
Citation: Zhao, Z.; Zhang, T.; Fan, X.;

Mao, Q.; Wang, D.; Zhao, Q. GMN+:

A Binary Homologous Vulnerability

Detection Method Based on Graph

Matching Neural Network with

Enhanced Attention. Appl. Sci. 2024,

14, 10762. https://doi.org/

10.3390/app142210762

Academic Editor: Pedro Couto

Received: 30 September 2024

Revised: 12 November 2024

Accepted: 17 November 2024

Published: 20 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

GMN+: A Binary Homologous Vulnerability Detection
Method Based on Graph Matching Neural Network with
Enhanced Attention
Zheng Zhao 1 , Tianhao Zhang 2 , Xiaoya Fan 3 , Qian Mao 4, Dafeng Wang 5 and Qi Zhao 6,*

1 College of Artificial Intelligence, Dalian Maritime University, Dalian 116026, China; zhaozheng@dlmu.edu.cn
2 College of Information of Science and Technology, Dalian Maritime University, Dalian 116026, China;

zhangtianhao@dlmu.edu.cn
3 School of Software Technology, Dalian University of Technology, Dalian 116024, China; xiaoyafan@dlut.edu.cn
4 College of Light Industry, Liaoning University, Shenyang 110036, China; maoqian@lnu.edu.cn
5 National Administration of State Secrets Protection, Beijing 100044, China; dafeng0321@gmail.com
6 Faculty of Information, Liaoning University, Shenyang 110036, China
* Correspondence: qizhao7178@163.com

Abstract: The widespread reuse of code in the open-source community has led to the proliferation of
homologous vulnerabilities, which are security flaws propagated across diverse software systems
through the reuse of vulnerable code. Such vulnerabilities pose serious cybersecurity risks, as
attackers can exploit the same weaknesses across multiple platforms. Deep learning has emerged as a
promising approach for detecting homologous vulnerabilities in binary code due to their automated
feature extraction and high efficiency. However, existing deep learning methods often struggle to
capture deep semantic features in binary code, limiting their effectiveness. To address this limitation,
this paper presents GMN+, which is a novel graph matching neural network with enhanced attention
for detecting homologous vulnerabilities. This method comprehensively considers the information
contained in instructions and incorporates types of input instruction. Masked Language Modeling
and Instruction Type Prediction are developed as pre-training tasks to enhance the ability of GMN+
in extracting semantic information from basic blocks. GMN+ utilizes an attention mechanism to focus
concurrently on the critical semantic information within functions and differences between them,
generating robust function embeddings. Experimental results indicate that GMN+ outperforms state-
of-the-art methods in various tasks and achieves notable performance in real-world vulnerability
detection scenarios.

Keywords: graph matching with enhanced attention; homologous vulnerability detection; instruction
type; pre-training

1. Introduction

With the continuous growth of the open-source community, software developers
increasingly utilize open-source code to boost development efficiency. However, code
reuse increases the risk of spreading homologous vulnerabilities [1,2]. According to the
2023 Open Source Security & Risk Analysis Report, 96% of audited code included open-
source components with 84% containing at least one open-source related vulnerability [3].
Vulnerable open-source code, when compiled and deployed across diverse platforms and
architectures, leads to a proliferation of homologous vulnerabilities, posing substantial
risks to cybersecurity [4].

Remarkable advancements in deep learning technologies [5] have revealed enormous
potential in natural language processing (NLP), speech recognition, and computer vision [6].
Researchers have successfully applied deep learning to the detection of binary homologous
vulnerabilities, yielding significant research outcomes [7–11]. Among these, the graph
matching network (GMN) model [9] utilizes both intra-function semantic information and

Appl. Sci. 2024, 14, 10762. https://doi.org/10.3390/app142210762 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app142210762
https://doi.org/10.3390/app142210762
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4214-8164
https://orcid.org/0009-0006-2619-1679
https://orcid.org/0000-0002-5002-6968
https://orcid.org/0000-0002-7981-9478
https://doi.org/10.3390/app142210762
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app142210762?type=check_update&version=2

Appl. Sci. 2024, 14, 10762 2 of 19

inter-function differences to compute similarity scores, achieving notable detection accuracy.
GMN employs attention mechanisms to extract pivotal information for assessing functional
homology. However, this approach restricts the attention mechanism to inter-function
matching, potentially overlooking critical semantic information during intra-function
graph convolution. Moreover, current methods often treat the disassembled instructions
as natural language, neglecting their unique characteristics and limiting the accuracy of
vulnerability detection.

To address these challenges, we propose GMN+, which is an enhanced GMN for binary
homologous vulnerability detection. GMN+ integrates NLP models with graph neural
networks (GNN) to achieve high accuracy in homologous vulnerability detection. It consists
of three modules: an Instruction Preprocessor, a Semantic Learner, and a Graph Learner.
The Instruction Preprocessor normalizes disassembled instructions and extracts the type of
the operator and operand. The Semantic Learner is a BERT model [12] trained with Masked
Language Modeling (MLM) and Instruction Type Prediction (ITP), generating semantic
embeddings for basic blocks in functions. In the Graph Learner, GMN+ uses a GMN
with enhanced attention to extract robust function embeddings and compute similarity
scores between the query and functions in the vulnerability database. We evaluate the
performance of GMN+ relative to baseline methods across various tasks, including function
similarity detection, homologous function search, and real-world vulnerability detection.
We further analyze the contributions of different modules in GMN+. Experimental results
indicate that GMN+ outperforms baseline methods in all these areas. However, GMN+
has specific limitations, such as limited effectiveness for certain types of vulnerabilities
and computational overhead, which are discussed in detail in a later section. In addition,
we have released the code of GMN+ at https://github.com/haidachenxing/GMN-plus
(accessed on 16 November 2024).

2. Related Work

Deep learning-based vulnerability detection methods can be broadly classified into
two categories: NLP-based and GNN-based methods.

2.1. NLP-Based Methods

Recent research has regarded code as natural language and leveraged natural language
models to extract code representations for detecting software vulnerabilities. Ding et al. [13]
developed Asm2vec, which employs PV-DM [14] to generate function embeddings specifi-
cally for vulnerability detection. This approach, however, is limited to a single instruction
set architecture, constraining its application in cross-architecture vulnerability detection.
To overcome this limitation, Massarelli et al. [7] introduced SAFE, which is a self-attention-
based neural network model that generates instruction embeddings using word2vec [15].
These embeddings are further processed by a bi-directional recurrent neural network
(RNN) with an attention mechanism used to derive function embeddings. However, this
method is only feasible across ARM and AMD architectures. To address such issues, Xing
et al. [4] proposed an innovative multi-architecture instruction embedding approach using
Unsupervised Multilingual Word Embeddings (UMWE) [16]. This method maps codes
from diverse architectures into a shared semantic space, enabling the extraction of common
semantic information across ARM, MIPS, and X86 architectures.

