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Abstract: Understanding the dynamics of damaged rock masses and the evolution of internal
fractures is beneficial to the construction of deep engineering projects. Dynamic tests on damaged
granite were carried out using a split Hopkinson device which can apply a confining pressure. A
group of damaged granites was CT-scanned and three-dimensional reconstructed using Avizo 2020.1
software. The results indicate that with increasing damage, the peak stress and peak modulus of the
damaged granite decrease, while the peak strain increases. When the initial damage is consistent,
all three parameters increase with the increasing confining pressure. Confining pressure alters the
number and development direction of internal fissures in granite. Higher confining pressure results
in fewer fissures, with their development direction shifting more towards the center of the sample
and becoming straighter. The total volume of fissures within the rock samples, the volume of through
fissures, and the maximum length of the fissures are decreasing with the increase in the confining
pressure. In addition, the three-dimensional fractal dimension and the internal damage also decreased
continuously with the increase in the confining pressure. This research provides valuable theoretical
guidance for supporting and constructing surrounding rock in deep engineering projects.

Keywords: damaged rocks; dynamic properties; three-dimensional reconstruction; quantitative
representation of fissure; three-dimensional fractal dimension

1. Introduction

With the continuous development of underground engineering construction, the de-
velopment of China’s underground resources is gradually deepening. Compared to shallow
projects, deep underground projects are facing geological hazards, and engineering risks are
more complex and variable [1], especially in the use of “drilling and blasting” construction,
where the instantaneous strong impact load will bring about a more unpredictable risk of
underground engineering. Due to the limitations of shallow rock mechanics, the existing
relevant theories cannot be applied well to deep engineering [2]; based on this problem,
scholars have carried out a lot of research.

In the construction of underground engineering, the surrounding rock is affected
by construction disturbance and geological tectonic movement, resulting in there being
different degrees of internal damage. Regarding the mechanical properties of damaged
rock, Dai Bing et al. [3] conducted dynamic mechanical tests on granite with prefabricated
parallel fissures and investigated the effects of prefabricated fissure angles and impact
rates on energy dissipation and damage in granite. Liu et al. [4] prefabricated sandstones
with different fissure angles, combined with digital image technology to carry out an
impact test, revealing that increasing impact rates and crack angles enhanced the dynamic
strength of sandstone and made crack propagation more complex. Yan et al. [5] used a split
Hopkinson bar device to obtain dynamic mechanical properties, fracture characteristics,
and energy evolution laws for sandstones with multiple parallel fissures. The results of
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Wen Lei et al. [6] and Ping Qi et al. [7] showed that the original cracks in the rock affect the
dynamic properties and crack extension of the rock. Niu et al. [8] used a crack propagation
instrument to record the crack propagation parameters of the single-cleavage triangular
sandstone sample under impact and calculated the dynamic stress intensity factor of the
rock samples. Additionally, in deep environments, the influence of high crustal stress on
the surrounding rock is not to be underestimated. Experiments using Hopkinson devices
capable of applying a confining pressure are a common method of investigating such
problems. In this regard, Du et al. [9] investigated the damage pattern of rocks using a split
Hopkinson bar to which a confining pressure can be applied. You et al. [10] investigated the
dynamic mechanical properties and energy dissipation law of fissured sandstones under
different confining pressures. Yuan et al. [11] used cylinders of three different materials to
achieve the pressurization of the rock and investigated the dynamic properties and damage
modes of the rock. The above literature has carried out extensive studies on the dynamics
of damaged rocks. But rock is a non-homogeneous natural material, and the development
of internal pore fracture after perturbation is highly uncertain, and artificially prefabricated
fissures do not reflect well the internal conditions of damaged rocks in actual engineering.

The change in the macroscopic mechanical properties of rock mass is caused by
the change in the meso-mechanical properties and microscopic pore structure. To better
study the microscopic changes in rocks, CT scanning technology has been introduced
into the study of rock mass mechanics and has been widely used. Huang et al. [12]
analyzed the mineral composition of rock based on CT scan images and determined the
spatial distribution of each component in the rock sample based on three-dimensional
reconstruction. Tan Wenhui et al. [13] carried out uniaxial compression tests and CT scans
on jointed granite, studying the extension of internal joints. Liu et al. [14] reconstructed
three-dimensional visualization fractures based on CT images and analyzed the relationship
between the damage degree and the fractal dimension. Three-dimensional reconstruction
based on CT scan images can provide a good understanding of the development and
propagation of internal cracks in the loaded rock samples [15–17] and can quantitatively
analyze the internal fissure [18]. Zhao et al. [19] used CT technology to define the damage
ratio, integrity, and porosity of rock triaxial compression and studied the evolution process
of two-dimensional and three-dimensional fractures based on two-dimensional images
and three-dimensional models. Wang et al. [20] explored the rock crack propagation mode
during cyclic loading and unloading by three-dimensional reconstruction, quantitatively
describing the crack. Scholars have also conducted extensive exploratory research on
methods for reconstructing three-dimensional models [21,22]. Although there are many
methods for three-dimensional reconstruction, most of the results are still validated against
analyses from Avizo software, indicating that Avizo has significant advantages in rock
three-dimensional reconstruction [23,24].

