in real time, identify any anomalous changes in energy
usage, and implement appropriate control and improvements. This can involve adjusting
drilling parameters and optimizing energy consumption, thereby achieving energy savings
and emission reductions while maintaining drilling efficiency.
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In recent years, numerous scholars have proposed various methods for predicting
energy consumption [5], with common approaches for drilling pump energy consumption
prediction categorized into empirical models, statistical methods, and machine learning
techniques. Empirical models primarily rely on empirical data and traditional mathematical
models. These methods [6] typically calculate energy consumption based on the operational
parameters of the drilling pump (such as pressure, flow rate, and rotational speed) and
the physical properties of the drilling mud. While these methods are straightforward
and intuitive, the empirical formulas are often based on particular data from particular
facilities under particular conditions. Consequently, the accuracy of predictions can be
compromised in real-world operations due to factors such as complex geological conditions
and equipment aging. Additionally, empirical models [7] struggle to meet the demands of
energy consumption prediction under complex operating conditions, particularly when
dealing with multivariable and highly nonlinear relationships, resulting in a significant
decline in prediction accuracy.

Statistical methods involve analyzing historical data and building models to forecast
future energy consumption [8], with common approaches including Autoregressive Inte-
grated Moving Average (ARIMA) models and Gray Prediction Models (GMs). An ARIMA
model employs a combination of autoregressive and moving average analyses on time se-
ries data to establish a mathematical framework for predicting future trends. In contrast [9],
a Gray Prediction Model is suitable for small samples of and utilizes Gray System Theory
to process time series data and forecast future energy consumption changes. While these
methods perform well in capturing linear relationships and short-term predictions, their
effectiveness diminishes in addressing the complexities and nonlinear characteristics of
the oil drilling process. Furthermore, statistical methods are sensitive to outliers and noise,
which can distort the prediction models and negatively impact the accuracy of results.

Machine learning prediction methods primarily include Random Forests (RFs), Sup-
port Vector Machines (SVMs) [10], and Gradient Boosting Trees (GBTs). Random Forests
improve model generalization by constructing numerous decision trees based on the prin-
ciples of ensemble learning, allowing for the processing of extensive feature data. Support
Vector Machines find optimal separating hyperplanes to accomplish classification and
regression tasks in high-dimensional spaces. Gradient Boosting Trees build a series of weak
learners incrementally [11], combining their predictions to achieve efficient and accurate
energy consumption forecasting. These machine learning methods are particularly effective
in handling complex nonlinear relationships, accommodating more intricate patterns and
interactions in drilling pump energy consumption predictions. However, these methods
face certain challenges. First, machine learning models often require extensive parameter
tuning, which can lead to lower computational efficiency and a complex, time-consuming
training process, making it difficult to meet the real-time requirements of prediction. Sec-
ond, these methods are prone to overfitting when processing large-scale data, resulting
in models that perform well on training data but poorly on unseen data. Additionally,
because machine learning techniques depend on large datasets for training, their predictive
accuracy can be significantly affected when data are scarce or of low quality.

Deep Learning [12], a subfield of machine learning, utilizes multilayer neural net-
works to simulate the way the human brain processes information, automatically extracting
features from data for prediction or classification tasks. Compared to traditional machine
learning methods [13], deep learning is capable of handling more complex tasks such as
image recognition, speech recognition, and natural language processing. The core concept
involves using multiple layers of neural networks, where each layer progressively extracts
abstract features from the data, thereby achieving higher accuracy on large datasets. Key
technologies in deep learning include Artificial Neural Networks (ANNs), Convolutional
Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial
Networks (GANs), Autoencoders, and Transformers. These techniques have made signifi-
cant advancements in various fields, driving the rapid development of artificial intelligence.
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Artificial Neural Networks (ANNs) [14] form the foundation of deep learning, mim-
icking the functioning of biological neurons. An ANN consists of an input layer, one
or more hidden layers, and an output layer, with full connections between layers. This
structure allows ANNs to achieve complex nonlinear mappings. In the context of energy
consumption prediction, ANNs can capture intricate relationships between operational
parameters and energy usage. However, due to their high model complexity, ANNs, de-
spite often performing well on training data, may exhibit poor generalization to unseen
data. Furthermore, in the absence of substantial feature engineering, ANNs may struggle
to extract useful information from raw data. Convolutional Neural Networks (CNNs) [15],
initially designed for image processing, can also be applied to energy consumption predic-
tion for time series data. By utilizing convolutional layers to extract local features, CNNs
can capture spatial or temporal dependencies within the data. In energy consumption
prediction, CNNs are effective in identifying local patterns in drilling pump operation
data, such as energy consumption variations over specific time periods. Nevertheless,
while CNNs excel at capturing short-term dependencies, their performance deteriorates
when dealing with long-term dependencies, limiting their applicability to certain complex
time series prediction tasks. Recurrent Neural Networks (RNNs) [16] are particularly well
suited for handling sequential data. Unlike traditional feedforward neural networks, RNNs
share parameters across the temporal dimension through their recurrent structure, enabling
them to capture dependencies in time series data. This characteristic makes RNNs highly
effective in tasks such as time series data analysis, speech recognition, and natural language
processing. However, when dealing with long sequences, RNNs are prone to issues such as
vanishing or exploding gradients, which can make the model difficult to train and impair
its ability to effectively capture long-term dependencies.