The Transformer model [6], a neural network based on self-attention mechanisms, can
globally model each token in a token sequence and has achieved notable success in NLP.
Recently, researches have tried to apply the Transformer model to extract semantics from
binary code for vulnerability detection. Jiang et al. [17] developed an adaptive binary code
similarity analysis method for vulnerability discovery. This system integrates semantic
and structural features of functions and utilizes the Transformer’s attention mechanism
to maintain robustness across different compilation settings. BERT [12], recognized for its
high-performance capabilities as a Transformer method with efficient semantic extraction,
is extensively employed by researchers in vulnerability detection methods. For example,

https://github.com/haidachenxing/GMN-plus

Appl. Sci. 2024, 14, 10762 3 of 19

Yu et al. [18] developed pre-training tasks at both the basic block and function levels to
train a BERT model, generating semantic embeddings for function basic blocks. Subse-
quently, they utilized the Control Flow Graph (CFG) of a function and a Message Passing
Neural Network (MPNN) [19] to learn the structural features of functions and integrated
these with sequence features to create comprehensive function embeddings. Luo et al. [2]
utilized an intermediate language to mitigate the effects of architectural differences on code
homogeneity assessments and introduced the novel Intermediate Representation Function
Model (IRFM). This method transforms binary code into microcode [20] and establishes root
operand prediction and adjacent block prediction tasks for training the RoBerta model [21].
This training enables the model to understand the relationships between operands and
the data flow within basic blocks, facilitating the generation of semantic embeddings for
basic blocks. Finally, a Graph Convolutional Network (GCN) [22] is employed to create
function embeddings. Gu et al. [23] developed BinAIV, which is a method that utilizes
SimBERT [24] to learn the representation of assembly code and incorporates function name
information into function semantics, thus enhancing the accuracy of vulnerability detection.
Concurrently, Li et al. [25] utilize BERT to extract semantic information from instructions
and employ a graph encoder with a self-gating layer to capture both structural and semantic
features within CFGs.

Large language models (LLMs) [26], known for their powerful analytical and reasoning
capabilities, are increasingly employed to improve performance in vulnerability detection.
Lu et al. [27] enhanced the capabilities of LLMs for vulnerability detection by integrating
structural information with in-context learning [28]. This approach evaluates semantic,
lexical, and syntactic similarities to accurately identify code examples that are most similar
to the target code. Leveraging this method, they designed an effective example retrieval
system that supplies optimized examples for the in-context learning of LLMs.

All of the above methods treat code as natural language and use natural language
models to extract its semantic features, but they usually overlook unique characteristics of
instructions, such as instruction types. This oversight can lead to code embeddings that
fail to accurately reflect the true semantics of the code, thus hindering the effectiveness of
vulnerability detection. Our method incorporates instruction type into token embeddings,
enabling a more comprehensive extraction of code semantics.

2.2. GNN-Based Methods

In the field of vulnerability detection, researchers use graph structures to represent
binary functions and employ GNNs to learn function semantics. GNNs are effective models
for learning representations of unstructured data and solving graph prediction problems [9].
Xu et al. [29] first proposed a GNN-based vulnerability detection method, which combines
the CFG of a binary function with statistical features of basic blocks to create an Attributed
Control Flow Graph (ACFG). This method employs the Structure2vec model [30] to extract
structural features from the ACFG of functions and generate their embeddings, which are
then used to identify vulnerabilities. Zhang et al. [31] proposed a graph Transformer-based
method for obfuscation-resilient code similarity detection to identify binary vulnerabilities.
This approach utilizes multiple positional encodings to capture structural information
from the function’s ACFG. These encodings are then incorporated as bias terms into
the Transformer self-attention computation, ultimately generating graph embeddings.
Li et al. [9] further extended GNN and introduced the GMN model, which processes pairs
of ACFGs and employs a cross-graph attention-based matching mechanism to perceive
their differences through the computation of node matching metrics between graphs.

While these methods utilize ACFGs to represent functions, ACFGs only encapsulate
partial function information, thus inadequately describing function semantics and limiting
detection accuracy. In response to this issue, researchers have utilized various novel graph
structures to describe functions more comprehensively. Yang et al. [1] utilized Abstract
Syntax Trees (ASTs) to represent binary functions and introduced a deep learning-based
method for AST encoding. This method employs a Tree-LSTM network [32] to learn the

Appl. Sci. 2024, 14, 10762 4 of 19

semantic representations of functions from their ASTs and generate function embeddings.
Gao et al. [33] introduced data flow information to the CFG to create a labeled semantic
flow graph (LSFG) and applied the Structure2vec model to extract its structural features.

Liang et al. [10] integrated instruction, basic block, and function features to construct
a 3-Level Attributed Control Flow Graph (3LACFG) and introduced the FIT method.
This method initially uses the word2vec model to learn the contextual information from
binary code for instruction embeddings and employs LSTM [34] to create embeddings
for basic blocks. It then uses the Structure2vec model to generate function embeddings
that incorporate features at the instruction, basic block, and function levels. Yu et al. [35]
believed that function call relationships also encapsulate function semantics. Accordingly,
they merged CFGs with function call graphs to create a Graph-of-Graphs (GOG) for binary
codes, employing GNNs to extract structural features of GOGs and generate function
embeddings. Wang et al. [36] argue that current GNN-based code similarity detection
methods excessively depend on CFG features, potentially diminishing model performance.
They employ existing explanation methods to assess the reliance of GNN-based models on
CFG features and enhance performance by reducing this dependency.

Software vulnerabilities often necessitate slight alterations to produce patched versions.
This results in minimal differences between vulnerable and patched versions, consequently
elevating false positive rates in vulnerability detection. To mitigate this issue, Liu et al. [37]
proposed PG-VulNet, which is a multi-model cross-architecture vulnerability detection
method based on pseudocode and GMN. PG-VulNet extracts behavioral and structural
features from pseudocode, constructs pseudocode feature graphs, and uses GMN to detect
subtle differences between these graphs. Sun et al. [38] selected code segments related to
typical vulnerabilities and used code-slicing strategies to create slice subgraphs for specific
vulnerabilities, reducing redundant semantics and focusing the model on vulnerability-
related code parts. This method utilizes the UniXcoder model [39] and the InfoGraph
model [40] to encode the slice subgraphs and generate graph embeddings, effectively de-
tecting vulnerabilities by minimizing distances between similar functions and maximizing
those between vulnerable and patched functions.

Current methods leverage diverse graph structures to generate semantic embeddings,
effectively representing the structural semantics of codes. However, different compila-
tion configurations can cause significant structural differences in binary codes generated
from the same source code, challenging vulnerability detection. Our method employs
an attention mechanism to concurrently focus on important semantic information within
functions and differences between functions, effectively mitigating the impact of different
compilation configurations.

3. Method

GMN+ utilizes semantic comparison to identify code homology, revealing potential
vulnerabilities within the code. The GMN+ primarily consists of three modules: the
Instruction Preprocessor, Semantic Learner, and Graph Learner, as shown in Figure 1.
The Instruction Preprocessor employs the advanced disassembly tool IDA Pro [41] to
transform binary codes into disassembled instructions, normalizes these instructions, and
extracts types of instruction opcodes and operands. Additionally, the CFGs of the binary
functions are constructed during this step. The Semantic Learner generates semantic
embeddings for function basic blocks using a BERT model, which is pre-trained using
the Masked Language Modeling (MLM) and Instruction Type Prediction (ITP) tasks. The
Graph Learner integrates these semantic embeddings with CFGs of functions to construct
ACFGs. It utilizes intra-graph and inter-graph attention mechanisms to learn structural
and matching information within and between functions, ultimately detecting function
homology via semantic similarity.

