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Abstract: This paper aims to analyze the influence mechanism of built environment factors on
passenger flow by predicting the passenger flow of Shenzhen rail transit in the morning peak
hour. Based on the classification of built environment factors into socio-economic variables, built
environment variables, and station characteristics variables, eight lines and one hundred sixty-six
stations in Shenzhen Railway Transportation are taken as research objects. Based on the automatic fare
collection (AFC) system data and the POI data of AMAP, the multiple regression model (OLS) and the
geographically weighted regression (GWR) model based on the least squares method are established,
respectively. The results show that the average house price is significantly negatively correlated with
passenger flow. The GWR model considering the house price factor has a high prediction accuracy,
revealing the spatial characteristics of the built-up environment in the administrative districts of
Shenzhen, which has shifted from the industrial structure in the east to the commercial and residential
structure in the west. This paper provides a theoretical basis for the synergistic planning of house
price regulation and rail transportation in Shenzhen, which helps to develop effective management
and planning strategies.

Keywords: rail transit; spatial heterogeneity; passenger flow forecast; built environment factor;
ordinary least squares (OLS) regression model; geographically weighted regression (GWR) model

1. Introduction

As the global urbanization process continues to advance, rail transit systems have
become a key means to alleviate urban traffic congestion, improve travel efficiency, and
promote sustainable urban development. In China, in large cities like Shenzhen, rail transit
plays a crucial role in carrying the demand for short-distance commuting and cross-city
travel within the city. However, with the increasing improvement in the rail transit network,
the spatial distribution characteristics of passenger flow and its complex interaction with
the built environment around the stations have become increasingly important research
topics in the field of transportation planning and management. Therefore, this study
focuses on the Shenzhen rail transit system, exploring the influence mechanism of built
environment factors around rail transit stations on the generation and distribution of
passenger flow, which will provide theoretical support and a decision-making basis for the
scientific planning and efficient management of urban transportation systems. At present,
the research on the influence mechanism of built environment factors on the passenger
flow of rail transit stations mainly focuses on analyzing influencing factors [1,2] and
methods [3]. Influencing factors mainly include socio-economic and land use diversity [4].
Housing prices, as an important socio-economic influencing factor, affect the distribution
and density of the urban built environment, which indirectly affects the generation of rail
transit passenger flow. Meanwhile, land use diversity is a more commonly used built
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environment influencing factor for exploring transit patronage. In previous studies, POI
data have often been used to describe land diversity for passenger flow prediction [5] or to
analyze the spatial heterogeneity of the influencing factors [6,7]. Some studies have also
used POI data to validate the accuracy of the model, but few studies have used the spatial
characteristics of the influencing factors of the rail traffic flow to further analyze the urban
zoning policy.

Regarding research methodology, many current models examine how built environ-
ment factors affect passenger flow at rail transit stations. The four-stage model is a widely
used method [8,9] in urban traffic flow prediction, which studies the traffic volume in
the global scope, and the workload is large, it is difficult to respond to the changes in
the built environment around the station in time, and the model prediction results are
inaccurate. Although neural network models [10,11] are suitable for dealing with large-
scale, high-dimensional datasets due to their strong fitting abilities, they face challenges
in achieving good results because they require a large amount of high-quality data for
training, and their high costs make medium- and long-term predictions challenging. At
present, the OLS (Ordinary Least Squares) model considering global regression is also com-
monly used in such research [12,13]. Such models, while providing an analysis of overall
trends, fail to adequately account for spatial heterogeneity in spatial parameters. In fact,
the degree of influence of the influencing factors is not necessarily the same for different
rail transit stations [14]. In this paper, we address the shortcomings of traditional models
in analyzing spatial heterogeneity by introducing a geographically weighted regression
(GWR) model [4,15]. The GWR model takes into account the spatial instability of passenger
flow, and the model has been widely used in rail transit passenger flow prediction [16].
Therefore, it can be used to study the impact of built environment factors on passenger
flow at urban rail transit stations.

Therefore, this paper focuses on the Shenzhen rail transit system as the research object
and aims to analyze the influence of built environment factors on the passenger flow of
rail transit stations. First, spatial autocorrelation tests and multicollinearity tests were
conducted on the independent variables to ensure the validity of the model inputs. Second,
housing prices were introduced into the OLS model and GWR model, and the mechanism of
house price influence on rail transit patronage was explored through accuracy comparison.
To further enhance the accuracy of the analysis, the K-means clustering algorithm was
used to classify the rail transit stations into six types, including servicing businesses,
scenic spots, public services, government and corporate offices, commercial housing, and
transportation hub. Based on this classification, the performances of the OLS model and the
GWR model were compared, and the advantages of the GWR model in capturing spatial
heterogeneity were verified. Finally, through the visualization and analysis of the GWR
model, this paper reveals the differences in the characteristics of each rail station under the
influence of different built environment factors, and based on the analysis results, targeted
recommendations are provided for the development of Shenzhen’s administrative districts.

The innovations of this paper are as follows: (1) Unlike previous studies, this paper
systematically explores for the first time the influence of economic factors such as housing
prices on passenger flow in the Shenzhen rail transit system. By incorporating housing
prices factor into the OLS model and the GWR model and comparing the accuracy of the
performance of the two models, this study reveals the important role of housing prices
in the generation of urban rail transit passenger flow. It also provides a new perspective
for understanding the influence mechanism of economic factors on transportation travel
decisions. (2) This paper reveals the spatial structural transformation characteristics of
the built environment in Shenzhen. The GWR model is used to visualize and analyze rail
transit stations, showing the shift in the built environment from the eastern industrial areas
to the commercial and residential areas in the west. The analysis provides insights into the
spatial characteristics of the built environment in Shenzhen from the industrial structure
in the east to the commercial and residential structure in the west from the perspective of
each administrative district.
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Following the introduction, Section 2 provides a literature review of the built environ-
ment influences and modeling of rail transit patronage. Section 3 describes the research
methodology used in this paper. Section 4 presents a case study of rail transit in Shenzhen.
Section 5 presents the results and discussion of this study. Section 6 summarizes the full
paper.

2. Literature Review

To more deeply analyze the spatial heterogeneity of various built environment factors
on the passenger flow of Shenzhen’s rail transit stations, two key aspects must be consid-
ered: the selection of factors influencing the passenger flow of rail transit stations and the
use of modeling methods. This section reviews and summarizes both the built environment
factors affecting passenger flow at rail transit stations in previous studies and the modeling
approaches used in this study.