There are many studies in the existing literature on rock dynamic properties and the
three-dimensional reconstruction of rocks. However, there are very few studies that com-
bine confining pressure, dynamic tests, and three-dimensional reconstruction techniques.
In response to this issue, this paper takes granite as the research object and creates initial
damage to the rock sample by impact. The dynamic mechanical properties of rocks with
initial damage under different confining pressures are studied using the Hopkinson test.
A group of impacted rock samples is selected for the CT test to analyze the influence of
confining pressure on the evolution of internal fissures in the rock samples, and the quanti-
tative representation of the fissure and rock sample three-dimensional fractal dimension
are carried out. These research results can provide a certain theoretical reference for the
support of surrounding rock in deep engineering.

2. Materials and Methods
2.1. Rock Sample Preparation

In this test, granite samples were obtained from a depth of one kilometer at a gold mine
in Shandong, China. The authors’ team has analyzed the mineral composition of the granite
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used in this experiment in previous studies, and the results show that its main components
are hornblende, feldspar, quartz, kaolinite, etc., with hornblende accounting for about
47.3% of the total composition, feldspar accounting for 40% of the total composition, quartz
accounting for about 6.9% of the total composition, and kaolinite accounting for about 5.8%
of the total composition [25]. The samples were prepared as cylindrical rock specimens
with a diameter of 50 mm and a height of 25 mm, and they were uniform in texture, with
no visible cracks, end face flatness ≤ 0.02 mm, and axial perpendicularity ≤ 0.25◦.

The propagation speed of the sound wave as it passes through the rock will vary
depending on the internal structural features. Therefore, the measurement results of wave
velocity can be used as a reference material to judge the internal damage of rock samples.
In this paper, the ZT801 geotechnical acoustic tester is used to measure the longitudinal
wave velocity of the rock samples. Based on the basic theory of damage mechanics, the
longitudinal wave velocity is defined as the damage variable, and the expression of this
damage variable is shown in Equation (1) [26]:

Sn = 1 − (
Vn

V0
)2, (1)

In the equation, Sn is the degree of damage; V0 is the longitudinal wave velocity of
the rock sample before impact, m/s; and Vn is the longitudinal wave velocity of the rock
sample after impact, m/s.

To meet the test requirements, the rock samples were pre-treated as follows:

(1) Ultrasonic Testing: The longitudinal wave velocities of the rock samples were mea-
sured using ultrasonic testing to exclude those with significant dispersion. The
longitudinal wave velocity of the final stayed rock samples was mostly stabilized at
5680 m/s.

(2) Initial Damage Creation: In preliminary tests, it was found that the critical impact air
pressure for reaching a critical failure state under impact loading was 0.5 MPa. Two
initial damage states were created with impact air pressures of 0.2 MPa and 0.3 MPa.
The longitudinal wave velocity of the rock samples after 0.2 MPa and 0.3 MPa impacts
was stabilized at 4810 m/s and 5260 m/s, respectively. Additionally, one set of
rock samples was left undamaged. The damage levels of the three groups of rock
samples were calculated as 0%, 14%, and 28%, respectively, according to Equation (1).
Thus, there were three initial damage states: no damage, low damage, and moderate
damage. Some rock samples are shown in Figure 1.
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Figure 1. Some granite samples.