The primary advantage of Long Short-Term Memory (LSTM) [17] networks lies in
their ability to effectively handle long-term dependencies in time series data. The energy
consumption of drilling pumps is a typical time series problem, where the current energy
state is influenced not only by the present operational parameters but also by past operating
conditions and process parameters over a period of time. Although traditional Recurrent
Neural Networks (RNNs) are capable of processing time series data, they often suffer from
vanishing or exploding gradient problems when dealing with long sequences, resulting in
poor performance in capturing long-term dependencies. As a deep learning model, LSTM
can automatically extract features from data without relying on manual feature engineering.
Traditional empirical models and statistical methods typically depend on handcrafted
features and are based on linear assumptions. However, the energy consumption of drilling
pumps is affected by various nonlinear factors, such as pressure fluctuations, flow rate
variations, and mechanical wear, which are difficult to capture accurately using conven-
tional methods. LSTMs, with their multi-layered network structure, can automatically
learn and extract complex patterns and nonlinear relationships from data without human
intervention. This capability enables LSTMs to better understand and model the complex
interactions between energy consumption and various operational parameters in drilling
pump energy prediction, thereby improving predictive accuracy. Moreover, drilling pump
energy consumption data may not always be collected at regular time intervals, or different
time periods may involve different critical variables. Traditional predictive models often
assume uniformly distributed data and can only handle a limited number of input variables,
which constrains their applicability in real-world scenarios.

LSTM models are capable of flexibly handling irregular time intervals and multivariate
inputs [18]. By dynamically adjusting the time steps, LSTM can adapt to data collected at
varying time intervals and simultaneously process multidimensional input data, capturing
complex interactions between these variables. This feature enhances LSTM’s adaptability
and predictive capability in dealing with the complexity of real-world data. To address these
issues, this paper proposes an LSTM-based approach for predicting the energy consumption
of drilling pumps, with an attention mechanism integrated to enhance the model’s ability
to capture key features, thereby improving prediction accuracy and interpretability. By
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incorporating the attention mechanism [19] into the LSTM model, the proposed approach
can automatically focus on the most critical time steps and features for energy consumption
prediction. This not only enhances predictive performance but also provides deeper
insights into the impact of different time points and conditions on drilling pump energy
consumption. This study offers a novel technical solution to achieve accurate energy
consumption prediction for drilling pumps and provides valuable references for energy
optimization and efficiency improvement in production.

This paper proposes an LSTM algorithm based on the attention mechanism to handle
complex temporal relationships for predicting drilling pump energy consumption. The
method first introduces the Random Sample Consensus (RANSAC) algorithm [20] to
select valid data based on the correlations between pump pressure, flow rate, and pump
power. Then, it combines LSTM and the attention mechanism for intelligent prediction of
drilling pump energy consumption. Leveraging the model’s capability to capture long-term
sequence data features, the proposed approach demonstrates excellent performance in
predicting pump power, thereby extending the application of artificial intelligence in the
performance prediction of drilling equipment.