2.1. Selection of Built Environment Factors

Built environment factors affecting rail transit flow vary from city to city and from
dataset to dataset. Kuby et al. (2004) [17] examined the number of people employed and
residing within the buffer zones of rail transit stations in nine U.S. cities and found that
there was a significant correlation with light rail patronage. Sohn and Shim (2010) [18]
conducted a model analysis and comparison using the passenger flow data of Seoul rail
transit and Kuby’s research. It was found that the results of the two studies were similar,
and it was found that employment, commercial building area, office building area, net
population density, transfer times, and the number of feeder bus lines were significantly
correlated with passenger flow. In China, city size is usually measured by population
size [19]. In megacities, He et al. (2018) [20] found that commuting activities generate
weekday metro traffic and leisure activities, such as weekend metro traffic generated by
shopping using influencing factors such as the population distribution and number of
office locations in Taipei City. Zhang et al. (2023) [21] used POI and AFC data to find that
tourist attractions, other types of POI, bus stations, and station accessibility are significantly
related to the passenger flow of Nanjing Metro rail transit. Among megacities, Li et al. [2]
found that population density and common residential land use were the main factors
affecting morning and evening commuter flows in Guangzhou by comparing the different
effects of day, time, and directional passenger flows. An et al. (2019) [22] used OLS
regression analysis and found that the effects of commercial land use, bus stops, and
tourist attractions on rail transit patronage in Shanghai are independent of weekday time
and all have significant positive effects. Wang et al. (2022) [23] analyzed the “7D” built
environment variables and found that the density of office facilities, the density of sports
and leisure facilities, the density of medical service facilities, the density of buildings, and
the plot ratio have a significant effect on the passenger flow out of each metro station in
Beijing.

Although these studies have analyzed in detail the mechanisms by which built envi-
ronment factors affect rail transit patronage from the perspective of the characteristics of the
respective cities, they have generally neglected the role of house prices as a key economic
variable. House prices not only determine the spatial distribution of the built environment
but also affect the geographic trend of patronage. Although Wang et al. (2023) [24] and
Yang et al. (2023) [25] considered the factor of house price in their studies in Beijing and
Chengdu, respectively, they did not bring house price into different models for comparative
analysis to explore the significance of its impact on passenger flow. In addition, there
is an even greater lack of studies on short-distance commuting-cum-cross-city access in
megacities.

2.2. The Model Method Used

Currently, the passenger flow prediction models used by scholars for rail transit
stations are mainly divided into global regression models and local regression models. The
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traditional four-stage model has shortcomings in data accuracy and model application
range. Its research area is global, and it is difficult to refine the impact of the building
environment around the station on passenger flow. Given the limitations of the traditional
four-stage model for predicting passenger flow, more and more scholars have begun to focus
on the OLS (Ordinary Least Squares) model. He et al. [26] studied direct passenger flow
forecasting models and concluded that the most widely used is the OLS linear regression
model. However, the OLS regression model is also a global regression model, which
does not take into account the spatially localized influences affecting station passenger
flow or the spatial heterogeneity of the independent variables. Fotheringham (1996) [27]
proposed the GWR (geographically weighted regression) model. The GWR model is based
on the regression analysis of the OLS model taking into account the local characteristics of
the independent variables, including spatial heterogeneity as well as spatial correlation,
which can better deal with spatially variable data. Cardozo et al. (2012) [28] and Tu et al.
(2018) [29] compared the effectiveness of fitting OLS and GWR models for rail transit
passenger flow prediction, and they found that GWR was more suitable. They combined
geographic and economic factors to explore the relationship between subway passenger
flow and land use characteristics, providing a new research direction that justifies further
research using the GWR model.

Previous studies have focused on the comparison of model accuracy, but few studies
have combined the spatial heterogeneity of passenger flow influencing factors to give policy
advice. Li et al. (2020) [30] classified Guangzhou rail transit stations through K-means
clustering and gave policy advice for each type of station but did not give policy advice on
a macrolevel. Zhang et al. (2023) [21] verified that the GWR model was more accurate than
the OLS model by comparing the model accuracies but did not further utilize this model to
give opinions on transportation policies in Nanjing. Analyzing the influence mechanism
of the factors affecting passenger flow, taking administrative districts as an analytical
perspective, and giving policy advice is of guiding significance to public transportation
planning and urban land use, etc., and there is a relative lack of research on such.

3. Methods
3.1. Spatial Autocorrelation Analysis

To study the spatial heterogeneity of dependent variables and independent variables,
we must firstly perform spatial autocorrelation analysis on each variable to ensure the
spatial aggregation of variables. It is necessary to verify the existence of spatial positive
correlation in the spatial distribution, using Moran’s index to measure whether the data
distribution of the variable has spatial autocorrelation or not, as shown in Equation (1):

I =

s
∑

i=1

s
∑

j=1
ωij(xi − x)(xj − x)

s
∑

i=1
(xi − x)2

(1)

where I is the Moran’s index, and the value range is [−1,1]. When I > 0, it indicates that the
variables show positive spatial correlation and the variable data are spatially aggregated,
and the larger the value is, the more obvious the degree of spatial aggregation of variables
is. When I < 0, it means that the variables show negative spatial correlation and the variable
data are spatially discrete, and the smaller the value is, the more obvious the degree of
spatial discretization of the variables is. When I = 0, it indicates that the variables are
spatially uncorrelated, and the variable data are spatially randomly distributed. s is the
number of rail transit stations; xi and xj are the independent variables of the ith subway
station and the jth subway station, respectively; ωij is the spatial weight between the ith
and jth subway station.
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3.2. Multicollinearity Test

To avoid the existence of multicollinearity between independent variables, which
affects the prediction effect of the regression model, the Pearson correlation coefficient is
generally used to determine whether there is the existence of multicollinearity, as shown in
Equation (2):

r =

s
∑

i=1
(xia − xa)(xib − xb)√

s
∑

i=1
(xia − xa)

√
s
∑

i=1
(xib − xb)

2
(2)

In the formula, r is the Pearson correlation coefficient, whose positive and negative
values represent positive and negative correlation, and the absolute value size represents
the degree of correlation; when |r| > 0.8, it is considered that there is a high degree of
multicollinearity between the two explanatory variables, and at this time, the variables with
relatively high |r| and high frequency of covariance with other independent variables are
excluded until |r| < 0.8 among all independent variables; xia and xib represent the sample
mean values of a and b, two types of explanatory variables in the ith subway station; xa
and xbrepresent the sample means of the a and b explanatory variables, respectively.