2.2. Dynamic Test Introduction

For the dynamic test, we used the Split Hopkinson Pressure Bar, which consists of
a striker, an incident bar, a transmitted bar, an absorbed bar, a confining pressure device,
and a data acquisition system. The total length of the incident bar is 2400 mm, the end in
contact with the striker is a variable cross-section, the length of the variable cross-section
is 170 mm, and the diameters of the two ends are 37 mm and 50 mm, respectively. The
diameter of the striker is 37 mm, and the length is 400 mm. The length of the transmitted
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bar is 1200 mm, and the diameter is 50 mm. The wave speed of the bars is 5190 m/s, the
density is 7800 kg/m3, and Young’s modulus is 210 GPa. The confining pressure device
consists of an oil pumping device, a pressure chamber, and a pressure control system.
When using the device, we first use the hot melt pipe to fix the rock samples in the pressure
chamber and then fill the oil into the pressure chamber through the oil pumping device;
when the pressure chamber is full of oil, we turn off the oil pumping device and then set
the predetermined value of the pressure chamber on the pressure control system and click
the button of pressurization, where the system will then be like a syringe squeezing the oil
into the chamber to increase the pressure to the preset value. The Split Hopkinson Pressure
Bar is shown in Figure 2.
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When using the Split Hopkinson Pressure Bar, the size of the impact air pressure is set
on the gas pressure control device first and nitrogen gas is released when the value of the air
pressure in the gas gun is added to the set value. The rapidly released gas produces a larger
pressure to drive the bullet to hit the incident bar to produce a shock wave to be transmitted
to the rock samples, which are deformed at high speed under the impact loading. The
whole process is recorded as a pulse signal by strain gauges and collected by the DH8302
dynamic signal test system designed by Donghua Company. The dynamic stress and strain
parameters of the rock samples are analyzed by the supporting computer software.

The Hopkinson test satisfies two basic assumptions:
One-dimensional elastic stress wave assumption: the propagation path of the stress

wave in the Hopkinson bar is one-dimensional, and the stress wave in any cross-section
in the bar is in the same horizontal plane. That is, the axial strain measured at the surface
of the compression bar can represent the axial strain of the entire cross-section. Stress–
strain uniformity assumption: that is, the stress and strain of the rock sample in the length
direction are uniform.

Based on the above two assumptions, the equation for the average stress σ(t), average

strain ε(t), and average strain rate
.

ε(t) of the specimen can be obtained [27,28]:

σ(t) =
Ae

2As
Es [ε I (t)− εR (t)− εT (t)], (2)

ε(t) =
Cs

L

∫ t

0
[ε I(t)− εR(t)− εT(t)] dt, (3)

.
ε(t) =

Cs

L
[ε I(t)− εR(t)− εT (t)], (4)

where Ae and As are the cross-sectional area of the incident bar and sample, mm2. Es is the
modulus of elasticity of the incident bar, GPa. ε I (t), εR (t), and εT (t) are the strain signals
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of incident wave, reflected wave, and transmitted wave at the moment of t, respectively.
Cs is the longitudinal wave speed of the incident bar, m/s. L is the length of the sample.

Based on the above rationale, a pre-experiment was carried out. The strain signals
obtained after impact were analyzed, as shown in Figure 3. The waveform is generally
smooth, and no dispersion effects are observed during the propagation of the stress waves.
The sum of the incident and reflected waves’ amplitudes is nearly consistent with the
amplitude of the transmitted wave, indicating that the rock sample was in dynamic stress
equilibrium before impact failure. This test result establishes the foundation for the accuracy
of the experimental data. It is also worth noting that there was no confining pressure applied
for this test.

The dynamic test plan is as follows: The initial damage state is categorized into three
groups (no damage, low damage, and moderate damage), and four confining pressure
levels (5 MPa, 10 MPa, 15 MPa, 20 MPa) are set for each group. The impact air pressure
is kept constant at 0.5 MPa during each test. To ensure data accuracy, each condition
is tested three times, and the results are averaged from the three tests. In addition, the
dynamic properties of these three damage state rock samples without confining pressure
have been described by the author team in a previously published paper [25]. The obtained
stress–strain curves are shown in Figure 4, so this is not repeated in this paper.
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2.3. CT Scan Test

The CT test uses a coal and rock industrial CT scanning system (Phoenix v|tome|x s)
with load capacity. The device can perform continuous high-precision three-dimensional CT
scanning of coal and rock samples under non-loading conditions. The maximum diameter
for a complete scan is 230 mm, with a height of 420 mm. The device is equipped with two
X-ray tubes: one is a high-power micro-focus X-ray source with a maximum tube voltage
of 240 kV, a minimum focal spot size of ≤3 µm, a maximum power of ≥320 W, and a detail
resolution of ≤2 µm; the other is a high-precision nano-focus X-ray source with a maximum
tube voltage of 180 kV, a minimum focal spot size of ≤1 µm, maximum power of ≥15 W,
and a detail resolution of ≤0.5 µm. This device can scan internal pores, damage, and other
features of the samples, providing data for subsequent three-dimensional reconstruction.
The CT test plan is as follows: select untreated rock samples and a group of rock samples
with an initial state of no damage, which have been impacted under different confining
pressures, for scanning.