2. Materials and Methods

The Long Short-Term Memory (LSTM) network, as illustrated in Figure 1, is designed
to address the limitations of traditional Recurrent Neural Networks (RNNs) in handling
long-term dependencies and mitigating the issues of vanishing and exploding gradients.
The LSTM cell is the fundamental building block of the LSTM network, featuring a unique
internal structure that incorporates three key gating mechanisms: the input gate, the forget
gate, and the output gate. These gates regulate the flow of information, enabling the model
to effectively capture long-term temporal dependencies in sequential data. The following
section provides a detailed explanation of the components and functioning of the LSTM
network, as depicted in the diagram.
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The forget gate ft determines the extent to which information from the previous cell
state Ct−1 should be retained or discarded. It takes the hidden state from the previous
time step ht−1 and the current input xt as inputs and computes a forget factor, which
ranges between 0 and 1, where 0 indicates complete forgetting and 1 indicates complete
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retention of the information. This operation is represented in section 1 of the Figure 1. The
computation is defined by the following equation:

ft = σ(Wf · [ht−1, xt] + bf) (1)

The input gate it controls how much of the new information xt should be updated in
the cell state Ct. It consists of two parts: the input gate and the candidate cell state. The
input gate, regulated by a sigmoid function, determines the significance of the current
input, while the candidate cell state, generated by a tanh function, creates new information
C̃t to be potentially added to the cell state. This process is illustrated in section 2 of the
Figure 1. The equations for the input gate are as follows:

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tan h(WC · [ht−1, xt] + bC)
(2)

The cell state Ct is the core component of the LSTM cell, maintaining the memory of
the network. The cell state is updated by combining the previous cell state Ct−1 and the
current candidate cell state C̃t, weighted by the forget gate and input gate, respectively.
This step is depicted in section 3 of the Figure 1. The cell state update is governed by the
following equation:

Ct = ft · Ct−1 + it · C̃t (3)

The output gate ot determines the value of the hidden state ht for the current time
step, which is subsequently used as input for the next time step. The output gate applies a
sigmoid function to control the amount of information from the cell state that is passed to
the hidden state. This operation is shown in section 4 of the Figure 1. The output from the
hidden state is modulated by the tanh of the updated cell state Ct. The equations for the
output gate are as follows:

ot = σ(Wo · [ht−1, xt] + bo)
ht = ot · tan h(Ct)

(4)

LSTM networks are highly effective for predicting drilling pump energy consump-
tion due to their ability to capture the temporal dependencies inherent in such data. By
leveraging its gated architecture, an LSTM can accurately model the sequential patterns
and complex relationships between various operational parameters and energy usage.

As illustrated in Figure 2, the attention mechanism is a neural network architecture de-
signed to effectively capture important information within data. It has been widely applied
in various fields such as natural language processing and computer vision. The core idea
of the attention mechanism is to dynamically adjust the importance of different elements
in the input sequence by calculating the similarity between them. The figure depicts the
structure of the Scaled Dot-Product Attention mechanism and its computation process.

In Figure 2, the attention mechanism is composed of three main components: Query
(Q), Key (K), and Value (V). These components are used to compute the contribution of
each input element to the output. By calculating the similarity between the query vector
Q and the key vector K, the weights for the value vector V are determined, resulting in a
weighted sum of the values that contributes to the output.

The first step involves performing a matrix multiplication between the query vector Q
and the transpose of the key vector K to obtain a score matrix representing the similarity
between the query and the keys. This is computed as follows:

Score = Q × KT (5)
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To avoid excessively large dot product values, which could lead to vanishing gradients,
the score matrix is scaled by dividing it by the square root of the dimensionality of the key
vector,

√
dk. The formula is given by the following equation:

Scaled_Score =
Q × KT
√

dk
(6)

Next, the scaled score matrix is passed through the SoftMax function to convert it into
a weight matrix, where the elements of each row sum to 1. This process represents the
relative importance of each key in relation to the query:

Attention_Weights = SoftMax( Scaled_Score ) (7)

Once the weight matrix is obtained, it is multiplied by the value vector V to generate
the final output. The formula for this operation is as follows:

Attention_Output = Attention_Weights × V (8)

In the context of drilling pump energy consumption prediction, the attention mecha-
nism can identify the impact of different time points or features on energy consumption
variations in time series data. Its advantage lies in the dynamic allocation of importance
weights to different features, overcoming the limitations of fixed weights in traditional
methods and improving the accuracy of the model’s predictions.

3. Results and Discussion
3.1. Data Processing

The data processing procedure in this study includes the following steps: outlier
detection, data filtering, data normalization, and data segmentation. Each step is described
in detail below.