3.3. Regression Model

The GWR model takes into account the spatial heterogeneity of the distribution of
each rail transit station (as shown in Figure 1), and the regression coefficients for each
subway station take different values due to the differences in geographic location, and the
model expression is shown in the following Equation (3):

ŷi = β0(ui, vi) +
m

∑
t=1

βit(ui, vi)xit + εi (3)

where ŷi is the fitted value of the dependent variable passenger flow y at the station i, (ui,vi)
are the spatial coordinates of the station i, and βit(ui,vi) is the coefficient of the regression
analysis of the tth independent variable of the continuous function β(u,v) at station i. The
GWR model provides a measurable measure of spatial heterogeneity.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 25 
 

 

Figure 1. Map of the administrative area of Shenzhen, China. 

In the GWR regression analysis, the basic principle of calculating the weights is as 

follows: the closer the distance, the higher the weight value or, conversely, the lower the 

weight value. The weights that can realize the monotonic reduction function of spatial 

distance are called kernel functions. The two most commonly used kernel functions are 

the Gaussian function and the Bi-square function. Considering the overall spatial distri-

bution of urban rail transit stations in Shenzhen, the kernel function of the GWR model 

adopts the Bi-square function, which is shown in the following Equation (4): 

221 ( / ) ,

0,

ij ij

ij

ij

d b d b

d b


    


 (4)

where ij  is the spatial weight of the estimated point j when fi�ing the model for subway 

station i; dij is the distance between the two; and b is the kernel bandwidth, which is the 

key control parameter and can be specified either by a fixed distance (i.e., fixed band-

width) or a fixed number of nearest neighbors (i.e., adaptive bandwidth). The se�ing of 

the bandwidth plays a decisive role in the regression model in terms of both prediction 

accuracy and stability. 

The optimal bandwidth can be found by minimizing a number of model fit goodness-

of-fit diagnostics, and the choice of bandwidth values can be made by either CV (cross-

validation) [31] or the AIC (Akaike information criterion) [32,33]. CV generally considers 

only the accuracy of the prediction, whereas the AIC will consider parsimony, which bal-

ances accuracy with complexity. It is mainly used to test and calibrate the level of fit of a 

regression model, and in experiments, a modified AIC, AICC, is usually used, which, un-

like the basic AIC, is a function of sample size [34], i.e., the AICC will be infinitely close to 

the AIC when the sample size is large. The AICC formula [35] is shown in Equation (5) 

below: 

Figure 1. Map of the administrative area of Shenzhen, China.



Appl. Sci. 2024, 14, 10799 6 of 23

In the GWR regression analysis, the basic principle of calculating the weights is as
follows: the closer the distance, the higher the weight value or, conversely, the lower the
weight value. The weights that can realize the monotonic reduction function of spatial
distance are called kernel functions. The two most commonly used kernel functions are the
Gaussian function and the Bi-square function. Considering the overall spatial distribution
of urban rail transit stations in Shenzhen, the kernel function of the GWR model adopts the
Bi-square function, which is shown in the following Equation (4):

ωij =


[
1 − (dij/b)2

]2
, dij ≤ b

0, dij > b
(4)

where ωij is the spatial weight of the estimated point j when fitting the model for subway
station i; dij is the distance between the two; and b is the kernel bandwidth, which is the key
control parameter and can be specified either by a fixed distance (i.e., fixed bandwidth) or a
fixed number of nearest neighbors (i.e., adaptive bandwidth). The setting of the bandwidth
plays a decisive role in the regression model in terms of both prediction accuracy and
stability.

The optimal bandwidth can be found by minimizing a number of model fit goodness-
of-fit diagnostics, and the choice of bandwidth values can be made by either CV (cross-
validation) [31] or the AIC (Akaike information criterion) [32,33]. CV generally considers
only the accuracy of the prediction, whereas the AIC will consider parsimony, which
balances accuracy with complexity. It is mainly used to test and calibrate the level of fit
of a regression model, and in experiments, a modified AIC, AICC, is usually used, which,
unlike the basic AIC, is a function of sample size [34], i.e., the AICC will be infinitely close
to the AIC when the sample size is large. The AICC formula [35] is shown in Equation (5)
below:

AICC = 2n ln(σ̂) + n ln(2π) + n
{

n + tr(S)
n − 2 − tr(S)

}
(5)

where n is the sample size; σ̂ is the estimated standard deviation of the error term; and tr(S)
denotes the trajectory of the hat matrix S. The hat matrix is the projection matrix from the
observation y to the fitted value ŷ, where for the GWR, each row ri of this hat matrix is
shown in Equation (6):

ri = Xi(XTWiX)
−1

XTWi (6)

where Xi is the ith row of the matrix of independent variables X, and Wi is a diagonal
matrix indicating the geographic weight of each observation at station i.

4. Research Case
4.1. Research Object

As a sub-provincial city in China’s Guangdong Province, Shenzhen has been identified
by the State Council as a special economic zone in China and is one of the most impor-
tant cities in China, which is also an economic, transportation, and logistics center. It is
connected to Hong Kong in the south and borders the cities of Dongguan and Huizhou
in the north. Compared with other megacities such as Guangzhou, Shanghai, and Beijing,
Shenzhen’s average one-way commuting distance by rail is relatively short. The statistical
report for 2023 shows only 8.5 km [36], which not only reflects Shenzhen’s high degree
of intensification in land use but also highlights the important role of the rail transit sys-
tem in supporting short-distance travel. In addition, as an immigrant city with a large
number of migrant workers, Shenzhen has a large population. At the same time, high
housing price is another socio-economic attribute of Shenzhen, which has brought about
the phenomenon of cross-city commuting in the city, increasing the need for convenient and
efficient transportation connections. Therefore, it is of special significance for this paper to
take Shenzhen as the research object and deeply explore how the built environment factors
(including house prices) affect the generation and distribution of rail transit passenger flow.
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Meanwhile, the relevant research data in this paper mainly come from Shenzhen Railway
Transportation AFC data, totaling 25,267,919 credit card records, including information
such as in/out time, in/out line, in/out station name, etc., as shown in Table 1.

Table 1. Shenzhen Metro AFC data.

Inbound
Station

Inbound
Line

Inbound
Time

Outbound
Station

Outbound
Line

Outbound
Time

Minzhi Shenzhen
Metro Line 5

18 June 2019
8:33 Honghu Shenzhen

Metro Line 7
18 June 2019

9:08
Qiaocheng

North
Shenzhen

Metro Line 2
18 June 2019

8:57 Lianhua West Shenzhen
Metro Line 2

18 June 2019
9:14

--- --- --- --- --- ---

Lianhuacun Shenzhen
Metro Line 3

18 June 2019
15:38 Fumin Shenzhen

Metro Line 4
18 June 2019

15:55

In this paper, a total of 10 districts in Shenzhen are selected as the study area, and
8 lines and 166 stations in Shenzhen are selected as the study objects. The study sample
includes the operable railroad subway stations within the administrative area of Shenzhen
in June 2019 (see Figure 1 below).