Appl. Sci. 2024, 14, 10762 5 of 19

Figure 1. Architecture of the GMN+ model.

3.1. Instruction Preprocessor
3.1.1. Instruction Normalization

The process of disassembling binary codes inherently generates a diverse set of tokens
due to the inclusion of numerous memory addresses, immediate values, and address offsets.
This diversity significantly exacerbates the out-of-vocabulary (OOV) problem, complicating
the model’s learning process. As shown in Figure 2a, the original assembly code contains a
vast array of tokens that represent memory addresses (e.g., ‘loc_61C9’), immediate values
(e.g., ‘0’), or address offsets (e.g., ‘0B8h’). The exact values of these tokens carry limited
semantic information. But their roles are semantically rich. To mitigate this issue, our
method implements instruction normalization rules, as detailed in Table 1. These specific
rules are designed to reduce the complexity of the code and improve the learnability of the
code semantics by the model:

• Immediate values are replaced with the token ‘immv’.
• Memory addresses are replaced with the token ‘addr’.
• Address offsets are replaced with the token ‘offs’.
• Function names are replaced with the token ‘func’.

The above normalization process produces a normalized instruction corpus, as shown
in Figure 2b. This normalization helps to homogenize the input data, reducing the num-
ber of unique tokens the model must handle and maximizing the retention of semantic
information.

Figure 2. An example of instruction normalization and instruction type extraction. (a) Original
assembly instructions; (b) Normalized instructions; (c) Instruction types

Appl. Sci. 2024, 14, 10762 6 of 19

Table 1. Instruction normalization rules.

Type Token Example

Immediate Value immv sub rbx, 0A0h → sub rbx, immv
Memory Address addr lea rax, qword 1B4770 → lea rax, addr
Address Offset offs mov rax, [rbp+80h] → mov rax, [rbp+offs]
Function Name func call _glp_str2in → call func

3.1.2. Instruction Type Extraction

The disassembled code consists of structured instructions that significantly differ from
natural language text. Each instruction contains an opcode and multiple operands, each
playing distinct roles and can be classified into various types. Specifically, instruction
opcodes are classified into 10 types based on functionality, such as data transfer, arithmetic,
and logical operations, as shown in Table 2. Operands are classified into three types based
on their storage locations within a computer: immediate values, registers, and memory
addresses, as outlined in Table 3. Each operand and opcode type is assigned a specific label.
A sequence of labels from continuous instructions forms an instruction type sequence.

Figure 2c illustrates the process of extracting instruction types from a sequence of
original assembly instructions. In this process, opcodes and operands are identified and
assigned corresponding type tokens. For instance, the first instruction is classified as a Data
Transfer instruction (DT), involving a register (REG) and a memory address (MEM).

Table 2. Opcode types.

Opecode Type Label Example

Data transfer instruction DT mov, movq
Arithmetic instruction AM add, sub
Logical instruction LG and, or
Program control instruction PC jmp, call
Bit instruction BI shr, shl
Conditional move instruction CM cmova, cmovnb
Conditional set instruction CS setz, setle
Stack operation instruction SO push, pop
Data conversion instruction DC cvttsd2si, cvtsi2sd
Comparative instruction CP cmp, test

Table 3. Operand types.

Operand Type Label Example

Register REG r0, rbx
Memory address MEM [rbx+offset], [rax]
Immediate value IMM 01Ch, 0FFh

3.2. Semantic Learner

The BERT model [12], developed by Google, is an advanced pre-trained language
model that significantly improves performance across a range of NLP tasks. Our study
utilizes BERT to extract semantic information from code basic blocks. However, instructions,
distinct from natural language, possess unique syntax and semantics with various opcode
and operand types exhibiting notable semantic differences. This discrepancy affects the
performance of BERT in semantic understanding. To address this issue, we incorporate
opcode and operand type information into the model training process, enabling a more
comprehensive capture of code semantics.

Appl. Sci. 2024, 14, 10762 7 of 19

3.2.1. Input Embeddings

In GMN+, each opcode or operand from the normalized instruction corpus is uniquely
represented as a token along with its associated type. The input to the BERT model consists
of two sequences: a normalized instruction sequence with n tokens w1, w2, . . . , wn and
a corresponding instruction type sequence detailing the types of each token t1, t2, . . . , tn.
Similar to the methodology of BERT, three types of embeddings are constructed for each
token: token embedding, type embedding, and position embedding. These embeddings
are summed to form a comprehensive input embedding E1, E2, . . . , En for input tokens.
Figure 3 illustrates the construction of BERT input embeddings by summing the token,
type, and position embeddings for each instruction code and operand in the normalized
instruction sequence.

Figure 3. BERT input embedding.

3.2.2. BERT Model Training

BERT employs a Transformer architecture that enables the model to capture context
from both directions in a sequence. To enhance the ability of BERT to learn code semantics,
GMN+ utilizes two key pre-training tasks: Masked Language Modeling and Instruction
Type Prediction tasks.

Masked Language Modeling (MLM): In this task, 15% of the tokens in the instruction
sequence along with their corresponding instruction types are randomly masked. The
model then predicts these masked tokens based on their surrounding context, which enables
BERT to learn semantic relationships and interactions within the instruction sequences.
This task helps the model develop a comprehensive understanding of binary function
semantics. The MLM process is formalized as follows:

O = Trans f ormer(Emask) (1)

p(w | Emask) = So f tmax(MLPtoken(O)) (2)

where Emask represents input embedding after masking, and O represents the output from
the Transformer encoder. The MLPtoken is a multilayer perceptron and w denotes the input
token sequence of the model. The cross-entropy loss LMLM for the MLM task is computed
by comparing the predicted probability distribution of the masked tokens with their ground
truth, as shown below, where M represents the index set of the masked tokens.

LMLM = − 1
|M| ∑

j∈ M
log(p(wj | Emask)) (3)

Instruction Type Prediction (ITP): Similarly, 15% of the input tokens and their types are
masked, and the model predicts the types based on the context. This task facilitates learning

Appl. Sci. 2024, 14, 10762 8 of 19

the semantics inherent to various instruction types and allows the model to develop deeper
semantic representations of the code. The formalization of the ITP process is as follows:

p(t | Emask) = So f tmax(MLPtype(O)) (4)

where MLPtype is a multilayer perceptron, and t is the type sequence of the input token
sequence. The cross-entropy loss LTYPE for the ITP task is computed based on the predicted
probability distribution of the masked token types compared to their ground truth, as
shown below.

LITP = − 1
|M| ∑

j∈M
log(p(tj | Emask)) (5)

GMN+ employs the above two pre-training tasks to pre-train the BERT model. The
pre-trained BERT model is subsequently utilized to generate semantic embeddings for
basic blocks of binary functions. Specifically, the normalized instruction sequence and
instruction type sequence of basic blocks in a function are fed into the BERT model. The
semantic embedding of the basic block is obtained by averaging the outputs of the last four
layers of the Transformer encoder.