Outlier detection and removal were conducted using the RANSAC (Random Sample
Consensus) algorithm. RANSAC is a robust model fitting method particularly suitable
for datasets containing a significant number of outliers. It iteratively selects a random
subset of the data and fits a model, classifying data points as inliers or outliers based on
their distance from the model. In this study, pump pressure (MPa), inlet flow rate (L/min),
and pump power (kW) were selected as input features for outlier detection using the
RANSAC algorithm.

As shown in Figure 3, during each iteration, a random set of data points is selected
to establish a linear regression model relating pump pressure, inlet flow rate, and pump
power. The deviation of all data points from this model is then calculated, and those with
deviations below a certain threshold are classified as inliers, while the rest are classified as
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outliers. This process is repeated multiple times to ensure that the selected set of inliers is
as large as possible. In this study, the main parameters of the RANSAC algorithm include
the maximum number of iterations and the deviation threshold. The maximum number
of iterations was set to 1000 to ensure the algorithm’s convergence, and the deviation
threshold was set to a small value based on the data distribution to strictly select the inliers.
After processing with the RANSAC algorithm, a total of 1034 data points were identified as
outliers due to their large deviations from the majority of the data points and were removed.
Finally 8715 valid data points were retained for subsequent model training and analysis.
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Figure 4 shows the utilization of a sliding window method to collect real-time pumping
power data. Each sliding window corresponds to a distinct data stream (e.g., X0, X1, and
X2), with varying time intervals for each window. This design ensures the independence
of data during training and testing processes by preventing overlaps across windows.
The training and testing of each data stream are conducted independently, and within
a single data stream, there is no overlap between the test data windows and training
data windows. To ensure data independence and the validity of the test results, we train
and test each data stream separately, rather than combining all data streams into a single
model for training. Therefore, each data stream’s model is trained in isolation, without any
interconnection or influence from other streams. This approach allows the model to capture
patterns across different time periods while avoiding potential issues arising from high
correlation among neighboring samples. By ensuring the separation of training and testing
data, the model can be trained without exposure to test data, enhancing its reliability in
predicting future unseen data. This design reduces the risk of data leakage and ensures
the validity of validation and testing processes. Moreover, using samples from different
sliding windows provides a more comprehensive assessment of the model’s generalization
capability, preventing bias in test results.
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Data normalization was conducted to unify the value ranges of different features and
eliminate the impact of scale differences on model training. In this study, we chose the Max
normalization method based on the following considerations: during data preprocessing,
we had already removed outliers from the dataset; therefore, we believed that Max normal-
ization would not be significantly affected by any remaining extreme values. This method
effectively scales all features to a similar range, ensuring that each feature contributes more
evenly to the loss function during model training and accelerates the model’s convergence.
While we also experimented with other normalization methods, such as standard deviation-
based normalization, our results showed that Max normalization provided better training
efficiency and model performance. Therefore, given the characteristics of our data, Max
normalization is a reasonable and effective choice for this study. The normalization formula
is as follows:

x′ =
x − xmin

xmax − xmin
(9)

This formula scales all feature values to the range [0, 1]. The process involves cal-
culating the maximum and minimum values for each feature (such as pump pressure,
inlet flow rate, and pump power) and then transforming all data points for that feature
using the normalization formula. After normalization, all feature values are compressed
to the range [0, 1], eliminating the differences in scale between different features. This
standardization ensures that the influence of each feature on the loss function is balanced
during model training and accelerates the model’s convergence process, thereby improving
training efficiency.