2.4. Three-Dimensional Reconstruction Methods

The information obtained from the two-dimensional CT images of the rock samples
is quite limited and only allows for a basic qualitative analysis. Avizo 2020.1 software
is a professional 3D visualization modeling software. It is capable of completing 3D
visualization modeling based on CT images. The software provides a large number of
data types and modules to quickly complete the quantitative analysis of 3D model data.
This paper mainly applies the ortho slice command, interactive thresholding command,
volume rendering command, label analysis command, and fractal dimension command in
Avizo 2020.1. These commands are used to extract the fracture of rock samples, reconstruct
the fracture in three dimensions, count the fracture parameters, and calculate the three-
dimensional fractal dimension. The reconstruction process is illustrated in Figure 5.
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The three-dimensional reconstruction process using Avizo 2020.1 software involves
the following steps:

(1) Importing Images: First, the images obtained from the CT scan are imported into the
software. Since the tape used to wrap the samples during scanning can introduce
artifacts, the images are cropped to remove these artifacts and minimize their impact
on the results.

(2) Noise Reduction: Due to external noise during scanning, the original images may
contain noise. To enhance image quality for subsequent analysis, the grayscale values
are adjusted, and filtering is applied to reduce noise.

(3) Threshold Segmentation: Accurate segmentation of different phases in the image is
crucial for three-dimensional reconstruction. Common algorithms for threshold seg-
mentation include watershed segmentation, global thresholding, and region growing.
In this study, Avizo 2020.1 software’s built-in watershed algorithm is used, which is
effective in accurately identifying voxels at the boundaries where different phases
intersect. Additionally, there is a linear relationship between the grayscale value and
the density of mineral components: higher brightness indicates higher density. In the
scanned two-dimensional images, brighter regions correspond to mineral components
(such as amphibole, feldspar, quartz, etc.), while darker regions indicate fissures.
During processing, the grayscale values are used to differentiate between fissures and
mineral matrix.

(4) Three-Dimensional Rendering: After threshold segmentation, the original images are
classified into two phases (mineral matrix and fissures). The software then renders
and visualizes the rock samples in three dimensions, showcasing the internal structure
and features.

3. Results
3.1. Results of the Hopkinson Test

The data measured by Hopkinson’s test are shown in Table 1, and the stress–strain
curve is shown in Figure 6.

From Table 1, it can be seen that when the initial damage state of the rock samples is
certain, both the strain rate and the peak stress keep increasing with the increase in the
confining pressure. When the rock samples are in the no-damage state, the change in strain
rate is the largest, increasing from 153 s−1 to 188 s−1. The increase in the confining pressure
also increases the peak stress of the rock samples. However, the effect of initial damage on
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the strain rate and peak stress was opposite, and a decrease in both the strain rate and peak
stress occurred with increasing damage.

The stress–strain curve under no damage and confining pressure of 5 MPa is taken as a
typical stress–strain curve for analysis, as shown in Figure 6a. The stress–strain curve can be
roughly divided into four stages: compaction stage (OA segment), elastic deformation stage
(AB segment), plastic deformation stage (BC segment), and post-peak stage (CD segment).

Table 1. Test results of granite under different states.

Damage Degree Impact Air Pressure Confining Pressure/MPa Average Strain Rate /s−1 Peak Stress /MPa

No damage

0.5 MPa

5 153 270.10
10 165 328.49
15 173 397.13
20 188 450.12

Low damage

5 150 263.67
10 164 321.01
15 165 390.77
20 176 447.45

Moderate damage

5 152 250.72
10 160 309.78
15 167 382.87
20 170 444.72
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Compaction stage (OA segment): From the stress–strain curve, the slope of the curve
in this stage is smaller than that of the elastic stage. During this stage, the minor fissures
and cracks within the rock sample are compacted [29]. As confining pressure increases, this
stage becomes more pronounced. But the initial damage has the opposite effect. The reason
for this is that the increase in initial damage leads to an increase in the number of fissures
in the rock sample, which causes changes that delay the microcracks from closing before
the impact load begins to develop, and the sample directly enters the next stage, showing a
decrease in peak stress in mechanical properties.

Elastic deformation stage (AB segment): In this stage, the stress–strain curve is close
to a straight line, and the slope can be used as the dynamic elastic modulus of the rock
sample. After the compaction stage, the internal components of the rock sample are in
more thorough contact, and the sample undergoes elastic deformation under load. It can be
seen from Figure 6b–d that the slope of this stage increases with the increase in confining
pressure, while the duration of the elastic deformation stage decreases.

