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Abstract: This paper presents a dual-band fully integrated high linearity CMOS power amplifier (PA).
The PA employs a reconfigurable transformer in the input matching network to achieve low reflection
coefficient across both bands, demonstrating significant flexibility in the design of dual-band power
amplifiers with high output powers. Additionally, a detailed design methodology for the dual-band
matching network is introduced. By utilizing this methodology, the PA has been designed using
55 nm CMOS technology. For continuous-wave operation, the PA achieves a saturated power (Psat)
of 28.03 dBm and 27.5–28.2 dBm, with power-added efficiency (PAE) of 33.2% and 24.6–31.1%, in
the 2.4 GHz and 5 GHz WLAN bands, respectively. Concurrently, the PA power cells, which employ
multi-gate transistor (MGTR) technology, achieve an intermodulation distortion (IMD3) of below
30 dBc at an output power of 15 dBm in both the 2.4 GHz and 5 GHz WLAN bands. The proposed
PA outperforms other dual-band or multi-band PAs in terms of output power and exhibits great
potential for WLAN applications.

Keywords: CMOS power amplifier; dual band; transformer; wireless local area network (WLAN)

1. Introduction

In recent years, wireless local area network (WLAN) technology has experienced
rapid development and application across billions of mobile devices such as computers,
smartphones, and tablets. To meet the requirements of high data throughput applications
such as video conferences and 4K video streaming, WLAN standards have continuously
increased signal bandwidth and adopted more advanced techniques. The current 802.11ax
standard utilizes OFDMA technology and a 1024 QAM modulation scheme to boost data
throughput, achieving a data rate of 9.6 Gbps. The development of new WLAN standards
is drawing much effort in academia and industry. Additionally, system-on-chip (SoC)
implementation with CMOS technology for WLAN applications has been the focus of
attention in recent years [1–6].

IEEE 802.11ax devices need to operate in two frequency bands and also require
compatibility with previous WLAN standards. Integrating multiple channel transceivers
operating in different bands on a single chip is a common approach [7–11]. However, this
approach results in a large chip area, which means the cost will be high. A preferable
alternative is using a single transceiver supporting reconfigurable 2.4/5 GHz operation.

As the core block of the transmitter, power amplifiers should also support either
dual-band or broadband operation, with a bandwidth that covers at least both the 2.4 GHz
to 5 GHz bands. Currently, the design of broadband power amplifiers primarily relies on
high-order matching networks [12–16]. However, for broadband amplifiers that comply
with IEEE 802.11ax standards, the required operating bandwidth is extensive (at least from
2.4 GHz to 5.9 GHz), which necessitates a substantial matching network area. Further-
more, because high-order matching networks require multiple inductors or transformers
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for matching, they inherently increase matching network losses and significantly reduce
the power amplifiers’ efficiency. Consequently, dual-band or multi-band power ampli-
fiers employing switching capacitors or varactors [17–20] are more effectively suited for
reconfigurable transmitters. However, the output power of current dual- or multi-band
power amplifiers are not sufficiently high for certain WLAN applications (typically below
26 dBm). To address this issue, this paper aims to design a fully integrated dual-band
power amplifier with improved output power. Additionally, existing dual- and multi-band
power amplifier design methodologies struggle to meet high power output requirements.
This paper proposes a new design methodology focused on optimizing the insertion loss
of the matching network to achieve dual-band matching. This proposed methodology is
highly universal and easily replicable. Based on the proposed design methodology, this
paper develops a low-loss matching network, enabling the power amplifier to achieve
sufficiently high output power. On the other hand, while some optimization methods
for improving power amplifier linearity have been proposed [21–23], existing dual- or
multi-band power amplifiers lack specific explanations and optimizations for linearity.
This paper analyzes the causes of nonlinearity in power amplifiers and employs multi-gate
transistor (MGTR) [24] technology to enhance linearity, enabling the power amplifier to
achieve high linear output power.