In time series prediction tasks, the sliding window method is commonly used to
segment the data to capture temporal dependencies. In this study, the sliding window
length was set to 100 data points, and the sliding step was set to 30 data points, generating
multiple overlapping time segments. Each sliding window contains 100 consecutive data
points, serving as input features for the model. These 100 data points encapsulate the
complete temporal information, enabling the model to capture temporal dependencies
within the data. With a step size of 30 data points, there is an overlap of 70 data points
between successive windows. This setting allows the generation of more training samples
without losing historical information, enhancing the model’s generalization capability and
predictive accuracy. The target variable for each window is the pump power value at the
end of the window, indicating the influence of the current time segment’s input features
on the pump power. Through this configuration, the model can learn patterns in the time
series data and make accurate energy consumption predictions. Starting from the first data
point, a new window is generated every 30 data points until the end of the data is reached.
Each window’s 100 data points are defined as input features, with the corresponding
pump power value as the output label. This process resulted in multiple sample pairs for
subsequent model training and evaluation. The sliding window setup effectively captures
complex relationships in the time series, improving the model’s predictive performance.
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After data segmentation, all generated sample pairs were randomly divided into
training and test sets for model training and performance evaluation. The proportions
of data assigned to the training and test sets were set at 70% and 30%, respectively. The
training set, containing 70% of the data samples, was used to train the model. The model
learns the patterns and rules within the training data by continuously optimizing its internal
parameters to fit the data. The test set, containing 30% of the data samples, was used to
evaluate the model’s performance.

3.2. Construction of LSTM-Attention Model

As illustrated in Figure 5, the LSTM-Attention model comprises three main compo-
nents: the LSTM layer, the attention layer, and the dense layer. This model integrates the
capabilities of temporal feature extraction and dynamic weight allocation to better address
the complex data patterns associated with predicting drilling pump energy consumption.
The following sections elaborate on the design principles and functionalities of each layer
in the context of practical applications.
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The LSTM layer is designed to handle the complex temporal dependencies within
the sequential data and extract dynamic features of energy consumption changes during
drilling operations. The energy consumption of drilling pumps is influenced by multiple
factors such as pump pressure, flow rate, drilling depth, mud density, and mechanical
wear. These factors exhibit intricate dependencies over different time steps. In the input
stage, drilling data are fed into the LSTM layer in the form of time sequences. Each
LSTM unit utilizes its internal memory and gating mechanisms to effectively capture the
dynamic changes and long-term dependencies among various parameters in the time
series. The LSTM layer maps the input sequence to a series of hidden states, which
encapsulate historical information across different time steps, providing a detailed feature
representation for subsequent layers. For example, as drilling progresses through various
geological formations, the pump’s operating conditions may change significantly. The
LSTM layer can identify and retain these temporal variation features, enabling accurate
prediction of future energy consumption trends.

The attention layer is introduced to address the varying contributions of different time
steps and parameters to energy consumption. During drilling, operational conditions such
as drilling depth and formation hardness can have differential impacts on pump energy
consumption. The attention mechanism automatically allocates weights to each time step,
allowing the model to focus on the key time periods that most significantly affect energy
consumption. In the figure, each hidden-state output by the LSTM layer is assigned an
attention weight through the attention mechanism. These weights are normalized using
the SoftMax function, reflecting the relative importance of different time steps. This enables
the attention layer to focus on time periods or specific operational parameters that have
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a greater impact on energy consumption variations, thereby extracting more meaningful
contextual information. The context vector is generated by a weighted sum of the hidden
states, representing the most important information throughout the sequence. For drilling
pump energy consumption prediction, this mechanism helps the model capture critical
features during operational changes, such as increased wear on the drill bit or variations in
formation properties, and accurately predict their impact on energy consumption.

The dense layer, also known as the fully connected layer, is responsible for mapping
the contextual information extracted by the attention layer to specific energy consumption
predictions. The context vector, which summarizes the key time steps of the sequence,
serves as the core basis for energy consumption prediction. In the context of drilling pump
energy consumption prediction, the model needs to consider the combined influence of
multiple operational parameters on energy consumption. Therefore, the dense layer not
only captures the direct impact of each parameter but also models the interactions between
different parameters. For example, combined variations in pump pressure and flow rate
can lead to nonlinear fluctuations in energy consumption. The dense layer can model and
predict these complex relationships through nonlinear mappings. By transforming the
high-dimensional features in the context vector into specific energy consumption values,
the dense layer provides precise prediction outputs.

The structural design of the LSTM-Attention model specifically addresses the business
needs of drilling pump energy consumption prediction, focusing on resolving several
key challenges:

Capturing Complex Temporal Dependencies: The LSTM layer effectively captures
the temporal dependencies in energy consumption variations under different operational
conditions, such as the dynamic changes in pump pressure, flow rate, and drilling depth.

Focus on Key Features: The attention mechanism identifies the most impactful time
steps and parameters for energy consumption prediction, allowing the model to focus on
features that are critical to the prediction outcome, thus enhancing prediction accuracy.