3.3. Graph Learner

The ACFG for a binary function is defined as G =< V, E, B >, where V is the set
of nodes (each representing a basic block), E is the set of edges, and B is the set of node
features. For any node i ∈ V, its initial feature bi (bi ∈ B) is derived from the Semantic
Learner. The feature lij for an edge (i, j) ∈ E is the concatenation of bi and bj. Given two
functions’ ACFGs, G1 =< V1, E1, B1 > and G2 =< V2, E2, B2 >, the Graph Learner uses
GMN with enhanced attention to generate semantic embeddings of functions and computes
their cosine similarity. The Graph Learner is divided into three parts: Encoder, Propagation
Layers, and Aggregator, as shown in Figure 4.

Figure 4. Graph Learner of GMN+.

The Encoder uses multilayer perceptrons, MLPnode and MLPedge, to encode node and
edge features, respectively, generating initial embeddings for nodes and edges as shown in
Equations (6) and (7), where h(0)i represents the initial node embedding, and eij represents
the edge embedding.

h(0)i = MLPnode(bi), ∀i ∈ V (6)

eij = MLPedge(lij), ∀(i, j) ∈ E (7)

Appl. Sci. 2024, 14, 10762 9 of 19

The Propagation Layer, based on ACFG, uses a GMN with enhanced dual-level
attention to extract information within and between functions, ultimately generating robust
function embeddings. Specifically, an intra-function attention mechanism is employed to
focus on critical semantic details within each function. This mechanism allows the model to
selectively emphasize information that reflects deeper semantic attributes of the function,
enhancing its sensitivity to nuanced, function-specific patterns that may be indicative of
vulnerabilities. The intra-function attention is shown in Equations (8)–(10).

mj→i = fmessage(h
(t)
i ||h(t)j ||eij), ∀(i, j) ∈ E (8)

aj→i =
exp(sc(h

(t)
i , h(t)j))

∑j′ exp(sc(h
(t)
i , h(t)j′))

, j′ ∈ Ni (9)

γi = ∑
j

aj→imj→i, j ∈ Ni (10)

where fmessage is a multilayer perceptron taking concatenated inputs h(t)i , h(t)j and eij, while
mj→i is the massage transmitted from node j to node i. Ni is the set of neighbor nodes of
node i. The term sc is a similarity function. We use cosine similarity. aj→i is the attention
weight for the information transmitted from node j to node i. γi represents the aggregated
information transmitted to node i from all its neighbor nodes.

On the other side, an inter-function attention mechanism, i.e., graph matching attention
[9], is used to capture key semantic distinctions between functions, facilitating the model’s
ability to detect homologous vulnerabilities across different but related functions. For the
functions’ ACFGs G1 and G2, assume ∀i ∈ V1, ∀s ∈ V2. The graph matching attention
mechanism is defined by Equations (11) and (12).

as→i =
exp(sc(h

(t)
i , h(t)s))

∑s′∈V2
exp(sc(h

(t)
i , h(t)s′))

(11)

µs→i = as→i(h
(t)
i − h(t)s) (12)

where as→i represents the attention weight describing the proportion of information passed
from note s of G2 to note i of G1, and µs→i represents the corresponding matching infor-
mation. The aggregate of µs→i, for each s in V2, is calculated as shown in Equation (13),
capturing the differential information between h(t)i and the closest node in the graph
for comparison.

ωi = ∑
s∈V2

µs→i = ∑
s∈V2

as→i(h
(t)
i − h(t)s) = h(t)i − ∑

s∈V2

as→ih
(t)
s (13)

At last, node embeddings are updated using a Gated Recurrent Unit (GRU). The
update function, denoted by fupdate, is a GRU cell. The updating procedure, represented by

Equation (14), uses h(t)i as the input and concatenates γi with ωi to form the hidden state.

h(t+1)
i = fupdate(h

(t)
i , γi||ωi) (14)

After T rounds of propagation, the Aggregator combines all node embeddings h(T)i
from the ACFG of the function into a single graph embedding hG, using a gated vector
weighting method [42], as described in Equation (15). This process selectively retains
crucial information, resulting in a graph embedding that accurately embodies semantics of

Appl. Sci. 2024, 14, 10762 10 of 19

the function. Given graph embeddings hG1 and hG2 corresponding to G1 and G2, GMN+
computes their similarity using cosine similarity.

hG = MLPG(∑
i∈V

σ(MLPgate(h
(T)
i)⊙ MLP(h(T)i))) (15)

The training of GMN+ employs a loss function as outlined in Equation (16), where
(G1, G2, G3) are model inputs, consisting of homologous functions (G1, G2) and non-
homologous functions (G1, G3). The objective of this loss function is to minimize the
distance between homologous functions and maximize it between non-homologous func-
tions, enhancing the discriminatory ability of the model.

LG = log(1 + ecos(hG1
,hG3) − ecos(hG1

,hG2)) (16)

Figure 4 provides an example that illustrates the process of Graph Learner, with
which the similarity between functions based on the ACFG is calculated. In this pro-
cess, the Encoder encodes each function’s nodes and edges. Then, Propagation Layers
generate updated node embeddings using enhanced attention. Finally, the Aggregator
aggregates these node embeddings to produce the graph embeddings used for computing
function similarity.

4. Experiments and Analysis

To validate the effectiveness of GMN+, we pose the following three research questions
(RQs) and answer them through experiments:

• RQ1: How does the performance of GMN+ compare to baseline methods?
• RQ2: What contributions do different modules of GMN+ make to its performance?
• RQ3: How does GMN+ perform in real-world vulnerability detection tasks?

4.1. Experimental Setup
4.1.1. Dataset and Experimental Platform

We collected three source codes from GNU software programs: Glpk (v4.65), Xml
(v2.9.4), and Sqlite3 (v0.8.6). Each program was compiled into 12 binary versions using
GCC (v11.3) across various architectures (ARM, MIPS, X86) and optimization levels (O0-
O3). These binary codes were disassembled with IDA Pro (V7.3), yielding 87,488 functions,
1,802,028 basic blocks, and 10,269,352 instructions, as shown in Table 4. We constructed the
experimental dataset by generating pairs of homologous and non-homologous function
samples, dividing it into training (80%), validation (10%), and testing (10%) subsets.

We implemented the GMN+ using PyTorch (v1.8.1) and trained it on two 24 GB
NVIDIA GeForce RTX 3090ti GPUs. The values of the key hyperparameters used in our
experiments are detailed in Table 5. A batch size of 128 is used to optimize computational
efficiency. Node and edge embedding dimensions are set at 256 to capture detailed graph
structures effectively. A graph-embedding dimension of 128 is chosen to balance detail
with computational efficiency, and a learning rate of 0.0001 ensures gradual optimization
of the model.

Table 4. Summary of the dataset used in our study (FN, BB, IN representing the number of FuNctions,
Basic Blocks, and INstructions, respectively).