The paper is organized as follows: Section 2 first introduces the topology of reconfig-
urable dual-band output matching network and then proposes a design methodology for
the dual-band matching network based on passive insertion loss at both 2.4 GHz and 5 GHz.
Finally, a reconfigurable transformer is thoroughly studied and subsequently employed
in the proposed dual-band input matching network to achieve a low reflection coefficient
across both bands. Section 3 describes the detailed circuit implementations. Section 4
presents the simulation results of the proposed CMOS PA. Section 5 discusses the research
direction of CMOS PAs for WLAN applications, and Section 6 concludes this article.

2. Design of Dual-Band Matching Networks
2.1. Design of Dual Band Output Matching Networks

The design of the dual-band output matching network is crucial to achieving high
output power across dual frequency bands. To achieve this goal, the dual-band output
matching network should transform the 50 ohm impedance to the optimum load impedance
of the power amplifier at both frequency bands. Additionally, the dual-band output
matching network is required to maintain minimal loss at both frequency bands. This paper
employs the reflection coefficient and insertion loss of the dual-band output matching
network as guidance.

The optimal load impedance of the PA is given by a load resistance in parallel with an
equivalent negative capacitance [17] and determined through load-pull simulations, as

Zopt(ω) = Ropt//
(

−1
jωCout

)
(1)

In this design, the simplified output matching schematic is shown in Figure 1. The
reconfigurable output matching network comprises a fixed transformer and switching
capacitors Csws, which can adjust the load impedance seen in the matching network to
achieve the optimum impedance in the two bands of interest. Ideally, the reflection coeffi-
cient Γins = 0 and ILoutput = 0 . However, due to the Bode-Fano limit [25] and transformer
parasitic resistance, the ideal matching network is unachievable. Thus, in practice, we set
|Γ ins|≤ −20 dB and

∣∣ILoutput
∣∣≤ 1.5 dB as the target.
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The Z-parameter matrix for the transformer is as follows [26]:

Z =

[
Rp + jωLp −jωM

jωM −(R s + jωLs)

]
(2)

where
M = k

√
LpLs (3)

and k represents the coupling factor between primary and secondary coils.
Therefore, the equivalent load impedance for the power amplifier (PA) can be derived

as Equation (4).

Zload =

{
Rp +

(ωM)2(Rs + Req
)(

Rs + Req
)2

+
(
ωLs + Xeq

)2

}
+ j

{
ωLp −

(ωM)2(ωLs + Xeq
)(

Rs + Req
)2

+
(
ωLs + Xeq

)2

}
(4)

where
Req =

RL

1 + (ωRLCsws)
2 (5)

Xeq =
−ωRL

2Csws

1 + (ωRLCsws)
2 (6)

So |Γ ins| and IL can be derived as

|Γins| = 20log
∣∣∣∣Zins − Ropt

Zins + Ropt

∣∣∣∣ (7)

ILoutput = 20log

∣∣∣∣∣∣ jωM(
Rs + Req

)
+ j

(
ωLs + Xeq

) · Cout − Zins(
Zins + Ropt

)
Cout

·

√
Ropt

RL

∣∣∣∣∣∣ (8)

where
Zins = Cout//Zload (9)

It can be seen that there are three main parameters (Lp, Ls and Csws) to be determined.
Considering the matching target, we calculate the minimum value of the |Γ ins| and IL by
sweeping values of the main parameters to find the optimum value range of Lp and Ls,
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where the value of Csws is chosen to minimize the reflection coefficient and insertion loss.
During this process, the quality factors of transformer windings are both assumed to be
12 at 2.45 G and 14 at 5.5 G, while the coupling factor of transformer windings is assumed
to be 0.75, which are reasonable values for practical transformers in CMOS process. In
addition, the value range of Csws is limited to 0–3 pF, and the value of Csws above 3 pF is
regarded as unacceptable and is abandoned because of the low quality factor and large
off-state capacitance (Co f f ). So far, the values of the components in the proposed dual-band
output matching network have been preliminarily determined.