Plastic deformation stage (BC segment): After entering this stage, the tangent slope of
the stress–strain curve decreases continuously, and the stress exhibits certain fluctuations
and reaches a peak. The reason for this is that the independent pores and microcracks
in the rock sample begin to expand first; when they expand to a certain extent, relatively
independent pores and microcracks gradually connect to form larger interconnected fis-
sures. When the confining pressure increases to 15 MPa, the stress–strain curve in this stage
shows a smoother trend. The existence of confining pressure makes the development of
microcracks in rock samples more stable.

Post-peak stage (CD segment): As the deformation continues, the stress of the rock
sample gradually declines after reaching its peak. Although strain continues to increase,
the rate of increase becomes progressively smaller. This indicates that a few microcracks
within the rock sample are still expanding during this stage. The increase in confining
pressure will increase the maximum strain value of the rock sample.

3.2. Results of CT Scan

Due to the use of critical air pressure for the impact tests in this experiment, the
granite samples did not produce a large number of fragments under the combined effects
of confining pressure and impact load. To better understand the changes in the internal
fissure of the rock samples after impact, a set of no-damaged rock samples was selected.
These samples were subjected to impact testing under different confining pressures and
then underwent industrial CT scanning. Three-dimensional reconstruction techniques were
applied to process the scanned CT images, and the reconstructed 3D models were analyzed
to examine the internal changes.

During the CT scanning process, each test rock sample was scanned to produce
1000 slices, with the first slice corresponding to the end of the sample subjected to the
incidence bar, and the slices numbered sequentially. The CT scan results of both the
untreated rock samples and a group of no-damage samples to impact load under different
confining pressures are shown in Figure 7.

Figure 7a shows that granite, being a dense rock, contains very few large pores
or microcracks internally. In particular, the rock samples used in this experiment were
extracted from depths of several kilometers, where years of evolution have resulted in very
few microscopic pores, indicating that the selected samples are highly suitable for testing.

We compared the CT scan images of the group of no-damage rock samples subjected
to impacts under different confining pressures (Figure 7). It is evident that as confining
pressure increases, the number, width, and complexity of fissure in the transverse slices of
the rock samples decrease. This phenomenon is also clearly observed in the front views of
the rock samples. The underlying reason for this is that under impact loads, the confining
pressure restricts the transverse deformation of the rock, thereby impeding the expansion
of the internal fissure. This effect becomes more pronounced with increasing confining
pressure. Additionally, the presence of confining pressure alters the failure mode of the
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rock. At low confining pressures, the rock primarily experiences tensile–shear mixed failure.
However, as confining pressure increases, the failure mode shifts to purely shear failure, a
transition that is particularly evident in the front views of the CT images shown in Figure 7.
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4. Discussions
4.1. Analysis of Dynamic Parameters

In order to better evaluate the dynamic characteristics of granite, the results of three
parameters, peak stress, peak strain, and peak modulus, are selected in this paper.

To specifically analyze the extent to which confining pressure and initial damage affect
the dynamic mechanical properties of granite samples, the peak stress of 270.10 MPa for
no-damaged rock samples under a confining pressure of 5 MPa is used as a reference. The
damage-weakening factor fs is introduced for calculation and analysis, with its calculation
given by Equation (5) [30]:

fs =

(
σn − σ1

σ1

)
× 100%, (5)

In the equation, σn is the peak stress of granite samples under different states, and
σ1 is the peak stress of no-damaged rock samples under a confining pressure of 5 MPa. If
fs is positive, this means that the peak stress of the rock sample has increased compared to
σ1; otherwise, it means a decrease. The fs calculation results of the weakening coefficient of
granite rock samples in different states are shown in Table 2.
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Table 2. Influence degree of initial damage and confining pressure on peak stress of granite samples.

Damage Degree
Confining Pressure

5 MPa 10 MPa 15 MPa 20 MPa

No damage 0.00% 21.62% 47.03% 66.65%
Low damage −2.38% 18.85% 44.68% 65.66%

Moderate damage −7.17% 14.69% 41.75% 64.65%

It can be seen from Table 2 that the peak stress of granite samples under different
confining pressures decreases continuously with the increase in initial damage, and the
peak stress of rock samples with different initial damage increases continuously with the
increase in confining pressure. The increase in confining pressure will reduce the impact
of initial damage on the peak stress, which is particularly obvious at a confining pressure
of 20 MPa. The analysis of the internal reasons shows that the initial damage leads to
the increase in porosity inside the rock sample, especially the increase in the connectivity
between the pores and fissures, which leads to the acceleration of the penetration of the
pores and fissures and the decrease in the bearing capacity of the rock sample under the
impact load. When confining pressure is applied, the micropores inside the rock sample
are closed, and the void between the matrix of the rock sample is reduced. With increasing
confining pressure, the pore cracks caused by the initial damage will be further compacted
until they are completely closed, which is reflected in the increase in peak stress in the
dynamic characteristics of the rock.