Software FNs BBs INs

Glpk(v4.65) 19,457 431,144 2,792,595
Xml(v2.9.4) 35,107 757,433 3,831,902

Sqlite3(v0.8.6) 32,924 613,451 3,644,855
All 87,488 1,802,028 10,269,352

Appl. Sci. 2024, 14, 10762 11 of 19

Table 5. The hyperparameters used in the experiments.

Hyperparameters Value

Batch size 128
Node embedding dimension 256
Edge embedding dimension 256

Graph embedding dimension 128
Learning rate 0.0001

4.1.2. Baselines

The baselines for our experiments include three state-of-the-art methods: one NLP-
based method, SAFE [7], and two GNN-based methods, FIT [10] and GMN [9]. All baseline
methods are implemented according to the original papers. The evaluation metrics used
in the experiments are listed in Table 6. We define TP as the number of correctly detected
similar pairs, TN as the number of correctly detected dissimilar pairs, FP as the number
of dissimilar pairs incorrectly detected as similar, and FN as the number of similar pairs
incorrectly detected as dissimilar.

Table 6. The evaluation metrics used in the experiments.

Metrics Definition

Precision TP/(TP + FP)
Recall TP/(TP + FN)

F-measure (F1) 2 × Precision × Recall/(Precision + Recall)
Area Under ROC Curve (AUC) Area under the ROC curve

HR-K Hit rate of the top K candidate
NDCG-K [43] Evaluate the quality of ranking

4.2. Model Performance Evaluation

To respond to RQ1, all models were trained using the designated training set and
evaluated across various tasks. Two types of tasks were set up: one-to-one function
similarity detection and one-to-many homologous function search. Furthermore, the
detection efficiency of GMN+ and baseline methods, in terms of time cost, were assessed.

4.2.1. Function Similarity Detection

This experiment assessed GMN+ alongside baseline methods in detecting similar
function pairs across various architectures with a balanced 1:1 ratio between positive and
negative sample pairs, which were all optimized at level O1. These methods were evaluated
on recall, precision, and F1 score with detailed results in Table 7. ARM-MIPS, ARM-X86,
and MIPS-X86 represent function pairs involving only two architectures, while ARM-MIPS-
X86 denotes function pairs that involve three architectures simultaneously. Since the SAFE
lacks support for the MIPS architecture, its experimental results are limited to ARM-X86.
The results indicate the superior performance of FIT, GMN, and GMN+ over SAFE, which
was possibly because SAFE merely focuses on the semantic information of instructions
without considering the structural information of functions, whereas the other methods
incorporate structural insights. The FIT performs better than the GMN model, which is
possibly due to its use of NLP techniques to extract significant semantic features from
basic blocks, whereas GMN primarily utilizes rudimentary code statistics for basic block
characterization. Among the models tested, GMN+ demonstrated superior performance,
especially in the most challenging scenario (ARM-MIPS-X86), achieving the highest recall,
precision, and F1 scores of 0.9835, 0.9321, and 0.9571, respectively. Figure 5 illustrates
the ROC curves of the proposed GMN+ and baseline models. It can be seen that GMN+
(highlighted in red) consistently outperforms the baseline methods, achieving the highest
area under the curve (AUC). These results demonstrate the superior efficacy of GMN+
across varied architectural conditions.

Appl. Sci. 2024, 14, 10762 12 of 19

Table 7. Results of the similarity detection task across architectures.

Method
ARM-MIPS ARM-X86 MIPS-X86 ARM-MIPS-X86

Recall Precision F1 Recall Precision F1 Recall Precision F1 Recall Precision F1

FIT 0.9042 0.8479 0.8752 0.9160 0.9124 0.9142 0.9383 0.9012 0.9194 0.9186 0.8719 0.8946
GMN 0.8573 0.8636 0.8604 0.9122 0.8638 0.8873 0.8798 0.8984 0.8891 0.9161 0.8491 0.8813
SAFE - - - 0.8854 0.8451 0.8647 - - - - - -

GMN+(ours) 0.9943 0.9215 0.9565 0.9727 0.9549 0.9637 0.9822 0.9375 0.9594 0.9835 0.9321 0.9571

Note: Values in bold font are the optimal values for each column.

(a) ARM-MIPS (b) ARM-X86

(c) MIPS-X86 (d) ARM-MIPS-X86

Figure 5. Comparison of ROC curves for different methods across architectures.

We further evaluated the performance of GMN+ and the baseline methods in detecting
homologous functions across varied optimization levels, which are all compiled targeted
to the ARM architecture. The dataset comprises 5592 sample pairs balanced between
positive and negative sample pairs. The results are shown in Table 8 where O0-O1, O1-
O2, and O0-O3 indicate the respective optimization levels of the test pairs; O0-O1-O2-
O3 denotes that the test pairs are of any two of the four optimization levels. GMN+
consistently surpassed the baseline methods in the majority of scenarios. Notably, all
methods experienced declines in performance for the O0-O3 scenario. This could be
attributed to the pronounced structural difference between the highest (O3) and lowest
(O0) optimization levels, complicating the identification of homologous functions. Figure 6
illustrates ROC curves across various scenarios. As can be seen, GMN+ consistently
outperforms baseline methods, particularly in scenarios with significant optimization level
differences, such as O0-O3.

GMN+ achieved the best performance in the function similarity detection task, out-
performing baseline methods across various architectures and optimization levels. The
advantages of GMN+ over baselines are analyzed as follows: In contrast to SAFE, GMN+
incorporates not only the semantic information of the code but also its structural infor-
mation, allowing the extraction of more comprehensive code semantics. Compared to
GMN, GMN+ employs NLP techniques to extract deeper semantic content. Furthermore,
it introduces attention mechanisms at both intra-function and inter-function levels rather
than limiting to one. Lastly, GMN+ significantly enhances semantic extraction from binary

Appl. Sci. 2024, 14, 10762 13 of 19

code by integrating instruction type information into instruction embeddings, providing a
marked improvement over the FIT method.

Table 8. Results of the similarity detection task across optimization levels.

Method
O0-O1 O0-O3 O1-O2 O0-O1-O2-O3

Recall Precision F1 Recall Precision F1 Recall Precision F1 Recall Precision F1

FIT 0.9379 0.8769 0.9074 0.7033 0.8469 0.7685 0.9224 0.9681 0.9446 0.8418 0.8605 0.8511
GMN 0.8221 0.8791 0.8696 0.8541 0.8623 0.8582 0.9192 0.9312 0.9252 0.8894 0.9161 0.9025
SAFE 0.8881 0.8185 0.8519 0.7973 0.7668 0.7818 0.8972 0.8988 0.8981 0.8603 0.8174 0.8383

GMN+(ours) 0.9601 0.9265 0.9431 0.9343 0.8888 0.9111 0.9468 0.9417 0.9442 0.9373 0.9004 0.9185

Note: Values in bold font are the optimal values for each column.

(a) O0-O1 (b) O0-O3

(c) O1-O2 (d) O0-O1-O2-O3

Figure 6. Comparison of ROC curves for different methods across optimization levels.