2.2. Implementation of Dual-Band Output Matching Network

Now, we can take the next step to implement the dual-band output matching network
according to the proposed methodology. The simulated power and PAE contours for
2.4 and 5.5 GHz are shown in Figure 2. In general, the pursuit is not singularly focused
on either efficiency or output power; instead, a tradeoff between output power and PAE
is normally made. In this design, the optimal load impedances are determined as 15.05 +
j15.08 at 2.45 G and 9.87 + j15.86 and 5.5 G, respectively. The corresponding Ropt and Cout
are 30.17 Ω and 2.16 pF at 2.4 GHz and are 35.36 Ω and 1.32 pF at 5.5 GHz.
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Therefore, the calculated values of the |Γ ins| and IL are plotted in Figures 3 and 4.
Thus, we now have the optimum values of Lp, Ls, and Csws.
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We then take the next step to implement the output matching network with optimum
values. In this design, the used CMOS process only has one thick metal layer. Consequently,
all inductor coils are designed using the thickest metal layer with an octagonal shape
to enhance the Q value of the inductors. To further improve the quality factor of the
transformer, this design integrates a patterned ground shielding (PGS), constructed from
poly layers, into the on-chip transformer to mitigate substrate losses. Simultaneously, a low
doping substrate beneath the transformer is used to increase resistivity, thereby reducing
the substrate magnetic losses. Therefore, the total layout of the transformer is depicted in
Figure 5, and the parameters obtained from electromagnetic (EM) simulation for Lp, Ls,
and k are as shown in Table 1.
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Table 1. Parameter of output transformer.

Inductance Quality Factor (Q) Coupling Coefficient (k)

Lp 1.49 nH 16.33
0.75

Ls 2.83 nH 19.39

The schematic of the switching capacitor is shown in Figure 14. Two stacked thick-gate
transistors are used, considering reliability when the switch is closed [16,27]. The quality
factor of the switching capacitor is mainly determined by the on-resistance of the switching
transistors, while the on-resistance is determined by the size of the transistor. To increase
the quality factor of the switching capacitor, larger transistor sizes are preferred. However,
larger transistor sizes result in a larger parasitic capacitance in the off state, which is a
capacitance that must be considered in the matching network. Therefore, the size of the
switch needs to be carefully balanced, taking into account both on-state resistance and
off-state capacitance.

The on-resistance and off-state parasitic capacitance have been simulated for different
transistor sizes, as shown in Figure 6. In this design, the Csws is 1.37 pF, and the switching
transistor size is 900 µm/280 nm. Furthermore, by using parallel switching capacitors, the
parasitic resistance of the overall switching capacitors can be further reduced when the
switches are closed.

Finally, the achieved output load impedance and the insertion loss of the output
matching network in this design are shown in Figures 1 and 7. The insertion loss is higher
than the target at the 5.5 GHz band due to the requirement of operating bandwidth at
2.4 G bands. The value of the transformer windings (Lp, Ls) cannot be too small, causing
larger insertion loss in 5.5 GHz band, and the degradation of the insertion loss is acceptable
in practice. The simulation results demonstrate that the implemented output matching
network exhibits superior matching performance across both the 2.4 GHz and 5 GHz
frequency bands, fully validating the effectiveness of the dual-band matching network
design methodology presented in this work.
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2.3. Implementation of Dual-Band Input Matching Network

Different from the output matching, input matching is more sensitive to inductor
and capacitor values. Small variations can have a significant impact on the reflection
coefficient, making it challenging to achieve good matching within dual bands at high
output power conditions. To address this issue, this article proposes a novel reconfigurable
input matching circuit. The schematic is shown in Figure 8, and the input matching
circuit consists of the switching capacitors and reconfigurable transformers. Applying a
reconfigurable transformer significantly enhances dual-band input matching under high
output power conditions. At the high-frequency band (5 GHz), the inductance values of
the reconfigurable transformer decrease, ensuring effective input matching. Conversely,
at the low-frequency band (2.4 GHz), the inductance values increase, facilitating optimal
input matching at the lower band.
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Figure 9. Simplified schematic of the reconfigurable transformer.