To analyze the effects of confining pressure and initial damage on the deformation of
granite samples under impact load, this paper selected peak strain and peak modulus as
the analysis objects. Peak strain is the strain value corresponding to the peak stress in the
stress–strain curve of a rock, and peak modulus is the ratio of peak stress to peak strain.
Compared with the modulus of elasticity, the peak modulus expresses the rock’s ability to
resist deformation at various stages under impact loading [31].

The relationships between the peak strain and peak modulus of rock samples and the
confining pressure under different states are shown in Figures 8 and 9.

As illustrated in Figure 8, confining pressure and initial damage have varying impacts
on the peak strain of granite samples under impact load. Specifically, at the same confining
pressure, an increase in initial damage leads to a higher peak strain in the samples. Addi-
tionally, for samples with the same initial damage state, peak strain increases with higher
confining pressure. However, this promoting effect of confining pressure on peak strain
diminishes as confining pressure continues to rise.
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This behavior can be explained by the fact that initial damage increases the porosity
within the samples, introducing irreversible deformation. Under impact load, this deforma-
tion is further exacerbated. While confining pressure enhances the sample’s ability to resist
elastic deformation, once the deformation exceeds the elastic limit of the sample, confining
pressure becomes a force that exacerbates deformation. This is manifested by the further
expansion of internal cracks and increased deformation. Nevertheless, this effect weakens
with higher confining pressure because increased confining pressure enhances the sample’s
resistance to elastic deformation.

The peak modulus effectively reflects the deformation characteristics of rock samples
under impact loads at various stages, particularly its ability to resist deformation. It is
defined as the ratio of peak stress to peak strain. As shown in Figure 9, under the same
confining pressure, the peak modulus of the rock samples decreases with increasing initial
damage, indicating that initial damage reduces the rock’s ability to resist deformation.
Under the same initial damage state, the peak modulus of the rock samples increases with
higher confining pressure. Compared to low confining pressures, the influence of initial
damage on the peak modulus is less significant at high confining pressures, with confining
pressure having a more dominant effect. The underlying reason is that increased confining
pressure leads to the further closure of microcracks caused by initial damage, making the
rock sample denser and thus increasing its peak modulus.

4.2. Quantitative Fracture Analysis

To conduct a more detailed quantitative analysis of the changes in internal fissures of
the group of no-damaged rock samples subjected to impact loads under different confin-
ing pressures, three-dimensional reconstruction of the two-dimensional CT images was
performed using Avizo 2020.1 software.

The three-dimensional reconstruction models of the group of no-damaged granite rock
samples subjected to impact under different confining pressures are shown in Figure 10.

From the three-dimensional reconstruction models of rock samples under different
conditions shown in Figure 10, the impact of confining pressure on the development of
fissures in the rock samples is evident. For the untreated rock samples, there are only
a few isolated, small-volume pores with limited connectivity. After impact, numerous
through fissures develop, which are the primary cause of the rock’s fracturing. As confining
pressure increases, the number of through fissures decreases. Particularly, when the
confining pressure reaches 15 MPa, the number of through fissures within the rock samples
is notably reduced, and at 20 MPa, no large-volume fissures are observed.



Appl. Sci. 2024, 14, 10813 13 of 18

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 19 
 

higher confining pressure. Compared to low confining pressures, the influence of initial 
damage on the peak modulus is less significant at high confining pressures, with confining 
pressure having a more dominant effect. The underlying reason is that increased confining 
pressure leads to the further closure of microcracks caused by initial damage, making the 
rock sample denser and thus increasing its peak modulus. 

4.2. Quantitative Fracture Analysis 
To conduct a more detailed quantitative analysis of the changes in internal fissures 

of the group of no-damaged rock samples subjected to impact loads under different con-
fining pressures, three-dimensional reconstruction of the two-dimensional CT images was 
performed using Avizo 2020.1 software. 

The three-dimensional reconstruction models of the group of no-damaged granite 
rock samples subjected to impact under different confining pressures are shown in Figure 
10. 

 
Figure 10. Three-dimensional reconstruction models of rock samples under different states. 

