
Citation: Lim, S.; Park, C.; Lee, S.;

Jung, Y. Human Activity Recognition

Based on Point Clouds from

Millimeter-Wave Radar. Appl. Sci.

2024, 14, 10764. https://doi.org/

10.3390/app142210764

Academic Editor: Grigorios

Beligiannis

Received: 23 October 2024

Revised: 15 November 2024

Accepted: 19 November 2024

Published: 20 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Human Activity Recognition Based on Point Clouds from
Millimeter-Wave Radar
Seungchan Lim 1 , Chaewoon Park 1 , Seongjoo Lee 2,3 and Yunho Jung 1,4,*

1 School of Electronics and Information Engineering, Korea Aerospace University,
Goyang 10540, Republic of Korea; lsc2007@kau.kr (S.L.); pcw0201@kau.kr (C.P.)

2 Department of Electrical Engineering, Sejong University, Seoul 05006, Republic of Korea;
seongjoo@sejong.ac.kr

3 Department of Convergence Engineering of Intelligent Drone, Sejong University,
Seoul 05006, Republic of Korea

4 Department of Smart Air Mobility, Korea Aerospace University, Goyang 10540, Republic of Korea
* Correspondence: yjung@kau.ac.kr; Tel.: +82-2-300-0133

Abstract: Human activity recognition (HAR) technology is related to human safety and convenience,
making it crucial for it to infer human activity accurately. Furthermore, it must consume low power at
all times when detecting human activity and be inexpensive to operate. For this purpose, a low-power
and lightweight design of the HAR system is essential. In this paper, we propose a low-power and
lightweight HAR system using point-cloud data collected by radar. The proposed HAR system uses a
pillar feature encoder that converts 3D point-cloud data into a 2D image and a classification network
based on depth-wise separable convolution for lightweighting. The proposed classification network
achieved an accuracy of 95.54%, with 25.77 M multiply–accumulate operations and 22.28 K network
parameters implemented in a 32 bit floating-point format. This network achieved 94.79% accuracy
with 4 bit quantization, which reduced memory usage to 12.5% compared to existing 32 bit format
networks. In addition, we implemented a lightweight HAR system optimized for low-power design
on a heterogeneous computing platform, a Zynq UltraScale+ ZCU104 device, through hardware–
software implementation. It took 2.43 ms of execution time to perform one frame of HAR on the
device and the system consumed 3.479 W of power when running.

Keywords: millimeter-wave radar; 3D point cloud; human activity recognition; field-programmable
gate array

1. Introduction

The increasing number of single-person and elderly households has drawn attention
to the necessity for continuous monitoring to enable the prevention of and fast response
to accidents at home. In the event of an accident, individuals often struggle to receive
immediate assistance from those nearby; therefore, human activity recognition (HAR)
systems should be deployed to accurately infer human activity in case of emergency. In
addition, the power consumption for detecting human activity must be low at all times,
and the cost of operating the HAR system must be low in order for it to be available for as
many people as possible. Therefore, it is essential to research low-power and lightweight
HAR systems that achieve high accuracy in human activity inference. In response to this
need, HAR systems using wearable sensors with built-in accelerometers and gyroscopes
for indoor accident detection [1–3], and sensors that observe the surrounding environment,
such as cameras [4–6], light detection and ranging (LiDAR) [7], ultrasonic sensors [8,9], and
radar [10–15], have been actively researched.

A limitation of wearable sensors is that the device must be worn continuously to
infer human activity [16]. Ultrasonic sensors have a narrow sensing range, and their
performance varies significantly depending on the material or shape of the object being
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detected [17]. Camera-based sensors can cause portrait-rights infringement when collecting
image data [17]. LiDAR has the disadvantages of high cost, narrow detection range, and
sensors that are highly affected by the surrounding environment [17]. In comparison, radar
has the advantages of having a lower cost than LiDAR and a wider range of detection and
is less affected by the surrounding environment [16,17].

Several types of data can be collected using radar; however, two main types of data
can be used when performing HAR based on radar sensors—range-Doppler map and
point clouds. Point-cloud data have a sufficiently high resolution to distinguish the shape
of objects, and a higher inference accuracy can be achieved while maintaining a level of
network complexity similar to that when using range-Doppler maps as input data [18].