The reconfigurable transformer is composed of the main transformer windings (Lp, Ls),
tuning inductor Lt, and tuning capacitor Ct. The tuning inductor Lt is magnetically coupled
to the main transformer with coupling coefficients kp and ks, which is also connected
directly with the tuning capacitor Ct. The reconfigurable transformer is based on a tunable
inductor, which is shown in Figure 10. The Rt is the parasitic resistance of the entire tuning
branch, which includes the parasitic resistances of both the resonant inductor Lt and the
switching capacitor Ct. When the main inductor L1 inputs a signal, the induced current It
through Lt and Ct will generate an induced magnetic field. Thus, the total magnetic flux
of the main inductor is influenced by the induced magnetic field, and so the equivalent
inductance of the main inductor will be changed and can be derived as Equation (8).

Leq = L1 +
L1LtCtk2

t ω2(1 − LtCtω
2)

(LtCtω2 − 1)2 + R2
t C2

t ω2
(10)

Req = R1 +
C2

t L1LtRtk2
t ω4

(LtCtω2 − 1)2 + R2
t C2

t ω2
(11)

Qeq =

(
1 − C2

t L2
t
(
k2

t − 1
)
ω4 + Ct

(
R2

t Ct + Lt
(
k2

t − 2
))

ω2)ωL1

C2
t Lt

(
L1Rtk2

t + R1Lt
)
ω4 + CtR1

(
R2

t Ct − 2Lt
)
ω2 + R1

(12)
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Figure 10. Simplified schematic of the tunable inductor.

Meanwhile, due to magnetic coupling, the quality factor of the main inductor is also
manipulated and is derived as Equation (10). Figure 11a illustrates the variations in main
inductance value and Q factor when the tuning capacitor Ct changes. Figure 7b shows
the impact of Rt on the main quality factor. It can be seen that the values of the main
inductor (L1) and quality factor (Q) are significantly influenced by the tuning capacitor,
while quality factor has low relativity to Rt, indicating that the tuning capacitor should be
within an appropriate range to prevent a severe reduction in Q. On the other hand, changing
the tuning capacitor within the appropriate range allows for changes in inductance with
minimal impact on the Q factor. The reconfigurable transformer in this work is formed by
one tunable inductor Lt. Thus, the values of the main reconfigurable transformer windings
are influenced by Lt, Ct with coupling factor kp, ks.
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Figure 11. (a) Equivalent inductance and quality factor versus Ct. (b) Equivalent quality factor
versus Rt.

By applying the proposed dual-band matching network design methodology, the
required transformer parameters of the input matching network can be determined. More-
over, the incorporation of the reconfigurable transformer in this work substantially expands
the inductance range of the practical transformer, thereby enabling more effective dual-
band input matching. We then take the next step to implement the input matching network
with optimum values. The layout of the reconfigurable transformer is shown in Figure 12,
with a turn ratio of 2:2 for the main transformer and the tuning coil located on the outermost
layer. All inductor coils employ the same metal layer to enhance the quality factor of the
transformer. To avoid a significant impact on the Q values of Lp and Ls, the maximum
value of Ct should not exceed 3 pF. The value of Ct in this design is 2.8 pF.
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When the switching capacitor Ct changes, the values of the reconfigurable transformer
are changed and are shown in the table below.

It can be seen that the proposed reconfigurable transformer in this paper achieves
a change of approximately 100 pH in inductance with an acceptable decrease in Q. This
feature is advantageous for achieving dual-band input matching. The final schematic of the
dual-band input matching network is shown in Figure 8. The transistor sizes of the switch
Cinp and Ct are 450 µm/280 n and 540 µm/280 n, respectively. The off capacitances of the
switches are 307 fF and 513 fF. The parameter of the reconfigurable transformer is shown in
Table 2.