4.2. Dependent Variable Data Processing

In this paper, Shenzhen Metro’s AFC data for one consecutive week from 15 June
to 21 June 2019 are selected. Figure 2 depicts the proportional distribution of the total
passenger flow of all stations for each hour of the day for a week (considering the operating
hours of the rail stations from 06:00 to 24:00), and the greater the total number of passengers
in a given hour during operating hours, the larger the proportional value and the darker
the color. The peak hour of passenger flow is mainly from 08:00 a.m. to 09:00 a.m. on
weekdays. Therefore, the average passenger flow in and out of the station at 08:00–09:00
during the peak hours of the working day of Shenzhen Metro is taken as the dependent
variable.
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Considering the passenger travel characteristics and regularity, the data were cleaned
by Python version 3.10 to obtain the final data of the dependent variable, and the main
processing methods were as follows:

(1) Extract the required fields for this study, delete the useless fields, and delete the
records that do not match the station name properly.

(2) Delete records whose inbound time is later than the outbound time.
(3) Delete records whose inbound and outbound times are outside the range of subway

operating hours.
(4) Delete records where the inbound and outbound dates are not on the same day (some

lines operate across days).
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(5) Delete records where the difference between the time of entry and exit is greater than
3.5 h; because the Shenzhen Metro has a supplemental charge of CNY 14 for use for
more than 3.5 h, very few passengers use the subway for more than 3.5 h.

(6) Delete records with the same station in and out.
(7) Delete some of the fields missing records, such as fields with 0 or null records.

4.3. Independent Variable Data
4.3.1. Independent Variable Data Processing

Transportation-Oriented Development (TOD) plays a crucial role in urban construction
and development. TOD is a method of public transportation planning and design that
maximizes the use of residential and commercial areas [37]. The rail station buffer zone
is the core area of TOD and is also the urban space where close urban development
and mixed land use are concentrated. Rail station buffers are important nodes in urban
development and key components of urban rail transit growth. Defining the buffer zone is
the premise and basis for studies, such as assessing the built environment around stations
and forecasting passenger flow at rail stations.

The area accessible to people within a 10 min walk from a rail transit station is generally
regarded as the attraction area for rail transit passengers [38]. Combined with previous
studies, the buffer zone radius of the rail transit station involved in this paper is set to
800 m [39–41], as shown in Figure 3a below. Considering the high-density characteristics
of the built environment in Shenzhen, to avoid the overlapping of buffer zones, this paper
utilizes the Tyson polygon to divide the buffer zone range [24], as shown in Figure 3b below.
Through the division of the buffer zone, the factors affecting passenger flow at subway
stations and related data are obtained.
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Based on the multi-center characteristics of Shenzhen’s urban areas and the commuting
patterns of urban rail transit, and drawing from previous studies [21], this paper selects
15 built environment factors as the independent variables X1–X15. These variables are
classified into three categories: socio-economic variables, built environment variables,
and station characteristics [37]. To examine whether the average housing price affects
the morning peak passenger flow of Shenzhen rail transit, the average housing price is
included as an economic variable, and Table 2 describes these independent variables.

4.3.2. Socio-Economic Variables

Shenzhen has a large number of migrant workers and a small city area. The population
size within the buffer zone is closely related to the passenger flow of urban rail transit, so it
is an important factor affecting the passenger flow of rail transit stations. Reasonable house
prices help to optimize the allocation of urban resources, improve the efficiency of land
use, and optimize the built environment and then affect the station passenger flow [42].
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Meanwhile, high house prices in Shenzhen bring about cross-city commuting. Housing
prices can be another socio-economic factor in the influence of passenger flow.

Table 2. Description of statistics of independent variables.

Independent Variable Variable Name

Socio-economic variables

X1 Population
X2 Average house price

Built environment variables

X3 Servicing businesses
X4 Scenic spots
X5 Public services
X6 Government and corporate offices
X7 Commercial housing
X8 Transportation hub
X9 Floor area ratio
X10 Land use mix
X11 Road network density

Station characteristics variables

X12
Number of entrances and exits of rail transit

stations
X13 Accessibility
X14 Bus lines
X15 Bus stops

The population size was estimated from a website to determine the number of residents
around each rail transit station, denoted as variable X1. Variable X2 represents the unit price
of housing in residential neighborhoods around rail transit stations, which is calculated
based on the number of resident households, as shown in Equation (7). Python was used to
obtain data on the number of residential households and the average housing prices from
Shell.com(accessed on 1 December 2023), a Chinese real estate service platform.

X2 =

t
∑

i=1
Pi × Ni

t
∑

i=1
Ni

(7)

where Pi is the average house price of cell i out of a total of t cells within the buffer zone,
CNY/m2, and Ni is the number of households in cell i out of a total of t cells within the
buffer zone.

4.3.3. Building Environment Variables

Land use type POI is a major component of the built environment. In this study, we
used Python to obtain POI data in Shenzhen, China, through the AMAP open platform.
AMAP divides POI data into 23 categories. According to the type of POI and the stan-
dard of urban land use [43], land use is divided into six categories: servicing businesses,
scenic spots, public services, government and corporate offices, commercial housing, and
transportation hub, corresponding to variables X3 to X8.

The floor area ratio reflects the intensity of land use development. To some extent, it
reflects the economic level and residential activities in the area, denoted as X9. The formula
is shown in Equation (8):

X9 =
F
S

(8)
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where F is the total area of all above-ground buildings within the rail site buffer zone area,
m2, and S is the area of the rail site buffer zone, m2.

Land use mix can explain land use, and land use will affect residents’ travel [44].
According to the existing research [45,46], the Shannon–Wiener index was used to charac-
terize the land mixing degree as the independent variable X10. The formula is shown in
Equation (9):

X10 =

−(
n
∑

j=1
pj × InPj)

InA
(9)

where X10 is the land use mix within the buffer zone of the rail transit site; Pj is the
proportion of POI type j within the buffer zone of the rail transit site; A is the total number
of POI types, and according to the previously mentioned land use classification, A is
denoted as 6 in this paper.

The road network density reflects the external accessibility of the rail transit station,
reflecting the convenience of the residents to travel; it also affects the passenger flow of the
rail transit station. The road network density is recorded as X11, as shown in Equation (10).