Singh et al. [11] constructed an HAR system using point-cloud data collected by
millimeter-wave radar. They collected an MMActivity dataset consisting of five classes
and used a model consisting of a time-distributed, convolutional neural network (CNN)
and a bi-directional long short-term memory (LSTM). The classification network of this
HAR system achieved 90.47% accuracy using 291 K parameters. Kim et al. [12] conducted
human motion classification using a point-cloud dataset consisting of seven classes, which
they collected themselves. The authors used a model consisting of 2D-DCNN and DRNN,
and they achieved 96% accuracy with 1510 K parameters using 2D-DCNN alone, and 98%
accuracy using a combination of 2D-DCNN and DRNN. Huang et al. [13] constructed an
HAR system using their own point-cloud dataset and a range-Doppler dataset consisting
of six classes. The point-cloud data pass through a 3D CNN and LSTM, and the range-
Doppler data pass through a 3D CNN. The two types of data are concatenated to classify
human activity. An accuracy of 97% was achieved using a fusion network that placed
two networks in parallel. Ding et al. [14] used six classes of point-cloud data collected by
themselves to classify human activity. The method using time-Doppler (TD) achieved 95%
accuracy in combination with 3D-PointNet using 1610 K parameters, and the method using
range-Doppler (RD) achieved 98% accuracy in combination with 4D-PointNet. Gu et al. [15]
augmented five classes of self-collected point-cloud data with segment-wise point-cloud
augmentation (SPCA) to organize a dataset and infer human activity. In this study, Lite-
PointNet and a bidirectional lightweight LSTM (BiLiLSTM) were used to achieve 95%
accuracy. Lite-PointNet achieved high accuracy with a lightweight network using 79.7 K
parameters, and the HAR system was ported to Raspberry Pi to implement the edge device.

To effectively utilize HAR technology in indoor environments, edge devices capable
of performing HAR must be deployed to infer the activity of people, wherever they are.
Multiple edge devices are required to build such an environment, whose cost is closely
related to the cost of the edge devices. To reduce the cost of edge devices, a lightweight
HAR system aimed at low memory usage is essential, and a low-power design should be
used to reduce maintenance costs. Although high HAR accuracy is important, it is also
important to design an appropriate HAR model that considers network complexity and
therefore memory usage.

In this study, a pillar feature encoder (PFE) was used as an encoder for 3D point-cloud
data for the purpose of lightweighting the network [19]. The PFE clusters 3D point clouds
and converts them into 2D images. The advantage of using PFE is that 2D convolution
can be applied on 2D images instead of 3D images in the classification network, thereby
reducing the network complexity. The classification network was optimized based on depth-
wise separable convolution and has the advantage of low complexity. Depth-wise separable
convolution consists of depth-wise convolution and point-wise convolution, in which fewer
parameters are required for the operation compared to a general convolution [20].

Existing radar point-cloud HAR studies have achieved high accuracy but are limited
by the lack of discussion on lightweight HAR systems and low-power designs. Considering
the practicality of HAR technology, it is crucial to develop a lightweight HAR system that
operates efficiently at low power on edge devices. Therefore, in this study we used Xilinx’s
FINN [21] to design a hardware–software implementation of an HAR system on an edge
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device, aiming to achieve a low-power, lightweight solution while maintaining an inference
accuracy comparable to existing studies.

The remainder of this paper is organized as follows: In Section 2, we introduce the
dataset collection. In Section 3, we describe the structure of the proposed HAR system in
relation to data pre-processing, the encoding of point-cloud data, and a classification net-
work. In Section 4, we evaluate the performance of the hardware–software implementation
of the HAR system using FINN. Finally, in Section 5, we conclude the study.

2. Data Collection Using Frequency Modulated Continuous Wave (FMCW) Radar

The dataset used in this study was collected using the RETINA-4SN radar (Smart
Radar System, Gyeonggi, Republic of Korea) of the Smart Radar system [22]. The RETINA-
4SN radar is an FMCW and multi-input–multi-output (MIMO) millimeter-wave radar that
can obtain (x, y, z) coordinates and p (power) for each point in a point cloud at a rate of
20 frames per second. The detailed specifications of the radar are listed in Table 1.

Table 1. Radar specifications.