Table 2. Parameters of reconfigurable transformer.

SW-Off SW-On

Lp 1.03 nH Lp 1.15 nH

Qp 8.39 Qp 7.55

Ls 877.15 pH Ls 936.65 pH

Qs 9.56 Qs 9.21

k 0.76 k 0.77

In comparison to a fixed transformer, the reconfigurable transformer proposed in this
article demonstrates excellent impedance matching, as shown in Figure 13. It is evident
that under the same matching capacitor conditions, the lowest point of S11 for the fixed
transformer deviates significantly from the expected frequency bands. To match within the
desired frequency bands, the capacitance value needs to be increased to 3.7 pF under fixed
transformers, which is unacceptable for the circuit. On the one hand, this decreases the Q
value of the switch capacitor, leading to a reduction in gain. On the other hand, it increases
off-state parasitic capacitance, resulting in poor S11 performance in the 5 G frequency band.
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It can be seen that with the implementation of the proposed reconfigurable transformer,
favorable matching results are achieved in dual bands.
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Figure 13. S-parameter comparison with fixed transformer. (a) Same Cinp. (b) Larger Cinp in
fixed transformer.

3. Circuit Implementation

The complete schematic of the proposed power amplifier in this article is shown in
Figure 14. It consists of three parts: the matching networks, the PA power cell, and the
integrated bias circuits. The power cell employs a differential structure to suppress even-
order harmonics and reduce linearity degradation caused by the ground bonding wires.
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3.1. Cascode PA Power Cell

IEEE 802.11ax employs 1024 QAM modulation to boost data rate, which imposes
stringent linearity requirements on power amplifiers. As a result, power amplifiers for
WLAN applications are usually biased to Class AB to take a balance between linearity
and efficiency. CMOS PAs usually use cascode devices to provide high output power and
enhance reliability. In this design, PA needs to deliver an average power of 17 dBm for a
802.11ax signal. Considering at least 10 dB PAPR (peak-to-average ratio) of the signal, the
transistor sizes of the common source and common gate devices are set to 2.56 mm/100 nm
and 4.8 mm/500 nm, respectively, so the PA can ideally deliver a maximum output power
of 29 dBm under a 3.3 V supply.
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To reduce the distortion of the PA, we analyze the cause of the distortions. The
most significant source of nonlinearity in power amplifiers arises from the drain current.
In general, the drain current of transistors can be expressed by the power series and
represented as

id = gmVgs + gdVds + gm2V2
gs + gd2V2

ds + gmdVgsVds + gm3V3
gs + · · · (13)

The g terms represent the transconductance, drain conductance, and cross terms. In
modern communication systems, nonlinear distortion is usually studied using a two-tone
signal test. For simplicity, higher order nonlinearities are ignored. In addition, assuming
that the optimum load impedance is a pure real value at the fundamental frequency due
to the resonance of the imaginary part, the nonlinear lower and upper IM3sof the output
voltage can be derived and simplified as

Vds(2ω2 − ω1) ≈ RL(ωL)
[

3
4 gm3 A3 + 1

2 ZL(ω2 − ω1)gm2gmd A3

+ 1
4 ZL(2ωc)gm2gmd A3

] (14)

Vds(2ω1 − ω2) ≈ RL(ωL)
[

3
4 gm3 A3 + 1

2 ZL(ω1 − ω2)gm2gmd A3

+ 1
4 ZL(2ωc)gm2gmd A3

] (15)

where

ωc =
(ω1 + ω2)