X11 =
∑ L
S

(10)

where S is the area of the buffer zone range of rail transit stations, km2, and L is the length
of each road section within the buffer zone range, km.

4.3.4. Station Characterization Variables

The number of entrances and exits, accessibility, bus lines, and bus stops of the rail
stations within the buffer zone affect the transfer (connection) capacity of the stations with
other modes of public transportation. They have certain impacts on the generation of
passenger flow at the stations, which are noted as X12 to X15. The raw data for X12, X13,
X14, and X15 were obtained from the OSM (2021) [21,47] websites, and ArcGIS was applied
to trim the processing of the data in the buffer. The data for X13 are represented by using
ArcGIS to calculate the average travel time for residents traveling by subway from other
stations in the network to this station. It reflects the level of transportation economy as well
as transportation facilities within the buffer zone of the rail transit station, which illustrates
the opportunity, ability, and willingness of residents to travel.

By applying the data of each independent variable within the buffer zone of a rail
transit station, the K-means clustering algorithm is used to calculate their cluster importance
for station classification, as shown in Figure 4.
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As can be seen from the analysis in Figure 4, there are six independent variables with
high clustering importance, which are, in order from largest to smallest, as follows: scenic
spots, servicing businesses, public services, transportation hub, commercial housing, and
government and corporate offices. Therefore, the stations are classified into six types, which
are servicing businesses, scenic spots, public services, government and corporate offices,
commercial housing, and transportation hub.

5. Results and Discussion

To explore the degree of influence of average house price on the morning peak pas-
senger flow of Shenzhen rail transit, the research ideas in this section are as follows: by
adding average house price to the explanatory variables of the OLS model and GWR model,
we compare the model fit before and after the addition of average house price to the two
models and obtain the comparative analysis results. Due to the similarity of the calculation
methods, this paper only lists the calculation process of calculated house prices, and the
calculation results of uncalculated house prices will be listed in the model comparison.

5.1. Spatial Autocorrelation Test

The dependent variable and independent variable data are imported into ArcMap10.8,
and the Moran’s index of each variable is obtained through the “spatial autocorrelation”
function, and the spatial autocorrelation test is performed. The results are shown in Table 3.

Table 3. Moran’s I of the candidate variables.

Types of
Variables Moran’s I Expectation’s

Index Variance Z Score p Value

Dependent variable

Y 0.149558 −0.006061 0.001300 4.315885 0.000016

Independent variable

X1 0.365038 −0.006061 0.001325 10.195376 0.000000
X2 0.150144 −0.006061 0.001326 4.289490 0.000018
X3 0.258392 −0.006061 0.001059 8.128176 0.000000
X4 0.220944 −0.006061 0.001097 6.854306 0.000000
X5 0.257723 −0.006061 0.001024 8.245217 0.000000
X6 0.272543 −0.006061 0.001204 8.028907 0.000000
X7 0.241150 −0.006061 0.000914 8.178440 0.000000
X8 0.327639 −0.006061 0.001025 10.421534 0.000000
X9 0.469518 −0.006061 0.001333 13.025460 0.000000
X10 0.087219 −0.006061 0.001329 2.558424 0.010515
X11 0.495300 −0.006061 0.001332 13.739109 0.000000
X12 0.090308 −0.006061 0.001282 2.691288 0.007118
X13 0.454277 −0.006061 0.001308 12.729156 0.000000
X14 0.063647 −0.006061 0.001254 1.968457 0.049015
X15 0.127684 −0.006061 0.001324 3.675660 0.000237

According to the analysis of Table 3, the Z value of the dependent variable and the
independent variable is greater than 1.96. The Moran’s index is greater than zero, and the
p value is less than 0.05, indicating that there is a significant spatial positive correlation
between the dependent variable and the independent variable. It shows that variable data
can be used to analyze the GWR model for explaining spatial heterogeneity.

5.2. Multicollinearity Analysis

Before the regression model analysis, the independent variables must pass the multi-
collinearity test. The independent variables with collinearity are screened by the Pearson
correlation coefficient and variance expansion factor to ensure the effect of passenger flow
prediction. Through correlation analysis, when the Pearson correlation coefficient is greater
than 0.8, it shows that there is multicollinearity between the independent variables. After
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the multicollinearity test, the correlation coefficients between variables such as servicing
businesses (X3), public services (X5), government and corporate offices (X6), commercial
housing (X7), and the transportation hub (X8) are high (show Figure 5 below, where ”*”
denotes significant correlation, and ”**” denotes highly significant correlation), indicating
that there is multicollinearity between them.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 25 
 

where ”*” denotes significant correlation, and ”**” denotes highly significant correlation), 

indicating that there is multicollinearity between them. 

 

Figure 5. Correlation coefficients of independent variables. 

In addition to considering multicollinearity, the independent variables that have a 

significant impact on the dependent variables are also selected. In this paper, the stepwise 

regression method is used to optimize the model by gradually increasing or decreasing 

the independent variables to find the most effective set of independent variables for the 

prediction of dependent variables. Finally, five independent variables are obtained: aver-

age house price, government and corporate offices, commercial housing, floor area ratio, 

and accessibility. 

5.3. Comparison of Model Results 

The OLS and GWR models were used to predict station ridership using weekday 

peak-hour inbound ridership as the dependent variable. Due to the different scales of the 

independent variables and the large quantitative differences between the scales, the inde-

pendent variables are standardized in this paper to facilitate the comparison of the mag-

nitude of the explanatory impact of the model’s independent variables on the dependent 

variable. The processed results are shown in Table 4. 

Table 4. Descriptive statistics of independent variable dimension. 

Variable Type Variable Name Min Max Mean STD 

Dependent var-

iable 
Y 44 30,355 6441 5078 

Independent 

variable 

X2 0.00 154,239.00 47,452.65 25,850.26 

X6 4.00 4412.00 473.26 593.65 

X7 3.00 3008 196.19 289.95 

X9 0.03 4.68 1.75 0.82 

Figure 5. Correlation coefficients of independent variables.

In addition to considering multicollinearity, the independent variables that have a
significant impact on the dependent variables are also selected. In this paper, the stepwise
regression method is used to optimize the model by gradually increasing or decreasing
the independent variables to find the most effective set of independent variables for the
prediction of dependent variables. Finally, five independent variables are obtained: average
house price, government and corporate offices, commercial housing, floor area ratio, and
accessibility.