Parameter Quantity

Start frequency 77 GHz
Stop frequency 81 GHz

Bandwidth 4 GHz
Azimuth angle FoV 90◦

Elevation angle FoV 90◦

Detection range 12 m
Number of transmitter antennas 12

Number of receiver antennas 16
Number of frames per second 20

The data collection process was carried out as shown in Figure 1, where the radar was
positioned 0.8 m above ground. Data were collected by having a person perform the actions
of each class in the center of a 5 m long and 4 m wide area. A total of three volunteers
(subjects), two men and one woman, participated in the experiment. Their heights ranged
from 163 to 180 cm, and their weights ranged from 58 to 80 kg. The collected dataset was
organized into 11 classes based on activities that often occur in daily life. An example of
point-cloud data for each class is shown in Figure 2. Frames with fewer than 10 points
included in one frame were excluded from the dataset. Table 2 shows details of the dataset,
where each class consists of approximately 1000 to 1100 frames, the maximum number of
points in a frame is 1280, and there is an average of 343 points per frame across all classes.

Figure 1. Data collection setup.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k)

Figure 2. Configuration of dataset classes and their corresponding point clouds: (a) Stretching;
(b) Standing; (c) Taking medicine; (d) Squatting; (e) Sitting chair; (f) Reading news; (g) Sitting floor;
(h) Picking; (i) Crawl; (j) Lying wave hands; (k) Lying.
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Table 2. Eleven classes of activity type in the dataset.

Class Number of Frames Average Number of
Points per Frame

Crawl 1069 321
Lying 1048 172

Lying wave hands 1075 336
Picking 1075 382

Reading news 1098 422
Sitting chair 1060 374
Sitting floor 1063 280
Squatting 1071 389
Standing 1073 340

Stretching 1062 402
Taking medicine 1075 345

3. Proposed HAR System

To design a low-power and lightweight HAR system, first, we designed the HAR
system with a 32 bit floating-point format in a GPU environment. Subsequently, the
classification network was quantized to a 4 bit fixed-point format for lightweight, and the
memory usage was reduced to 12.5% of the original 32 bit floating-point format network.
Finally, for a low-power design, the HAR system was hardware–software designed on
a heterogeneous computing platform, ZCU104 [23]. Figure 3 shows an overview of the
proposed HAR system. The point-cloud data obtained by the radar are input into the
microprocessor, and pre-processing is performed on the input point-cloud data. The pre-
processed point-cloud data are input to the PFE and converted into a 2D pseudo image by
grouping 3D point-cloud data, creating handcraft features and scattering. The converted
2D image is input to the classification network IP implemented on a field-programmable
gate array (FPGA), and the activity class is inferred and output through deep-learning
operations based on depth-wise separable convolution.

Figure 3. Overview of the proposed HAR system.
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3.1. Data Pre-Processing

The data pre-processing performed in the microprocessor included both parallel trans-
lation and normalization processes. Normalizing point-cloud data ensures that all points
are distributed within a certain range without information loss [24]. This facilitates gradient
descent learning and prevents bias toward specific values. In addition, by performing a
parallel translation before normalization—to move the center of the point cloud to the
origin—the point cloud was evenly distributed around the origin when normalization
was performed.

In this study, parallel translation was performed to move the center of the maxi-
mum and minimum values along the (x, y, z) axis to the origin for the points included in
each frame. Subsequently, data pre-processing was performed to normalize the (x, y, z)
coordinates of all points by dividing the (x, y, z) coordinates of all points by the largest
absolute value.

3.2. Pillar Feature Encoder

There are several methods to encode point-cloud data. The voxel feature encoding
(VFE) layer of VoxelNet [25] uses voxels to encode in three dimensions; this has the
disadvantage of increasing the network complexity using 3D convolution. In addition, the
multi-view (MV)CNN [26] uses as its input the 2D images that are projected from multiple
directions of 3D point-cloud data; this has the disadvantage of overlapping points occurring
during the process of projecting points, resulting in information loss. However, the PFE
uses pillars to convert 3D point-cloud data into 2D pseudo images to enable image-based
inference. Therefore, the PFE can be used to convert 3D point-cloud data into 2D images
without loss of information, and as it outputs a 2D image it has the advantage of lowering
the complexity of the network by utilizing 2D convolutions instead of 3D convolutions in
the classifier.

The PFE consists of three major steps: grouping, handcraft feature extraction, and
scattering. Grouping is the process of grouping points into pillars with an infinitely
extended z-axis. The xy plane was divided into uniformly spaced regions, and each region
was treated as a pillar. Points within a uniform area were grouped into the internal set
of pillars of the region; if no points were inside a pillar, the pillar was excluded from the
grouping. Finally, the remaining pillar contained the pillar index, which indicated its
position on the xy plane, the number of points inside the pillar, and the (x, y, z, p) channel
information of the internal point. In the handcraft feature extraction process, the point data
consisting of (x, y, z, p) 4 channels were expanded to a total of (x, y, z, p, xc, yc, zc, xp, yp)
9 channels by adding the center point coordinates (xc, yc, zc) of the points inside the
pillar and the center coordinates (xp, yp) of the pillar. Subsequently, the point data of the
9 channels were expanded to 64 channels by passing them through point-wise convolution,
batch normalization, and the ReLU activation function. In the scattering process, the pillar
index information saved in the grouping process was used to place each pillar and the
point data of the 64 channels within the pillar at the existing location on the xy plane.