2
≈ ω1 ≈ ω2 = ωL (16)

where ω1 and ω2 are lower and upper two-tone input frequencies, respectively, and ZL
is the frequency-dependent load impedance. It can be seen that the IMD3 of the circuit is
highly dependent on the third-order transconductance (gm3) of the transistor. The third-
order transconductance of the transistor exhibits a strong dependence on its bias voltage,
as demonstrated in Figure 15. Notably, we can observe that there is a sweet spot for the
third-order transconductance, where the IMD3 distortion can be minimized.
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To expand the sweet spot range of the third-order transconductance across the expected
power range, this work divides the power cell into two sections, each with different bias
voltages. By compensating for the nonlinear components produced by each power cell
operating under different bias conditions, the overall power amplifier achieves a low
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IMD3 distortion. Figure 16 compares the IMD3 performance of the circuit with and
without using MGTR. It can be seen that after adopting MGTR technology, the circuit’s
IMD3 distortion can be effectively suppressed by choosing an appropriate combination of
different bias voltages.
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3.2. The Integrated Bias Circuit

The linearity of the power amplifier is closely related to its bias voltage. CMOS
integrated bias circuits can be employed to optimize the power amplifier’s linearity, which
is one of the advantages of CMOS technology. Additionally, the implementation of an
integrated bias circuit eliminates the necessity for ESD protection circuits due to external
bias voltages, thereby improving system integration and simplifying the design.

In this work, the bias voltages of the power amplifier are adjustable and are shown
in Figure 17. The common-source transistor voltage can be adjusted within the range
of approximately 400 mV to 680 mV, while the common-gate transistor voltage can be
tuned between approximately 1.9 V and 2.9 V. By adjusting the bias voltages, it is ensured
that under all PVT conditions, the voltage across each power transistor remains within
its maximum tolerable limit, thereby ensuring the reliability of the power amplifier and
long-term operational stability of the design. Additionally, at different bias voltages, the
output impedance of the common gate bias circuit undergoes significant changes. To
prevent the impact of output impedance variations on the PA’s linearity, this paper adds a
voltage buffer following the adjustable resistor in the common-gate bias circuit (Figure 17b)
to stabilize circuit output impedance.
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4. Simulation Results

The fully integrated power amplifier in this design is manufactured using the SMIC
55 nm process, with a 3.3 V supply voltage. Occupying an area of 0.57 mm2, as shown in
Figure 18a, multiple ground pads are strategically placed to reduce the inductance of the
bonding wires. The chip occupies an area of 1.45 mm2, as shown in Figure 18. In addition
to the power amplifier, the chip also includes the SPI module, a bandgap, and other test
modules. The simulation software used in this design is Cadence IC 617.
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Figure 18. (a) Layout of proposed PA. (b) Layout of test chip.

The simulated S-parameter results, shown in Figure 19, indicate that the small-signal
gain of the PA is approximately 9.46 dB/9.98 dB-11.48 dB at both 2.4 GHz and 5 GHz. Within
the 5 GHz frequency range, the gain remains relatively flat across the entire bandwidth.

To characterize the linearity and efficiency of the PA, continuous wave simulations
were employed. The simulation results displayed in Figures 20 and 21 illustrate the single-
tone linearity of the PA. The saturation power, power gain, and power-added efficiency
(PAE) are presented in the operating frequency range. It is seen that at 2.4 GHz and 5 GHz,
the saturation power is 28.03 dBm/27.5–28.2 dBm, PAE is 33.25/24.5–31.1%, and the power
gain is 9.37/11.5–10.03 dB. Additionally, the saturation power of the PA remains above
27.5 dBm.

The results for two-tone linearity are depicted in Figure 22. In the 2.4 GHz and 5 GHz
frequency bands, the IMD3 is within −30 dBc when the output power is 15 dBm, meeting
the requirements of WLAN standards.
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Finally, a comparison between the proposed dual-band PA in this study and other PAs
is presented in Table 3.

Table 3. Comparison with other dual-band PAs.