5.3. Comparison of Model Results

The OLS and GWR models were used to predict station ridership using weekday
peak-hour inbound ridership as the dependent variable. Due to the different scales of
the independent variables and the large quantitative differences between the scales, the
independent variables are standardized in this paper to facilitate the comparison of the mag-
nitude of the explanatory impact of the model’s independent variables on the dependent
variable. The processed results are shown in Table 4.

Table 4. Descriptive statistics of independent variable dimension.

Variable Type Variable Name Min Max Mean STD

Dependent
variable Y 44 30,355 6441 5078

Independent
variable

X2 0.00 154,239.00 47,452.65 25,850.26
X6 4.00 4412.00 473.26 593.65
X7 3.00 3008 196.19 289.95
X9 0.03 4.68 1.75 0.82
X13 23.44 83.78 34.15 12.37
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5.3.1. OLS Regression Analysis

After the spatial autocorrelation test, multicollinearity analysis, and standardization
of the data of independent variables and dependent variables, IBM SPSS Statistics 27
software[48,49] was used for multiple linear regression modeling analysis. The results of
OLS model regression analysis were obtained, as shown in Table 5 below.

Table 5. Regression results of the OLS model.

Unstandardized
Coefficients Collinearity Statistics

Variable Coefficient Standard
Error t P Tolerance VIF

Constant 0.000 0.057 4.364 0.000 - -
X2 −0.163 0.064 −2.545 0.012 0.8 1.25
X6 0.601 0.090 6.66 0.000 0.402 2.488
X7 −0.183 0.085 −2.148 0.033 0.449 2.226
X9 0.278 0.065 4.297 0.000 0.78 1.281
X13 −0.229 0.065 −3.522 0.001 0.777 1.286

Residual sum of squares 86.949
Log-likelihood −181.871

R2 0.476
Adjusted R2 0.460

AICC 378.451
Note: Sig. = significance level of a variable. If sig is <0.05, it is significant.

As analyzed in Table 5, the p value of the t-test of regression coefficients of the five
independent variables is less than 0.05, indicating that there is a significant correlation
between these independent variables on the dependent variable. Meanwhile, the VIF values
of all independent variables are lower than 7.5, indicating that there is no multicollinearity
among the five independent variables. The R2 value of the model is 0.476, which indicates
that the model has some correlation and the model fit is average. The t-value of X5 is
6.66, and the regression coefficient B is 0.601, both of which are the highest, indicating
that the government and the corporate offices’ high significance influences the passenger
flow of the railroad transportation. The regression coefficient of X2 has a negative value
(B = −0.163), which indicates that the average house price is globally negatively correlated
to the passenger flow.

5.3.2. GWR Regression Analysis

Using MGWR4.0 software, the regression results of GWR are obtained (see Table 6
below). The specific operation is as follows: Due to the faster convergence speed of GWR,
this paper chooses GWR estimation as the initial estimation. The bandwidth length is
adjusted according to the sample point adaptive kernel bandwidth determination method.
The bandwidth selects the golden section mode and the spatial kernel function, and the
bandwidth selection criterion selects the quadratic kernel function and the modified Akaike
information criterion (AICC). Since the convergence criterion selects SOC-f to converge
more strictly than SOC-RSS, SOC-f convergence is selected. To improve the prediction
accuracy of the model, the order of magnitude of the convergence error is set to 10−5. When
the fluctuation range of the fitting coefficient is less than 10−5, the iteration is completed.

From the analysis of Table 6, it is evident that the bandwidth of the independent
variables is small, indicating that the explanatory variables have a significant spatial
heterogeneity effect on passenger flow in Shenzhen’s rail transit system as a whole, and the
regression coefficients of each variable are significantly different. Log-likelihood measures
the probability of data occurrence given model parameters. The larger the log-likelihood,
the more likely the observed data are to occur under these parameters, meaning the model
can better explain the data, resulting in a better fit. The log-likelihood (−131.691) of the
GWR model is higher than that of the OLS model (−181.871). At the same time, the
R2 (0.714) adjusted R2 (0.655) value and logarithmic probability of the GWR model are
higher than those of the OLS model. The residual sum of squares and AICC are smaller
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than those of the OLS model, indicating that the GWR model has a better fitting ability for
describing the peak passenger flow of Shenzhen’s rail transit system.

Table 6. Regression results of the GWR model.

Regression Coefficient

Variable Bandwidth Minimum Maximum Mean Median STD

Constant 71.000 −2.221 0.689 −0.317 −0.057 0.734
X2 71.000 −0.314 −0.028 −0.150 −0.154 0.073
X6 71.000 −0.209 1.257 0.482 0.603 0.315
X7 71.000 −0.363 0.987 0.173 0.215 0.436
X9 71.000 −0.121 0.597 0.334 0.337 0.170
X13 71.000 −3.548 0.477 −0.799 −0.371 1.002

Residual sum of squares 47.501
Log-likelihood −131.691

R2 0.714
Adjusted R2 0.655

AICC 334.509

5.3.3. Comparative Analysis of Model Regression Results Considering Average House
Prices

To explore the impact of average house price on the peak hourly passenger flow
within a weekday of Shenzhen rail transit, in the study in this paper, the impact factors
without average house price (X2) are re-substituted into the OLS model as well as the GWR
model to be analyzed against the methods of Section 5.3.1 and 5.3.2, and the results of the
comparative analyses before and after the substitution of the average house price (X2) are
finally summarized and obtained (as shown in Table 7 below).

Table 7. Comparison of regression results of models considering average house price.

Regression Coefficient

OLS Without
X2

OLS With
X2

GWR Without
X2

GWR With
X2

Residual sum of
squares 88.188 86.949 49.916 47.501

Log-likelihood −185.192 −181.871 −135.807 −131.691
R2 0.463 0.476 0.699 0.714

Adjusted R2 0.455 0.460 0.640 0.655
AICC 380.912 378.451 339.701 334.509

From the analysis in Table 7, it can be seen that the average house price has a significant
negative correlation effect on the spatial trend of Shenzhen rail transit passenger flow, and
the consideration of the average house price as an influencing factor can significantly
improve the accuracy of the model in predicting the peak hour passenger flow of Shenzhen
rail transit. In particular, the GWR model, which describes spatial heterogeneity, shows
higher prediction accuracy than the traditional OLS model and can better capture the
influence mechanism of built environment factors on the passenger flow of urban rail
transit stations.

5.3.4. Comparative Analysis of Prediction Accuracy of OLS and GWR Model

In order to further verify the accuracy of the GWR model in predicting the passenger
flow of rail transit, this paper uses the mean absolute error (MAE), mean absolute per-
centage error (MAPE), and root mean square error (RMSE) as the evaluation indexes and
compares the prediction and simulation accuracy of the GWR model with the OLS model,
as shown in Table 8 below.
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Table 8. Comparison of model prediction results.