3.3. Classification Network

In this study, we optimized and used a depth-wise separable convolution-based net-
work from various existing image inference networks. A depth-wise separable convolution
consists of point-wise convolution and depth-wise convolution. Point-wise convolution
adjusts the number of output channels using a 1 × 1 filter, whereas depth-wise convolu-
tion is a convolution in which one filter is applied to only one channel. When the input
has M channels, depth-wise convolution requires only M filters; therefore, the network
can be constructed using fewer filters, or in other words, fewer parameters, compared to
general convolution.
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4. Results
4.1. Experiment

In this paper, we compared the performance of the different network configurations
in Table 3 by setting the following as parameters: the 2D pseudo image size encoded in
PFE, the number of depth-wise separable convolution layers (#ds-conv.), and the channel
configuration of the network. Table 4 lists the numbers of output channels per convolution
layer for each network (A, B, C, D, E). The Network A configuration has 64 output channels
for all depth-wise separable convolution layers, and Network B has 128 output channels
for the last depth-wise separable convolution layer. Network C has the last two depth-
wise separable convolution layers, each with 128 output channels. Network D has the
last depth-wise separable convolution layer with 256 output channels and the previous
layer with 128 output channels. Finally, Network E has 256 output channels in the last
depth-wise separable convolutional layer and 128 output channels in each of the two
previous layers. In this way, a total of 42 networks were configured, and an NVIDIA RTX
A6000 GPU [27] (NVIDIA, Santa Clara, CA, USA) was used for network training and
verification. In addition, all the networks used the same training settings (300 epochs,
learning rate of 0.001, batch size of 24, Adam optimizer, and negative log likelihood loss
(NLL loss)). For training and verification, we used a dataset of 11,769 frames collected
by ourselves, which were divided into training data of 10,594 frames and test data of
1175 frames. In addition, to investigate the generality of the proposed HAR system, we
performed stratified 10-fold cross validation. “Accuracy” was calculated to evaluate the
classification performance in terms of true positives (TPs), true negatives (TNs), false
positive (FP), and false negatives (FNs).

Accuracy =
TP + TN

TP + FN + FP + TN
(1)

Table 3. Accuracy of models by various parameters and networks.

Parameter Network

Image Size #ds-conv. A B C D E

32 × 32
2 91.22% 92.89% 93.25% 93.96% -
3 92.76% 93.55% 94.09% 94.13% 94.38%
4 92.52% 92.97% 93.31% 94.08% 94.40%

64 × 64
2 92.36% 94.66% 94.72% 95.36% -
3 94.65% 95.54% 95.36% 96.41% 96.65%
4 95.38% 95.81% 95.76% 96.53% 96.56%

128 × 128
2 92.82% 94.72% 94.95% 95.74% -
3 94.22% 95.21% 95.60% 96.16% 96.47%
4 95.30% 95.52% 95.78% 96.62% 96.75%

Table 4. Output channel configuration for network (A,B,C,D,E).

Network
#ds-conv.

2 3 4

A 64, 64 64, 64, 64 64, 64, 64, 64
B 64, 128 64, 64, 128 64, 64, 64, 128
C 128, 128 64, 128, 128 64, 64, 128, 128
D 128, 256 64, 128, 256 64, 64, 128, 256
E - 128, 128, 256 64, 128, 128, 256

Finally, the model with the smallest number of network parameters (64 × 64 image
size, 3 depth-wise separable convolutions, and B network configuration) was selected as
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the final image classification network among those models with an HAR accuracy of 95%
or higher (Table 3) to configure the HAR system.

The backbone network structure of the proposed HAR system is shown in Figure 4.
When a 2D image of size 64 × 64 with 64 channels was input, it was converted to an
8 × 8 image with 128 channels using three depth-wise separable convolution layers. It was
then passed through max pooling and the fully connected layer to classify the 11 classes of
human activity.

Figure 4. Proposed classification network.