Improvement in Prediction Accuracy: The dense layer integrates all critical contextual
information, providing more accurate prediction outputs. This is crucial for real-time
decision support and energy optimization in drilling operations.

3.3. Experiments and Analysis

Based on this model, we predicted the drilling pump energy consumption under
four different drilling conditions, and the test results are shown in Figure 6. The four
experimental results illustrate the model’s performance in predicting drilling pump power
consumption under various time periods and working conditions. By comparing the actual
data (blue dots) with the predicted values (orange line) across different experiments, we can
conduct an in-depth analysis from several perspectives, including overall trend prediction,
short-term fluctuation capture, high-frequency response, and performance under specific
operating conditions. Each aspect is discussed in detail below.

In time series forecasting, the ability to capture long-term trends and short-term
fluctuations is a critical criterion for evaluating model performance. Thus, Figures 7–10 are
not merely enhancements for visual presentation; they serve as validation of the model’s
capabilities in these two key aspects.
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As shown in Figures 7–10, the actual and predicted trend lines in the image indi-
cate that the model can capture the major changes in electricity at different times, where
predicted values closely follow the fluctuations of actual data. This predictive capability
demonstrates the model’s ability to capture long-term trends effectively. The shaded area
represents the 95% confidence interval. The model’s predicted trend mostly falls within the
confidence interval of the actual trend, indicating a certain level of reliability and accuracy.
In the figure, the measurement numbers (instead of time) are sorted and plotted, providing
a clearer perspective for observing the subtle differences between the predicted and actual
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data. The predicted data and actual data show close consistency in trends, especially where
significant fluctuations occur.
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Firstly, as shown in Figures 7a–c, 8a–c, 9a–c and 10a–c, the confidence intervals for the
actual and predicted data in these figures cover the 95% stable range of each dataset, and
the trend lines plotted based on these intervals illustrate the long-term trends in the data. By
comparing the positions and shapes of the actual and predicted trend lines, we can assess
the model’s accuracy and consistency in capturing long-term trends. These trends provide
insights into the overall trajectory of energy consumption, which is essential for long-term
energy planning and optimization. Secondly, as shown in Figures 7d, 8d, 9d and 10d, to
better evaluate the model’s performance in capturing short-term fluctuations, we sorted
the actual power data as a baseline. By comparing the relative positions of the predicted
power values against this baseline, we can directly analyze the model’s responsiveness to
minor fluctuations and rapid changes. This capability is crucial for real-time monitoring
and anomaly detection in practical applications, as it enables us to identify short-term
variations in the system and adjust operational strategies accordingly.

Overall Trend Prediction. The results from all four experiments indicate that the
model can accurately capture the overall trend of actual pump power fluctuations. In
each experiment, the overall fluctuation trend of the predicted values (orange line) closely
aligns with the actual data (blue dots). The model effectively follows the changes in actual
data, whether during periods of increasing or decreasing power. This demonstrates the
model’s strong performance in recognizing the long-term trends and patterns of pump
power variations. Figure 7a: In the 0–1400 s time range, pump power exhibits frequent
upward and downward fluctuations, ranging between 3950 kW and 4150 kW. The predicted
values closely follow the actual data, especially during the 600–1000 s interval, where the
model accurately predicts both the rise and fall in power. This demonstrates the model’s
ability to adapt to complex fluctuation patterns during this period, capturing the peaks and
troughs with high precision. Figure 8b: The time range is extended to 1600 s. Compared to
Experiment 1, the power fluctuations are relatively moderate, ranging between 3950 kW and
4100 kW. Despite the smoother fluctuations, the model still accurately tracks the changes,
particularly during the 600–1200 s stable period, where the predicted values align almost
perfectly with the actual data, highlighting the model’s high prediction accuracy under
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stable operating conditions. Figure 9c: This experiment spans a longer duration (0–2400 s)
and includes several distinct phases of power changes. The model accurately captures
these changes, especially during the power reduction phase between 1400–1800 s. The
model also successfully predicts the rebound trend around 2000 s, showcasing its reliability
in predicting long-term trends. Figure 10d: Covering a 2500-second interval, the pump
power fluctuates significantly between 3750 kW and 4150 kW. The model provides precise
predictions throughout this extended period, particularly during the intervals of 0–1000 s
and 2000–2500 s, where significant power rises and falls are observed. This indicates the
model’s strong adaptability when dealing with long-term and wide-range fluctuations.