Type
OLS GWR

Station AE RE AE RE

Commercial housing Tangkeng 1310 17.33% 686 9.07%
Meicun 820 11.65% 661 9.39%

Commercial services
Gangxia 2807 15.89% 1044 5.91%

Shixia 1648 12.40% 224 1.69%

Government and corporate offices Science Museum 2273 20.21% 1066 9.48%
Shawei 2116 14.07% 314 2.09%

Public services
Caopu 1507 16.87% 875 9.80%

Henggang 1270 13.18% 216 2.24%

Scenic spots Children’s Palace 1017 10.10% 62 0.61%
University Town 1999 12.58% 904 5.69%

Transportation hub Qianhaiwan 840 18.26% 667 14.50%
Airport 509 12.94% 73 1.85%

MAE 4266 3021
MAPE 77.57% 46.63%
RMSE 5610 4147

The lower accuracy of passenger flow prediction for commercial housing stations
indicates that Shenzhen, as a special economic zone and an immigrant city [50], has
high population mobility. The travel behavior of residents is affected by multiple factors,
including the frequency of commercial activities, diverse transportation options, and the
fast pace of urban life. This complex travel behavior increases the difficulty of prediction,
resulting in the relatively low accuracy of passenger flow forecasts for residential stations.
Passenger flow predictions for transportation hub stations show instability. Transportation
hubs in the city center have higher prediction accuracy, whereas those further from the
center have lower accuracy. This indicates that transportation hubs in central Shenzhen
are surrounded by well-developed business districts, where passenger flow tends to be
relatively concentrated and stable. Areas farther away from the city center are not as
developed as the city center, and travel choices are more homogeneous with uncertainties.
The higher accuracy and stability of passenger flow forecasts for servicing business and
scenic spot stations indicate that the built environment around commercial stations in
Shenzhen is strongly developed, attracting a large number of consumers and tourists.
Traffic in these areas is more stable and predictable, as commercial activities tend to have a
fixed regularity (e.g., commuting peaks, holiday shopping, etc.), which is consistent with
the urban nature of Shenzhen as a national economic center city. Although there are natural
landscapes in the scenic spot stations, the surrounding built environment has formed a
more stable tourism economic circle due to the influence of urban special economic zones,
and the passenger flow prediction model has a better fitting effect. The citywide passenger
flow forecasts for both government and corporate offices and public service stations are
relatively stable, illustrating Shenzhen’s multi-cluster urban structure, with more balanced
office and public service support facilities. Shenzhen has achieved a good balance between
urban planning and administrative area development.

The above analysis illustrates that, compared with the OLS model, adding the average
house price as the solution independent variable and applying the GWR model that takes
into account spatial heterogeneity improves the accuracy in station ridership prediction
and captures the spatial heterogeneity of the factors affecting the passenger flow at the
station more effectively.

5.4. Spatial Heterogeneity of Local Influence Factor Coefficients in GWR Model

The GWR model analysis allows us to obtain the coefficients for each site, and we
can observe the spatial distribution of and variation in these coefficients through the
spatial structure map. To study the spatial heterogeneity of each influencing factor on
the morning peak passenger flow in Shenzhen, this paper visualizes the distribution
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of the local coefficients of each influencing factor by ArcMap10.8, which reacts to the
spatial heterogeneity of the influencing factors’ impacts on the rail transit passenger flow.
Since Shenzhen is a multi-cluster center city, and its structure is mainly divided into
regions [51], this paper discusses each administrative district of Shenzhen as a unit, as
shown in Figures 6–10.
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From the analysis in Figure 6, it is clear that the average house price has a globally
negative impact on the morning peak passenger flow. This may be because there is little
structural difference in the built environment of Shenzhen regions in general. Regions with
high house prices have diversified transportation facilities, and residents may choose to
travel by private car; according to the short one-way average morning peak distance in
Shenzhen, those with a close morning peak distance may choose to travel on foot or by
bicycle. The majority of migrant workers with low and middle income levels will choose
to live in areas with low house prices, which can reflect the current situation of residents’
transportation in Shenzhen.

The analysis in Figure 7 shows the spatial heterogeneity of the influence of government
and corporate office locations on the passenger flow of Shenzhen rail transit. The western
part of the Futian District has a higher influence coefficient due to its proximity to the core
commercial CBD, while the eastern industrial area is less affected by the passenger flow
despite its proximity to the commercial area. Extending southwestward to the Nanshan,
Longhua, and Bao’an Districts, the positive impact coefficient decreases, and the impact of
the northern section of Bao’an picks up due to its proximity to Dongguan, reflecting the
attractiveness of the office-dense area to commuter flows. Extending northeastward to the
Luohu and Longgang Districts, the negative impact coefficient increases, indicating that
the high level of automation and fewer office workers in these industrial districts have a
limited impact on rail traffic flow.

The analysis in Figure 8 shows the spatial heterogeneity of the influence of commercial
housing on the passenger flow of Shenzhen rail transit. Starting from the eastern part of
Futian District, radiating to the northeast towards the Luohu, Longgang and Longhua
Districts, the positive correlation is enhanced, indicating that the proportion of residences
in these districts rises and the residents rely on the rail transit due to the distance from the
city center, the increase in industrial facilities, and the inadequacy of the transportation
facilities. Radiating southwestward to the Nanshan and Bao’an Districts, the negative
correlation is enhanced due to the concentration of high-tech enterprises and schools in the
Nanshan District and the high residential density and inadequate transportation facilities
in the Bao’an District, leading to the possibility that residents may choose other modes
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of travel. The northern section of Bao’an is close to Dongguan, with a high number of
cross-city commuters, and the negative correlation is weakened.

From the analysis in Figure 9, it can be seen that the positive effect of floor area ratio on
the morning peak passenger flow of Shenzhen rail transit has a coefficient that is relatively
consistent across stations. This reflects the fact that a higher floor area ratio in Shenzhen
implies denser land use, which attracts more rail transit passenger flows. This effect shows a
slow decreasing trend from the eastern to the western administrative regions. The extension
of Shenzhen from east to west and the shift from industrial to residential and commercial
structures are related to the evolution of the urban spatial structure of Shenzhen, which is
“led by industry, followed by the construction of residential and commercial facilities” [52].
This spatial change may have an impact on traffic flow and the structure of passenger trips.