We compared the performance of the optimized depth-wise separable convolution-
based network with the existing, representative, image classification networks LeNet5 [28],
VGGNet [29], ResNet [30], and MobileNet [31] as the backbone network of the HAR system.
Table 5 shows the results of comparing the classification accuracy and network complexity
between the networks, confirming that the network proposed in this study is superior
in terms of accuracy, number of multiply–accumulate (MAC) operations, and number of
network parameters.

Table 5. Comparison between image classification networks.

Network Accuracy #MACs #Parameters

LeNet5 [28] 94.33% 190.55 M 1.94 M
VGG11 [29] 94.01% 759.10 M 9.35 M

Resnet18 [30] 93.98% 2.37 G 11.23 M
MobileNetV1 [31] 90.57% 66.00 M 3.24 M

Ours 95.54% 25.77 M 22.28 K

4.2. Evaluation and Analysis

The loss curve and accuracy curve for training and testing after 300 epochs of training
are shown in Figure 5, where NLL loss is used as the loss function. The loss decreased
significantly in the early epochs of training and tended to decrease moderately after ap-
proximately 50 epochs. Similarly, the accuracy increased significantly in the early epochs
of training and tended to increase and maintain a moderate rate after approximately
50 epochs.

The confusion matrix for the HAR system using our dataset is shown in Figure 6. The
sitting floor class tended to be confused with the lying, lying wave hands, and sitting chair
classes. This is because the sitting floor class is similar to the sitting chair class in terms of
sitting motion and is similar to the lying class in terms of being close to the ground.
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(a) (b)

Figure 5. Training and test loss curve and accuracy curve: (a) Training and test loss curve; (b) Training
and test accuracy curve.

cr
aw

l

ly
in
g

ly
in
g 
w
av

e 
ha

nd
s

pi
ck

in
g

re
ad

in
g 
ne

w
s

si
tt
in
g 
ch

ai
r

si
tt
in
g 
flo

or

sq
ua

tt
in
g

st
an

di
ng

st
re

tc
hi
ng

ta
ki
ng

 m
ed

ic
in
e

Predicted

crawl

lying

lying wave hands

picking

reading news

sitting chair

sitting floor

squatting

standing

stretching

taking medicine

T
ru

e

0.94 0 0.01 0.04 0 0 0 0.01 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0.01 0.04 0.93 0 0 0 0.02 0 0 0 0

0 0 0 0.98 0 0.01 0 0.01 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0.94 0 0.06 0 0 0

0 0.04 0.02 0 0 0.05 0.9 0 0 0 0

0.01 0 0 0.01 0 0 0 0.98 0 0 0

0 0 0 0 0 0.03 0.01 0.02 0.92 0.02 0.01

0 0 0 0 0 0 0 0 0.07 0.92 0.02

0 0 0 0 0 0 0 0 0.01 0 0.99

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6. Confusion matrix.

4.3. Performance Comparison by Quantization Bit Formats

A lightweight model design and a low-power design are essential for the practical use
of HAR systems. For this purpose, the proposed HAR system was implemented on the
Xilinx Zynq UltraScale+ ZCU104 (Xilinx, Santa Clara, CA, USA) for a low-power design.
To implement a classification network on the FPGA part of the ZCU104 platform, a register
transfer level (RTL) design is required, which includes the process of converting the system
implemented in a floating-point format to a fixed-point format. In RTL design, the more
bits that express a number, the larger the range of numbers that can be expressed; this
improves accuracy but requires a large memory for system storage and operation. To
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find a tradeoff between accuracy and memory usage, we compared the HAR accuracy
based on the bit formats of the classification network, as shown in Table 6. The Brevitas
library provided by Xilinx was used to quantize the input data, weight, bias, and activation
functions [32]. As shown in Table 6, the accuracy decreased by less than 1% from 32 bits
to 4 bits; however, at 2 bits the accuracy degradation was approximately 13% compared
with other bit formats. Therefore, 4 bit quantization was selected as the best tradeoff
between accuracy and memory usage for the classification network and was implemented
on the FPGA.

Table 6. Comparison of the classification network accuracy by bit format.

Classification Network Bit Format Accuracy

32 bits 95.54%
16 bits 95.48%
8 bits 95.46%
4 bits 94.79%
2 bits 82.21%

4.4. Hardware–Software Implementation

FINN is a deep-learning framework developed by the Integrated Communications
and AI Lab of AMD Research & Advanced Development. Using FINN, we optimized a
classification network configuration based on the Xilinx library and generated the RTL code
and IP of the optimized network. Our implementation of the HAR hardware–software
performs data pre-processing and PFE on a microprocessor and deploys a classification
network IP created using FINN on an FPGA. Figure 7 shows the environment in which
the classification network was implemented on an FPGA using FINN, and where the HAR
system was validated with a hardware–software implementation.