From the three-dimensional reconstruction models of rock samples under different 
conditions shown in Figure 10, the impact of confining pressure on the development of 
fissures in the rock samples is evident. For the untreated rock samples, there are only a 
few isolated, small-volume pores with limited connectivity. After impact, numerous 
through fissures develop, which are the primary cause of the rock’s fracturing. As confin-
ing pressure increases, the number of through fissures decreases. Particularly, when the 
confining pressure reaches 15 MPa, the number of through fissures within the rock sam-
ples is notably reduced, and at 20 MPa, no large-volume fissures are observed. 

Under impact loading, the influence of confining pressure on the internal develop-
ment of fissures is more clearly depicted in the three-dimensional reconstruction models. 

Figure 10. Three-dimensional reconstruction models of rock samples under different states.

Under impact loading, the influence of confining pressure on the internal development
of fissures is more clearly depicted in the three-dimensional reconstruction models. From
the longitudinal section of the rock sample in Figure 10, the evolution law of the pore
fracture can be observed. As discussed in the analysis of granite dynamic deformation,
impact loading causes axial deformation in the rock sample, and due to the Poisson effect,
transverse deformation also occurs. However, the presence of confining pressure restricts
transverse deformation and alters the development direction of the fissures, causing them
to gradually shift towards the center of the rock sample. The specific impact of confining
pressure on fissures’ development is illustrated in Figure 11. Increased confining pressure
makes the internal through fissures of the rock sample more linear, with this effect being
particularly pronounced at 10 MPa.
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The primary cause of rock failure is the propagation and development of internal
fissures. Quantitative analysis of these fissures using the three-dimensional reconstruction



Appl. Sci. 2024, 14, 10813 14 of 18

models of the rock samples provides a fundamental explanation of how confining pressure
affects the macroscopic mechanical properties of granite samples after impact. In this anal-
ysis, the internal fissures of the rock samples are categorized into fissures and independent
fissures. The main cause of rock failure is the formation of through fissures that connect
and penetrate the rock sample under external forces, while the remaining fissures that do
not penetrate the rock are considered independent fissures. The volume of fissures and the
maximum length of through fissures are selected as parameters for quantitative analysis.
The detailed analysis results are presented in Table 3.

Table 3. Statistical change in parameters of rock samples in different states after impact.

Sample State Total Fissure
Volume (nm3)

The Volume
Proportion of

Through Fissure (%)

The Volume Proportion of
Independent Fissure (%)

Maximum Through
Fissure Length (nm)

After impact at a confining
pressure of 5 MPa 39,474,100 95% 5% 76,101,952

After impact at a confining
pressure of 10 MPa 7,961,934 73% 27% 54,654,324

After impact at a confining
pressure of 15 MPa 4,052,681 32% 68% 51,974,100

After impact at a confining
pressure of 20 MPa 2,947,010 17% 83% 36,900,516

From Table 3, it is observed that as confining pressure increases, the total volume of
internal fissures in the rock samples decreases after impact. Specifically, the proportion
of the volume occupied by through fissures decreases, while the proportion occupied by
independent fissures increases. Additionally, the maximum length of through fissures
also diminishes. These quantitative analysis results demonstrate the suppressive effect of
confining pressure on the development of internal fissures in the rock samples. They also
validate the qualitative findings of the impact of confining pressure on fissures discussed
earlier and reveal the underlying reasons for the influence of confining pressure on the dy-
namic mechanical properties of the rock samples from the perspective of three-dimensional
fissure evolution.

4.3. Three-Dimensional Fractal Dimension and Damage Analysis of Internal Fractures in
Rock Samples

The fractal dimension, as a geometric method for describing the complexity of objects, can
be used to quantitatively characterize the complexity of internal fissures in rock samples [32].
The principle for calculating the fractal dimension in Avizo 2020.1 software is as follows:

For an object with fractal characteristics, divide it into n equal units. The number of
units, unit scale, and the number of units at different scales have relationships as described
by Equation (6) [33]:

N(δ) = δ−D, (6)

where δ represents the smallest scale after dividing the object n times; N(δ) is the total
number of units at the smallest scale δ; and D is the fractal dimension, which corresponds
to the number of units at different scales.

For the area A of the remaining fractal body after division, it is equal to the product of
the area at the unit scale and the number of units at that scale, as given by Equation (7):

A = N(δ)·δ2, (7)

By substituting Equation (6) into Equation (7), we obtain Equation (8):

A = δ2−D, (8)
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Equation (8) illustrates the relationship between the smallest scale δ, fractal area A,
and fractal dimension D. Therefore, D represents the area fractal dimension. Extending
this equation to three-dimensional space yields Equation (9):

V = δ3−Dv , (9)

In Equation (9), V denotes the three-dimensional volume, and Dv is the three-dimensional
fractal dimension.