4.2.2. Homologous Function Search

A homologous function search involves identifying functions within a designated pool
that share homology with a query function. The performance of GMN+ and the baseline
methods was evaluated using HR-K and NDCG-K. For each function in the test set, we
constructed a pool consisting of one randomly selected homologous function version and
100 non-homologous functions to assess the similarity rankings of the homologous function
relative to the pool. The results are shown in Figure 7. The horizontal axes represent the
number of top results evaluated, denoted as K, and the vertical axes give the Hit Rate
(HR) and Normalized Discounted Cumulative Gain (NDCG), respectively. As can be
seen from Figure 7, for K ≤ 40, the HR values for GMN+ surpassed those of the baseline
methods, whereas for K > 40, the HR values for all methodologies converged toward
1. Similarly, GMN+ also achieved the highest NDCG-K. These results demonstrate the
superior capability of GMN+ in homologous function search tasks compared to baseline
methods. The distinct advantage of GMN+ over baseline methods arises from its advanced
modeling of both structural and semantic aspects of code. GMN+ enhances homologous
function search by effectively integrating various data modalities, such as the code structure
and the semantic aspects of instructions, particularly by incorporating instruction type
information into the model.

Appl. Sci. 2024, 14, 10762 14 of 19

(a) HR-K (b) NDCG-K

Figure 7. Comparative results of homologous function search using various methods.

4.2.3. Detection Efficiency

This experiment evaluated the time costs of function homology detection for GMN+
and baseline methods on different function sizes, i.e., the number of basic blocks. The
primary time cost components involve generating function embeddings and calculating
similarity scores. The results depicted in Figure 8 show the distinct time costs associated
with different methods, where the horizontal axis represents the CFG size and the vertical
axis represents the time cost of detection. The time costs of FIT are significantly higher than
those of the other methods, escalating linearly with CFG size. The higher time costs for FIT
stem from its use of LSTM to generate basic block embeddings, which are computationally
intensive. The SAFE method, which uses a bidirectional RNN to aggregate instruction
embeddings into function embeddings, incurs slightly higher time costs than the graph
embedding method used by GMN+. GMN+ demonstrates marginally higher time costs
than GMN due to its integration of an additional attention mechanism. Moreover, the ap-
plication of NLP methods to automatically generate basic block embeddings, characterized
by heightened dimensions, also increases the computation time of GMN+.

Figure 8. Comparison of time overhead for different methods.

4.3. Ablation Study

To answer RQ2, ablation studies were performed, focusing on two points: semantic
learning of basic blocks and GMN with enhanced attention. The efficacy of our semantic
learning for basic blocks was assessed by testing various versions of our model:

• (w/o) Type: The model excludes instruction type information.
• (w/o) ITP: The model omits the ITP task during pre-training.
• (w/o) Type & ITP: The model excludes instruction type information and omits the ITP

task during pre-training.

These models were evaluated using three datasets constructed with functions from
Sqlite3, Glqk and Xml software. The results are shown in Figure 9 where the vertical axis

Appl. Sci. 2024, 14, 10762 15 of 19

represents the average detection precision. GMN+, (w/o) Type, (w/o) ITP, and (w/o) Type
& ITP achieved average precision values of 0.9367, 0.8780, 0.8687, and 0.8317, respectively,
across different datasets. GMN+ consistently achieved the best performance in different
datasets, demonstrating the significance of integrating instruction type and executing ITP
during pre-training.

Figure 9. The performance of GMN+ variants with different blocks in the Semantic Learner.

We further evaluated two versions of our model, BERT-GNN and BERT-GMN, which
substitute the GMN with enhanced attention with standard GNN and GMN, respectively.
As illustrated in Figure 10, where the vertical axis represents average detection precision,
BERT-GMN outperformed BERT-GNN. This improvement is attributed to the graph match-
ing mechanism employed by GMN, which builds upon the foundational GNN structure to
effectively perceive differences between nodes, enhancing similarity detection. Meanwhile,
GMN+ outperformed the BERT-GMN model because GMN+ incorporates an additional
graph attention mechanism to focus on nodes containing significant semantic information
within the CFG.

Figure 10. The performance of GMN+ variants with different blocks in the Graph Learner.

4.4. The Performance Evaluation on Real-World Vulnerability Detection

To address RQ3, we collected nine real CVE vulnerability functions from two software
packages, as detailed in Table 9. Each software was compiled across three architectures
(ARM, MIPS, X86) and four optimization levels (O0, O1, O2, O3), producing 12 versions
that constituted a function pool of 27,714 functions. For each vulnerable function, a version
for the X86 architecture at optimization level O1 was selected as the query function. Its
similarity to other functions in the pool was assessed and ranked. The number of functions
with homologous vulnerabilities within the top 10 highest similarities is illustrated in

Appl. Sci. 2024, 14, 10762 16 of 19

Figure 11, where the horizontal axis represents specific CVE identifiers. The experimental
results reveal that GMN+ surpasses all baseline methods in detecting real-world vulnera-
bilities. Specifically, GMN+ identified 61 vulnerable functions (within the top 10) in total,
in contrast to 32 by FIT, 35 by GMN, and 8 by SAFE. The reasons for superior performance
of GMN+ in real-world vulnerability detection align with the benefits seen in the function
similarity detection task, underscoring the efficacy of our method.

Figure 11. Comparison of detection results of different methods on real-world vulnerability detection
tasks.

Table 9. The details of the CVE vulnerable function.

Software CVE Number Function Name CFG Size

Curl(v7.29.0)

CVE-2013-2174 curl_easy_unescape 18
CVE-2013-0249 Curl_sasl_create_digest_md5_message 47
CVE-2014-3707 curl_easy_duphandle 21
CVE-2016-7167 curl_easy_escape 19
CVE-2016-8621 curl_getdate 89

Xml(v2.9.2)

CVE-2015-8317 xmlParseXMLDecl 67
CVE-2015-8242 xmlSAX2TextNode 42
CVE-2016-2073 htmlParseNameComplex 51
CVE-2016-3627 xmlStringGetNodeList 68

5. Discussion

GMN+ leverages an NLP model to extract semantic information within the basic
blocks of binary functions and employs a GMN with enhanced attention to analyze the
semantic similarity between functions, thus facilitating the detection of homologous vul-
nerabilities in binaries. Experimental results demonstrate that GMN+ outperforms baseline
methods in function similarity detection, homologous function search tasks, and real-world
vulnerability detection as well. The effectiveness of GMN+ can be attributed to several
key aspects:

• An efficient instruction embedding method is utilized, which integrates operator and
operand type information for a more comprehensive representation of instructions.

• An ITP pre-training task is used to pre-train BERT to enhance its capability in the
semantic learning of functions.

• Enhanced attention is applied, focusing concurrently on crucial information for assess-
ing homology within and between functions.

However, it still faces several challenges:

Appl. Sci. 2024, 14, 10762 17 of 19

• Subtle Semantic Distinctions: GMN+ may fail to recognize subtle semantic distinctions
between vulnerable functions and their patched versions, often resulting in high
false positive rates. To address this limitation, incorporating fine-grained homology
detection at the code slices level could provide a more nuanced understanding of code
semantics and reduce false positives.