This Work *** [17] ** [28] ** [29] ** [30] ** [31] **

Freq (GHz) 2.4/4.9–5.9 2.4/5–6 2.4/4.9–5.9 2.5/3/3.5 1.8/2.6 2.4/5

Bandwidth
(−3 dB) 2.06–3.04/3.15–6.6 2.1–2.8/4–6 * 2.2–3.2/3.8–6.5 * 2.2–2.8/2.8–

3.6/3.1–4.1 * N. A 2–5 *

Gain (dB) 9.45/11.48–10.03 14/18–16 9.2/11.3–11.9 ~15 10–11 * 12.3/8.4

Psat (dBm) 28.03/27.5–28.2 25.4/24.4–24.8 23/21.9–22.4 22.5/21.5 26.2/23.1 21.5/21.4

PAE (%) 33.25/24.6–31.1 25/20.8–27.3 27/24.2–28.2 16.5/15(DE) 32.2/31.8 38.4/31

VDD (V) 3.3 2.5 2.5 1.2 3.3 3.6

Chip Area
(
mm2) 0.57 1.14 0.72 2.97 1.4 0.5

Technology 55 nm 40 nm 40 nm 65 nm 0.35 µm 0.18 µm

* Graphically estimated; ** measurement results; *** post-layout simulation results.

5. Discussion

From the performance summary in Table 3, it is evident that the output power
of current dual-band or multi-band power amplifiers is generally insufficient (below
26 dBm). Furthermore, when the distance between high and low frequency bands is
significant, both the output power and efficiency in the higher frequency bands tend
to decrease. However, the saturated output power of the proposed dual-band power
amplifier, achieved using the design methodology proposed in this paper based on the
insertion loss optimization of matching networks, is significantly higher than that of
current power amplifiers of the same type. Moreover, its efficiency does not show notable
degradation, which validates the correctness of the proposed design methodology. This
paper addresses the issue of insufficient output power commonly found in current
dual-band and multi-band power amplifiers.

In terms of topologies of PAs, both this paper and references [17,28–30] employ a
linear power amplifier topology biased in Class A or Class AB. In contrast, reference [31]
uses a switching power amplifier biased in Class E, which offers a significant efficiency
advantage over linear power amplifiers. In terms of occupied area, references [17,29]
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require a larger area due to the multi-path linear power combining, which, however,
offers a significant gain advantage over other power amplifiers. The remaining amplifiers
utilize a single-stage amplification structure, resulting in a smaller occupied area but
consequently lower gain. In summary, the proposed dual-band power amplifier has a
compact footprint and demonstrates a distinct advantage in output power. Additionally,
it achieves a favorable trade-off between gain and efficiency, making it well-suited for
dual-band IEEE 802.11ax applications.

To continuously boost data throughput, WLAN standards are progressively increasing
bandwidth, optimizing spectral efficiency, and adopting more complicated modulation
schemes, which pose more stringent linearity and efficiency requirements on power ampli-
fiers. The future research focus for power amplifiers in WLAN applications may aim at
improving linearity and efficiency at power back-off levels while meeting high linearity
requirements in broadband or multi-band switching conditions

6. Conclusions

This paper presents a dual-band fully integrated high linearity CMOS power amplifier
(PA). To deliver high output power, a design methodology for a dual-band matching net-
work is proposed. Based on the proposed methodology, reconfigurable dual-band matching
networks are implemented. Furthermore, the proposed input dual-band matching network
employs a reconfigurable transformer to achieve a low reflection coefficient across both
bands, and the principle of the reconfigurable transformer is thoroughly studied. The
simulation results validate the PA’s dual-band operation. For continuous-wave operation,
the PA achieves saturated powers (Psat) of 28.03 dBm and 27.5–28.2 dBm, with power
added efficiencies (PAE) of 33.2% and 24.6–31.1%, in the2.4 GHz and 5 GHz WLAN bands,
respectively. Compared with other dual-band or multi-band PAs, the PA demonstrates a
superior performance in output power. According to the simulation results, the proposed
PA shows great potential for WLAN applications.
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