In Euclid’s geometry, straight lines and curves are one-dimensional, planes and
spheres are two-dimensional, and forms whose length, width, and height all exist are
three-dimensional. But for complex forms, their dimensions are not described by integers
like one, two, or three. This problem was solved by the advent of the Koch curve and the
Menge sponge. The Koch curve occupies a limited area with its unlimited length, which
is bigger than one dimension and smaller than two, i.e., its dimension is bigger than one
and smaller than two. The Menge sponge is similar in principle; the surface area of the
hole inside the Menge sponge is unlimited, but it occupies a limited three-dimensional
space, so its dimension is between two and three [34]. From the above analysis, it is known
that the three-dimensional fractal dimension is between two and three, a higher fractal
dimension indicates greater complexity in the rock’s fissures, while a lower dimension
suggests simpler fissure structures.

The use of fractal dimensions to analyze the extent of damage within a rock sample is
a common method based on Yang’s definition [35] of damage:

w =
Dv − D0

Dmax
v − D0

, (10)

In Equation (10), w is the degree of damage; Dv is the fractal dimension of the rock
sample after impact; D0 is the fractal dimension of the rock sample before impact; and
Dmax

v is the maximum value of the fractal dimension of the rock sample after impact for the
three-dimensional problem Dmax

v = 3.
Based on the above principle, the authors have calculated the internal damage degree

and three-dimensional fractal dimension of the rock samples under different circumferential
pressures. And in connection with the damage-weakening factor in Section 4.1, Figure 12
was drawn.
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Figure 12. Relationship between internal damage, damage-weakening factor, and confining pressures.

From Figure 12, it can be seen that the three-dimensional fractal dimension of the rock
samples after impact shows a gradual decrease with the increase in the confining pressure,
and the reasons for this are analyzed as follows: under the low confining pressure, the
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number of cracks inside the rock samples increases due to the impact, and the development
and evolution of the cracks are very uncertain, resulting in the complexity of the cracks
inside the rock samples, and the values of the three-dimensional fractal dimensions are
larger. With the increase in the confining pressure, the development of the micropore cracks
and the overall deformation of the samples are restricted, thus reducing the number and
complexity of the pore cracks, resulting in a decrease in the values of the three-dimensional
fractal dimensions. With the increase in the confining pressure, the development of microp-
orous cracks and the overall deformation of the rock samples are restricted, and the number
and complexity of the cracks are reduced, which leads to the decrease in the value of the
three-dimensional fractal dimension of the rock samples. Secondly, the change amplitude
of the three-dimensional fractal dimension and damage degree also slowed down with
the increase in the confining pressure, the change amplitude of the three-dimensional
fractal dimension decreased from 0.1933 to 0.1185, and the damage degree decreased from
0.1972 to 0.1209. The results, from the perspective of three-dimensional fractal dimensions,
quantitatively examine the extent of the impact of confining pressure on the development
of internal fissures in rock samples after impact, and this is consistent with the results of
the quantitative crack analysis. Meanwhile, it can be seen from Figure 12 that the increase
in confining pressure not only reduces the degree of damage inside the rock samples but
also improves the impact resistance of the rock samples.

In this paper, dynamic tests on damaged rocks were carried out using a split Hopkin-
son bar, which can apply a confining pressure. The damage inside the rock samples after
impact at different confining pressures was analyzed using three-dimensional reconstruc-
tion techniques. These results deepen our understanding of the dynamic properties and
internal damage evolution of deeply damaged rocks.

5. Conclusions

1. The peak stress and peak modulus of the granite samples decrease gradually with in-
creasing initial damage, while the peak strain increases with the initial damage. Under
the same initial damage, all three parameters increase with rising confining pressure.

2. Confining pressure alters the evolution of internal fissures in granite samples. As
confining pressure increases, the number and complexity of fissures in transverse
sections decrease, and in longitudinal images, cracks within the rock sample shift
progressively toward the center and become more linear.

3. With increasing confining pressure, the total volume of fissures gradually decreases.
The proportion of the volume occupied by through fissures drops from 95% to 17%,
and their maximum length reduces from 76,101,952 nm to 36,900,516 nm. Conversely,
the proportion of the volume occupied by independent fissures increases from 5%
to 83%. Additionally, the three-dimensional fractal dimension also decreases with
increasing confining pressure, indicating that confining pressure reduces the internal
damage in the rock samples.
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