• Inter-function Vulnerability Detection: While GMN+ primarily analyzes individual
functions for vulnerability detection, many real-world vulnerabilities emerge from
interactions between multiple function [25]. Future studies should explore integrating
function call relationships into the input of the model to enhance detection capabilities
for inter-function vulnerabilities.

• Computational Overhead: GMN+ is computationally intensive, particularly during
inference, where both the query function and functions in the vulnerability pool
require processing, leading to substantial computational overhead. To mitigate this
problem, a tiered detection approach could be employed, using initial quick filters
based on function representations before conducting a detailed analysis with GMN+.

• Dependency on Disassembly Accuracy: The effectiveness of GMN+ heavily depends
on the accuracy of the disassembly tool used to convert binaries into instructions.
Errors in disassembly can lead to incomplete or inaccurate semantic representations,
which may impair the detection accuracy of GMN+. Developing strategies to handle
disassembly errors, such as using multiple disassembly tools for cross-validation,
could enhance robustness.

6. Conclusions

This paper introduces a novel binary homologous vulnerability detection method,
GMN+, which merges NLP techniques and GMN. By integrating instruction type informa-
tion into the BERT model and designing a pre-training task for instruction type prediction,
GMN+ effectively captures semantic features of basic blocks. It leverages a GMN with
enhanced attention to concurrently focus on critical semantic information within functions
and the differences information between functions. Extensive experiments validated the
performance and efficiency of GMN+ with real-world vulnerability detection tasks illus-
trating its practical utility. GMN+ shows promise for application across various domains,
including software vulnerability detection, clone detection, and malware detection.

Author Contributions: Conceptualization, Z.Z. and T.Z.; methodology, Z.Z. and T.Z.; software, T.Z.;
validation, Q.Z. and D.W.; formal analysis, T.Z. and X.F.; investigation, Z.Z. and T.Z.; data curation,
T.Z.; writing—original draft preparation, T.Z.; writing—review and editing, Z.Z., Q.Z., X.F., D.W. and
Q.M.; visualization, Q.M.; supervision, Q.Z.; funding acquisition, Q.Z. and Z.Z. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was supported by grants from the Fundamental Research Funds for the
Central Universities (3132024229), the National Natural Science Foundation of China (62002056) and
General Project of Science and Technology Foundation of Liaoning Province of China (2023-MS-091).

Data Availability Statement: The data presented in this study are openly available in Zenodo at
https://doi.org/10.5281/zenodo.14184519, accessed on 16 November 2024.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Yang, S.; Cheng, L.; Zeng, Y.; Lang, Z.; Zhu, H.; Shi, Z. Asteria: Deep learning-based AST-encoding for cross-platform binary

code similarity detection. In Proceedings of the 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), Taipei, Taiwan, 21–24 June 2021; pp. 224–236.

2. Luo, Z.; Wang, P.; Wang, B.; Tang, Y.; Xie, W.; Zhou, X.; Liu, D.; Lu, K. VulHawk: Cross-architecture Vulnerability Detection with
Entropy-based Binary Code Search. In Proceedings of the NDSS, San Diego, CA, USA, 27 February–3 March 2023.

3. Synopsys. Available online: https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-
risk-analysis.html (accessed on 16 November 2024).

https://doi.org/10.5281/zenodo.14184519
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html

Appl. Sci. 2024, 14, 10762 18 of 19

4. Xing, J.; Luo, S.; Pan, L.; Hao, J.; Guan, Y.; Wu, Z. HGE-BVHD: Heterogeneous Graph Embedding Scheme of Complex Structure
Functions for Binary Vulnerability Homology Discrimination. Expert Syst. Appl. 2023, 238, 121835. [CrossRef]

5. Dong, S.; Wang, P.; Abbas, K. A survey on deep learning and its applications. Comput. Sci. Rev. 2021, 40, 100379. [CrossRef]
6. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In

Proceedings of the International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December
2017; pp. 6000–6010.

7. Massarelli, L.; Di Luna, G.A.; Petroni, F.; Baldoni, R.; Querzoni, L. Safe: Self-attentive function embeddings for binary similarity.
In Detection of Intrusions and Malware, and Vulnerability Assessment: 16th International Conference, DIMVA 2019, Gothenburg, Sweden,
19–20 June 2019, Proceedings 16; Springer International Publishing: Cham, Switzerland, 2019; pp. 309–329.

8. Yan, H.; Luo, S.; Pan, L.; Zhang, Y. HAN-BSVD: A hierarchical attention network for binary software vulnerability detection.
Comput. Secur. 2021, 108, 102286. [CrossRef]

9. Li, Y.; Gu, C.; Dullien, T.; Vinyals, O.; Kohli, P. Graph matching networks for learning the similarity of graph structured objects.
In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 3835–3845.

10. Liang, H.; Xie, Z.; Chen, Y.; Ning, H.; Wang, J. FIT: Inspect vulnerabilities in cross-architecture firmware by deep learning and
bipartite matching. Comput. Secur. 2020, 99, 102032. [CrossRef]

11. He, H.; Lin, X.; Weng, Z.; Zhao, R.; Gan, S.; Chen, L.; Ji, Y.; Wang, J.; Xue, Z. Code is not Natural Language: Unlock the Power of
Semantics-Oriented Graph Representation for Binary Code Similarity Detection. In Proceedings of the 33rd USENIX Security
Symposium (USENIX Security 24), Philadelphia, PA, USA, 11–13 August 2024.

12. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

13. Ding, S.H.; Fung, B.C.; Charland, P. Asm2vec: Boosting static representation robustness for binary clone search against code
obfuscation and compiler optimization. In Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco,
CA, USA, 19–23 May 2019; pp. 472–489.

14. Le, Q.; Mikolov, T. Distributed representations of sentences and documents. In Proceedings of the International Conference on
Machine Learning, Beijing, China, 22–24 June 2014; pp. 1188–1196.

15. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their
compositionality. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–8
December 2013; pp. 3111–3119.

16. Chen, X.; Cardie, C. Unsupervised multilingual word embeddings. arXiv 2018, arXiv:1808.08933.
17. Jiang, S.; Fu, C.; Qian, Y.; He, S.; Lv, J.; Han, L. IFAttn: Binary code similarity analysis based on interpretable features with

attention. Comput. Secur. 2022, 120, 102804. [CrossRef]
18. Yu, Z.; Cao, R.; Tang, Q.; Nie, S.; Huang, J.; Wu, S. Order matters: Semantic-aware neural networks for binary code similarity

detection. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34,
pp. 1145–1152.

19. Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural message passing for quantum chemistry. In Proceedings of
the International Conference on Machine Learning, Sydney, NSW, Australia, 6–11 August 2017; pp. 1263–1272.

20. Borrello, P.; Easdon, C.; Schwarzl, M.; Czerny, R.; Schwarz, M. CustomProcessingUnit: Reverse Engineering and Customization
of Intel Microcode. In Proceedings of the 2023 IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA, 22–24 May
2023; pp. 285–297.

21. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly
optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692.