Figure 7. Environment used for FPGA implementation and verification.
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The specifications of the HAR system with the hardware–software implementation
is shown in Table 7. The platform used was an Xilinx Zynq UltraScale+ ZCU104 with an
ARM Cortex A53 processor (ARM, Cambridge, England, UK) operating at 1.2 GHz, and the
execution time of the HAR system in this environment was 2.43 ms. The proposed HAR
system utilized 29,720 configurable logic block (CLB) look-up tables (LUTs), 22,893 CLB
registers, 72 digital signal processors (DSPs), and 25.5 block RAMs. The maximum op-
erating frequency was 300 MHz, and the power consumption was 3.479 W, making it a
lightweight HAR system that runs at low power on edge devices.

Table 7. Specifications of the HAR system implementation on the Zynq UltraScale+ ZCU104.

Parameter Proposed System

Platform ZCU104
Execution time 2.43 ms

CLB LUTs 29,720
CLB Registers 22,893

DSPs 72
Block RAMs 25.5
Frequency 300 MHz

Power 3.479 W

4.5. Performance Comparison

Table 8 shows the results of the performance comparison of the HAR system proposed
in this paper with those of other radar point-cloud-based HAR systems. The comparison
was conducted based on the input feature size of the classification network, number of
data classes, accuracy, number of network parameters, the device that implemented the
system, and the power consumption. The proposed HAR system distinguished 11 classes,
the most, and achieved 94.79% accuracy by performing 4 bit quantization. It also used
22.28 K parameters in the network, the smallest number of parameters. In terms of power
consumption, the RTX3080 consumed 320 W, the RTX2060 consumed 175 W, and the
Raspberry Pi consumed 3.6 W. However, the proposed HAR system using the ZCU104
platform consumed 3.479 W of power, which is up to 92 times less than using RTX3080.
Compared to other HAR systems, the proposed HAR system achieved the lowest power
consumption, indicating that we have achieved a low-power design.

Table 8. Performance of the reference HAR system versus the proposed HAR system.

Method Feature Size #Data Classes Accuracy #Parameters Platform Power

[11] 10 × 32 × 32 5 90.47% 291 K - -
[12] 3 × 224 × 224 7 96.10% 1510 K - -
[13] 10 × 32 × 32 6 90.20% 131.62 K GTX3080 320 W
[14] 9 × 400 × 3 6 94.53% 1610 K RTX2060 175 W
[15] 2 × 25 × 3 5 95.12% 79.7 K Raspberry Pi 3.6 W

Ours 64 × 64 × 64 11 94.79% 22.28 K ZCU104 3.479 W

5. Conclusions

In this study, we proposed a low-power and lightweight HAR system using radar
point-cloud data. The proposed HAR system consists of pre-processing 3D point data
with four channels and then inputting the converted 2D image through a PFE to the image
classification network. For the HAR technology to be practical, a lightweight and low-
power design must be used. In this paper, PFE is used as an encoder for point-cloud data,
and an image classification network based on depth-wise separable convolution is used
to realize a lightweight HAR system. Also, the 4 bit quantized classification network was
implemented on an FPGA to achieve a low-power design. The 32 bit format classification
network was quantized to a 4 bit one, resulting in a lightweight design that used 12.5% of the
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memory of the original 32 bit format network. As a result of the implementation, in terms
of network complexity, 25.77 M MAC operations were performed and 22.28 K parameters
were used, which is the smallest among the compared HAR systems. An accuracy of 95.54%
was achieved with a 32 bit floating-point data format in a GPU environment and 94.79%
with a 4 bit fixed-point data format in a hardware–software implementation environment
for 11 classes of datasets collected using the FMCW MIMO millimeter-wave radar. In
terms of power consumption, the proposed HAR system consumed 3.479 W, which is the
lowest power consumption compared to other HAR systems. The results show that the
proposed HAR system has a level of accuracy similar to other HAR systems, has relatively
low complexity, and can operate at low power. In future work, we plan to implement
a low-power, lightweight HAR system on a very-large-scale integrated circuit (VLSI) to
achieve a better low-power, lightweight design while maintaining current accuracy.
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