Effective Short-term Fluctuation Capture. In all experiments, the actual data exhibit
frequent short-term fluctuations, reflecting the dynamic changes in operational parameters
such as pump pressure, flow rate, and drilling depth during the drilling process. The model
is able to accurately predict the amplitude and frequency of these short-term fluctuations in
most cases, indicating its excellent performance in short-term forecasting. Figure 7a: During
the periods of 200–400 s and 800–1000 s, the pump power shows frequent rapid fluctuations.
The predicted line almost perfectly matches these peaks and troughs, demonstrating the
model’s capacity to accurately capture rapid changes in pump power. This capability is
crucial for identifying and anticipating sudden events or operational adjustments that
impact energy consumption. Figure 8b: In the intervals of 600–800 s and 1200–1400 s, the
pump power experiences relatively stable short-term fluctuations. The predicted values
closely follow the actual data, indicating the model’s ability to handle minor fluctuations
in stable conditions effectively. This ensures stable prediction performance under calm
operating conditions. Figure 9c: The model precisely predicts the short-term fluctuations
during the periods of 1200–1400 s and 2000–2200 s. It accurately tracks the peaks and
troughs, reflecting the model’s quick response to rapid changes in power, which is beneficial
for real-time monitoring and control. Figure 10d: During the periods of 500–700 s and
2000–2200 s, frequent high-frequency fluctuations are observed in the actual data. The
model captures most of these fluctuations but shows slight lag during some abrupt changes
around 2000 s. This suggests that while the model performs well in most high-frequency
scenarios, its response speed and precision can still be improved in handling extremely
rapid changes.

High-frequency Response and Analysis of Specific Operating Conditions. While
the model shows good robustness in handling high-frequency fluctuations and special
operating conditions, it still exhibits some deviations during sudden severe fluctuations or
abnormal conditions. Figure 7a: Around 1100 s, the actual data shows a sudden surge in
pump power. The model’s prediction lags slightly in this instance, indicating a delayed re-
sponse to sudden power increases. This suggests that the model may require more detailed
operational data, such as bit wear status and formation hardness, to improve its accuracy in
such scenarios. Figure 8b: During the period of 1200–1600 s, the model successfully predicts
multiple short-term increases and decreases in power, almost mirroring the actual values.
This demonstrates the model’s high prediction accuracy under steady and slow fluctuation
conditions. Figure 9c: Around 2100 s, the actual pump power drops rapidly to 3850 kW.
While the model shows a slight lag in prediction, it still captures the downward trend well,
indicating good performance even in the face of sudden large fluctuations. Figure 10d:
Around 2000 s, there is a rapid increase in pump power. The model underestimates this
surge, suggesting that its training may lack sufficient representation of similar extreme
cases. Enhancing the dataset with more samples of such events or refining the model
architecture could improve performance in these instances.

Overall, the model demonstrates strong performance in predicting drilling pump
energy consumption, accurately capturing both overall trends and short-term fluctuations
in actual energy consumption. It provides reliable predictions under most operating
conditions. Additionally, the model exhibits good robustness in handling high-frequency
fluctuations and complex operating scenarios, effectively responding to common variations
encountered during the drilling process.
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3.4. Model Performance Comparison

Based on the above experiments, we conducted a comparative analysis of the perfor-
mance of different models in predicting drilling pump energy consumption. We employed
independent testing datasets collected from pumps operating in different oilfields, with no
overlap with the training data. These datasets were gathered from diverse geographic loca-
tions and under varying operational conditions. Consequently, the model’s performance
on the test data reflects not only its ability to fit the training data but also its predictive
robustness across different data sources and changing conditions. To evaluate the models,
we introduced four evaluation metrics: Mean Absolute Error (MAE), Mean Squared Error
(MSE), Root Mean Square Error (RMSE), and the Coefficient of Determination (R2). The
formulas for these metrics are as follows:

MAE =
1
n

n

∑
i=1

|yi −
∧
yi| (10)

MAE measures the average absolute difference between predicted and actual values,
reflecting the overall prediction error of the model.

MSE =
1
n

n

∑
i=1

(yi −
∧
yi)

2 (11)

MSE represents the average squared difference between predicted and actual values
and is sensitive to large errors. A lower MSE indicates better control over the overall
prediction error.