The analysis in Figure 10 shows the impact of rail transit station accessibility on the
morning peak passenger flow in Shenzhen. The accessibility coefficients of the stations are
generally negative, indicating that the accessibility of the stations is inversely proportional
to the passenger flow, which shows that improving the accessibility of the stations can
increase the passenger flow. The impact coefficient is higher in the western part of Futian
District due to its proximity to the CBD business district, while it gradually decreases to
the east and west and north to the Longhua District. This reflects that the transportation
facilities in the center of Shenzhen are perfect, while the peripheral areas need to be
upgraded. The impact coefficient of accessibility to the Longhua District rises, probably
due to the large number of migrant workers, the relative lag of rail transportation facilities,
and the outstanding traffic congestion problem [53]. It shows that the attractiveness and
efficiency of rail transit can be improved by optimizing the transportation network and
station connections.

5.5. Analysis and Recommendations
5.5.1. Impact of Housing Price on Morning Peak Passenger Flow

The South China Morning Post predicted on 4 July 2024 that in the second half of 2024
the number of migrant workers in Shenzhen would increase significantly [54]. Meanwhile,
the official website of Shenzhen Metro noted on 18 July 2024 that in the first half of 2024 the
average daily passenger traffic in Shenzhen reached 8,037,400, a record high for a single
day’s historical passenger flow [55]. According to news reports, Shenzhen housing prices
are still experiencing a downward trend in the second half of the year [56]; combined with
the previous analysis, the average housing prices have a significant negative correlation
impact with the spatial trend of the average daily passenger flow in the morning peak of
Shenzhen rail transit, and the hourly passenger flow in the morning peak of Shenzhen
rail transit may continue to increase in the second half of 2024. The relevant management
and operation departments should pay attention to this: the housing management de-
partment should reasonably regulate the level of house prices, and the rail transportation
management department should control the passenger flow in a timely and reasonable
manner.

5.5.2. Shenzhen City and Regional Synergy Optimization

As a multi-centered city, Shenzhen generally follows the development pattern of
“taking industry as the first step, followed by the gradual construction of residential
and commercial facilities”. Each region has its own unique development characteristics
and functional positioning, and the following conclusions and recommendations on the
development of administrative districts can be drawn from the perspectives of urban
development and regional planning to ensure the synergistic development of Shenzhen’s
regions and cities.

As the core commercial CBDs of Shenzhen, the Nanshan District and Futian District
remain the backbone of the city’s economic development. These two districts are not only
the concentration of financial, commercial, and high-tech enterprises but also the core area
of urban development. North of the Bao’an District, due to its border with Dongguan City,
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government and corporate offices, commercial residences, and other influences in this area
show a more pronounced spatial heterogeneity, which may be mainly due to the differences
between Shenzhen and Dongguan Cities in terms of their economic development patterns
and industrial structures. The two regions should engage in economic cooperation on many
fronts to promote industrial synergy and optimize regional resource allocation to achieve
more balanced and sustainable development. The Longgang District is mostly industrial
land and faces a demand for industrial upgrading and urban renewal. By increasing the
proportion of office land and raising the population density per unit of office land, it can
effectively promote the diversification of the regional economy and increase passenger
traffic. The south side of the Nanshan and Bao’an Districts, due to the large number of
residential areas, office locations, and schools, needs to take a series of measures to solve
the problem of large passenger flow in the morning peak promptly, such as optimizing the
public transport network, increasing investment in transport facilities, and improving traffic
management facilities to improve the travel efficiency of the residents. For administrative
districts farther away from the downtown commercial CBD area, especially the Longhua
District, the traffic congestion situation is a concern; the Longhua District and other districts
farther away from the downtown commercial CBD area can be considered within the
scope of the opening of a new rail station or other modes of transportation to improve the
accessibility of the site to improve the region’s subway station passenger flow, which has a
very significant role.

6. Conclusions

Based on the POI data and AFC data around the stations, this paper explores the
influence mechanism of passenger flow and the surrounding built environment factors
in Shenzhen rail transit stations. Spatial autocorrelation, multicollinearity, and stepwise
regression are used to filter out the key independent variables affecting station patronage.
The GWR model, which considers average housing prices as an independent variable, is
found to be more accurate in predicting passenger flow. This conclusion is further verified
by comparing the prediction results of the OLS and GWR models for different types of
stations. Taking administrative districts as the perspective, the spatial heterogeneity of the
influence of these factors on rail traffic flow is analyzed by visualizing the local regression
coefficients of each influential factor in the GWR model. Based on the results of this study,
policy recommendations for urban transportation planning and housing price regulation in
Shenzhen are proposed:

(1) Average house prices have a global negative correlation effect on ridership. Lower
housing prices are usually accompanied by higher metro ridership. Nowadays, with
the increase in migrant workers and passenger flow in Shenzhen, the government
should reasonably regulate the level of housing prices to balance the demand of
residents for housing and transportation resources.

(2) Based on OLS and GWR model calculations, and visualizing the local regression
coefficients of each influential factor in the GWR model, the following is evident:
the degree of influence of the influential factors in descending order is the building
volume ratio, accessibility, commercial residences, and the average house price. In
addition to average housing prices, which have a global negative correlation with
the morning peak passenger flow, the building volume ratio has a global positive
correlation, while accessibility has a global negative correlation. Government and
corporate offices, as well as commercial housing, have significant spatial heterogeneity
effects on Shenzhen rail transit passenger flow.

(3) The building volume ratio reflects the intensity of land use and the level of devel-
opment of the built environment [57]. By visualizing the local coefficients of the
building volume ratio, the spatial characteristics of Shenzhen’s built environment
are revealed, showing a shift from industrial areas in the east to commercial and
residential structures in the west, from the perspective of each administrative district.
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The shortcomings of this paper are that, although this paper puts forward policy
recommendations on urban transportation planning and housing price regulation based
on built environment factors, relevant policy factors were not directly quantified or in-
corporated into the analytical framework during model construction. At the same time,
for a city like Shenzhen, which is characterized by both intra-city short-distance commut-
ing and cross-city long-distance commuting, this study does not adequately discuss the
impact of the characteristics of travel behaviors on passenger demand under this special
commuting mode. In future research, AFC data can be further identified based on POI, and
policy factors and travel characteristics can be quantified and included in the analysis to
predict passenger flow concerning the regional policies and travel behavior characteristics
of Shenzhen. Moreover, the influence of the built environment and other variable factors on
passenger flow heterogeneity at rail transit stations during different periods (e.g., morning
and evening peaks, weekdays, weekends, holidays) can also be considered to provide a
theoretical basis for better urban transportation planning and development.
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