22. Zhang, S.; Tong, H.; Xu, J.; Maciejewski, R. Graph convolutional networks: A comprehensive review. Comput. Soc. Netw. 2019,
6, 1–23. [CrossRef]

23. Gu, Y.; Shu, H.; Kang, F. BinAIV: Semantic-enhanced vulnerability detection for Linux x86 binaries. Comput. Secur. 2023,
135, 103508. [CrossRef]

24. Su, J. SimBERT: Integrating retrieval and generation into BERT. Tech. Rep. 2023. Available online: https://github.com/
ZhuiyiTechnology/simbert (accessed on 16 November 2024).

25. Li, M.; Liu, H.; Jiang, X.; Zhao, Z.; Zhang, T. SENSE: An unsupervised semantic learning model for cross-platform vulnerability
search. Comput. Secur. 2023, 135, 103500. [CrossRef]

26. Geng, M.; Wang, S.; Dong, D.; Wang, H.; Li, G.; Jin, Z.; Mao, X.; Liao, X. Large Language Models are Few-Shot Summarizers:
Multi-Intent Comment Generation via In-Context Learning. In Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering, ICSE ’24, New York, NY, USA, 14–20 April 2024. [CrossRef]

27. Lu, G.; Ju, X.; Chen, X.; Pei, W.; Cai, Z. GRACE: Empowering LLM-based software vulnerability detection with graph structure
and in-context learning. J. Syst. Softw. 2024, 212, 112031. [CrossRef]

28. Dong, Q.; Li, L.; Dai, D.; Zheng, C.; Ma, J.; Li, R.; Xia, H.; Xu, J.; Wu, Z.; Liu, T.; et al. A Survey on In-context Learning. arXiv 2024,
arXiv:2301.00234.

29. Xu, X.; Liu, C.; Feng, Q.; Yin, H.; Song, L.; Song, D. Neural network-based graph embedding for cross-platform binary code
similarity detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas,
TX, USA, 30 October–3 November 2017; pp. 363–376.

http://doi.org/10.1016/j.eswa.2023.121835
http://dx.doi.org/10.1016/j.cosrev.2021.100379
http://dx.doi.org/10.1016/j.cose.2021.102286
http://dx.doi.org/10.1016/j.cose.2020.102032
http://dx.doi.org/10.1016/j.cose.2022.102804
http://dx.doi.org/10.1186/s40649-019-0069-y
http://dx.doi.org/10.1016/j.cose.2023.103508
https://github.com/ZhuiyiTechnology/simbert
https://github.com/ZhuiyiTechnology/simbert
http://dx.doi.org/10.1016/j.cose.2023.103500
http://dx.doi.org/10.1145/3597503.3608134
http://dx.doi.org/10.1016/j.jss.2024.112031

Appl. Sci. 2024, 14, 10762 19 of 19

30. Song, L. Structure2vec: Deep Learning for Security Analytics over Graphs; USENIX: Atlanta, GA, USA, 2018.
31. Zhang, Y.; Liu, Y.; Cheng, G.; Ou, B. GTrans: Graph Transformer-Based Obfuscation-resilient Binary Code Similarity Detection.

In Proceedings of the NDSS Symposium 2024, San Diego, CA, USA, 26 February–1 March 2024. [CrossRef]
32. Tai, K.S.; Socher, R.; Manning, C.D. Improved Semantic Representations From Tree-Structured Long Short-Term Memory

Networks. arXiv 2015, arXiv:1503.00075.
33. Gao, J.; Yang, X.; Fu, Y.; Jiang, Y.; Sun, J. Vulseeker: A semantic learning based vulnerability seeker for cross-platform binary. In

Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, Montpellier, France, 3–7
September 2018; pp. 896–899.

34. Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural
Netw. Learn. Syst. 2017, 28, 2222–2232. [CrossRef] [PubMed]

35. Yu, S.Y.; Achamyeleh, Y.G.; Wang, C.; Kocheturov, A.; Eisen, P.; Al Faruque, M.A. Cfg2vec: Hierarchical graph neural network
for cross-architectural software reverse engineering. In Proceedings of the 2023 IEEE/ACM 45th International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP), Melbourne, Australia, 17–19 May 2023; pp. 281–291.

36. Wang, J.; Zhang, C.; Chen, L.; Rong, Y.; Wu, Y.; Wang, H.; Tan, W.; Li, Q.; Li, Z. Improving ML-based Binary Function Similarity
Detection by Assessing and Deprioritizing Control Flow Graph Features. In Proceedings of the 33rd USENIX Security Symposium
(USENIX Security 24), Philadelphia, PA, USA, 11–13 August 2024; pp. 4265–4282.

37. Liu, X.; Wu, Y.; Yu, Q.; Song, S.; Liu, Y.; Zhou, Q.; Zhuge, J. PG-VulNet: Detect Supply Chain Vulnerabilities in IoT Devices using
Pseudo-code and Graphs. In Proceedings of the 16th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, Helsinki, Finland, 19–23 September 2022; pp. 205–215.

38. Sun, H.; Cui, L.; Li, L.; Ding, Z.; Li, S.; Hao, Z.; Zhu, H. VDTriplet: Vulnerability detection with graph semantics using triplet
model. Comput. Secur. 2024, 139, 103732. [CrossRef]

39. Guo, D.; Lu, S.; Duan, N.; Wang, Y.; Zhou, M.; Yin, J. Unixcoder: Unified cross-modal pre-training for code representation. arXiv
2022, arXiv:2203.03850.

40. Sun, F.Y.; Hoffmann, J.; Verma, V.; Tang, J. Infograph: Unsupervised and semi-supervised graph-level representation learning via
mutual information maximization. arXiv 2019, arXiv:1908.01000.

41. IDA Pro. Available online: https://www.hex-rays.com/products/ida/ (accessed on 8 March 2024).
42. Li, Y.; Tarlow, D.; Brockschmidt, M.; Zemel, R. Gated graph sequence neural networks. arXiv 2015, arXiv:1511.05493.
43. Wang, Y.; Wang, L.; Li, Y.; He, D.; Liu, T.Y. A theoretical analysis of NDCG type ranking measures. In Proceedings of the

Conference on Learning Theory, Princeton, NJ, USA, 12–14 June 2013; pp. 25–54.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.14722/bar.2024.23006
http://dx.doi.org/10.1109/TNNLS.2016.2582924
http://www.ncbi.nlm.nih.gov/pubmed/27411231
http://dx.doi.org/10.1016/j.cose.2024.103732
https://www.hex-rays.com/products/ida/

	Introduction
	Related Work
	NLP-Based Methods
	GNN-Based Methods

	Method
	Instruction Preprocessor
	Instruction Normalization
	Instruction Type Extraction

	Semantic Learner
	Input Embeddings
	BERT Model Training

	Graph Learner

	Experiments and Analysis
	Experimental Setup
	Dataset and Experimental Platform
	Baselines

	Model Performance Evaluation
	Function Similarity Detection
	Homologous Function Search
	Detection Efficiency

	Ablation Study
	The Performance Evaluation on Real-World Vulnerability Detection

	Discussion
	Conclusions
	References