RMSE =

√
1
n

n

∑
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(yi −
∧
yi)

2 (12)

RMSE is the square root of MSE, providing a measure of the average deviation be-
tween predicted and actual values. RMSE is also sensitive to large errors and offers a
comprehensive evaluation of model performance.

R2 = 1 −
∑n

i=1

(
yi −

∧
yi

)2

∑n
i=1(yi − y)2 (13)

R2 reflects the proportion of variance in the dependent variable that is predictable
from the independent variables. An R2 value closer to one indicates a better fit of the model
to the data.

These four metrics provide a comprehensive assessment of the model’s performance
in predicting drilling pump energy consumption. MAE and MSE primarily evaluate the
magnitude of prediction errors, while RMSE offers an overall evaluation by accounting
for both small and large errors. R2 measures how well the model captures the overall
trend in the data. By comparing these metrics, we can better understand the strengths and
weaknesses of different models, providing valuable insights for further optimization and
improvement of energy consumption prediction models. The performance comparison is
shown in Figure 11.
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As illustrated in the figures, the LSTM-Attention model outperforms the traditional
LSTM and CNN models across all evaluation metrics (MAE, MSE, RMSE, and R2), demon-
strating superior predictive capabilities and robustness. The MAE and MSE values indicate
that this model effectively reduces prediction errors, especially when handling complex
nonlinear relationships and long-term dependencies, with significantly lower error rates
than other models, showcasing its high accuracy and reliability. The RMSE metric fur-
ther validates its excellent performance in controlling overall errors and mitigating large
discrepancies. In contrast, the LSTM and CNN models show higher error values and
lower goodness of fit when dealing with extreme conditions and high-frequency fluctu-
ations, making them less effective in accurately predicting fluctuations in drilling pump
energy consumption. Moreover, the LSTM-Attention model achieves an R2 value close
to 1, indicating its strong capability to capture the fluctuation patterns in actual data and
providing a much better explanation of energy consumption variations than traditional
models. Overall, the LSTM-Attention model not only excels in prediction accuracy but also
exhibits high robustness and adaptability, offering effective technical support for energy
management and optimization in drilling operations.

4. Conclusions

This study proposed a novel LSTM-Attention model for accurately predicting drilling
pump energy consumption. Through comprehensive experiments and comparisons with
traditional LSTM and CNN models, the results demonstrated that the proposed model out-
performed existing methods across multiple evaluation metrics. In the four test cases, the
Mean Absolute Error (MAE) of the LSTM-Attention model ranged from 5.19 to 10.20, sig-
nificantly lower than that of the traditional LSTM models (12.43 to 18.76) and CNN models
(13.27 to 19.82). Additionally, the Mean Squared Error (MSE) values for the LSTM-Attention
model, ranging from 45.02 to 66.42, were notably lower than those of the traditional LSTM
models (130.67 to 180.91) and CNN models (140.85 to 190.74). The Root Mean Square
Error (RMSE) ranged from 6.71 to 8.15, outperforming the traditional LSTM (11.43 to 13.45)
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and CNN models (12.78 to 14.52). The R2 values were close to one (ranging from 0.95 to
0.98), indicating the model’s exceptional performance in capturing the trends of energy
consumption variations.

The model’s superior performance lies in its ability to handle both short-term fluctua-
tions and long-term trends in energy consumption, which is crucial for optimizing drilling
operations. Its robustness and adaptability under various operating conditions make it an
ideal tool for real-time energy management and decision-making in drilling processes. The
incorporation of the attention mechanism enhances the model’s focus on critical features
and time steps, further improving prediction accuracy and interpretability.

Although the LSTM-Attention model shows significant improvements in prediction
performance compared to traditional models, there is still room for further enhancement.
Future research could consider incorporating additional operational parameters and exter-
nal factors to refine the model’s predictions under more diverse and challenging conditions.
Moreover, exploring more advanced deep learning architectures, such as Transformer
models or hybrid approaches, may offer even greater predictive power and applicability.

Overall, the LSTM-Attention model provides a valuable framework for improving
the accuracy and efficiency of drilling energy consumption forecasting. Its application can
contribute to enhanced energy utilization, cost reduction, and improved operational safety,
laying a solid foundation for intelligent and sustainable drilling practices in the oil and
gas industry.
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