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Abstract: This study aims to identify N-aryl-benzimidazolone analogs as potential inhibitors of the
HSP90 protein, which is involved in various diseases. For this, we used computational techniques
such as pharmacophoric modeling, virtual screening, in silico ADMET prediction, and molecular
dynamics simulations. A target-based pharmacophore model (ADDRR) was developed from the
MEY ligand to identify the main binding features. This model was used to screen approximately
30,994 similar compounds, leading to the identification of 3019 candidates. Among these, five
compounds (L1, L2, L3, L4, and L5) showed strong binding affinity, with docking scores lower
than the reference ligand MEY (−7.94 kcal/mol). The ADMET properties of these compounds
were favorable, confirming their potential as drug candidates. The two top-performing compounds
in the docking studies demonstrated high stability in dynamics studies, the results demonstrated
remarkable stability of the ligand−protein complexes, as evidenced by favorable values of metrics
such as RMSD, RMSF, Rg, and SASA. These findings provide a promising foundation for further
experimental validation and the potential development of effective HSP90 inhibitors.

Keywords: HSP90; pharmacophore; virtual screening; ADMET prediction; molecular dynamics
simulations

1. Introduction

One of the key challenges facing world health today is cancer. An estimated 20 million
new instances of cancer were detected globally in 2022, resulting in about 9.7 million deaths.
In spite of advances in medical research and treatment, the number of people affected
by cancer is still rising. One in five people will have cancer at some point in their lives,
and one in nine men and one in twelve women will die from the disease. These alarming
figures demonstrate the urgent need for more research and the development of effective
medications to treat this pervasive condition [1]. Faced with the alarming increase in cancer
cases worldwide, the search for new therapeutic targets, such as HSP90, is becoming crucial
to develop more effective treatments. HSP90 (Heat Shock Protein 90) is a chaperone protein
essential for the survival of cancer cells, as it stabilizes key proteins involved in tumor
growth [2]. Targeting HSP90 with inhibitors disrupts these mechanisms, leading to the
degradation of oncoproteins and the death of cancer cells. This therapeutic approach shows
promising potential, particularly for cancers resistant to conventional treatments [3].

Recent discoveries regarding HSP90, particularly its isoforms HSP90α and HSP90B1,
have significant implications for cancer treatment, strengthening therapeutic strategies and
potentially improving patient outcomes. These findings highlight the crucial role of HSP90
as a key regulator of cancer cell survival and proliferation. HSP90α, often overexpressed in
various cancers, promotes cell growth and resistance to therapies by regulating cell death
pathways [4]. Furthermore, HSP90B1 has been identified as a novel biomarker associated
with poor prognosis in several cancer types, making it a potential therapeutic target [5].
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HSP90 inhibitors, including dual-targeted ones, have shown promising results in preclinical
studies, enhancing antitumor effects when combined with other treatments [6]. These
inhibitors disrupt oncogenic pathways, leading to the degradation of proteins essential
for tumor survival. However, despite this potential, challenges such as drug resistance
and toxicity remain major obstacles to their clinical application. Thus, further research is
essential to optimize these therapies and improve patient outcomes [4]. The benzimidazole
scaffold, a versatile heterocyclic structure, plays a vital role in developing compounds with
significant biological and pharmacological properties. First synthesized by Hobrecker in
1872 as 2,5- and 2,6-dimethylbenzimidazole [7], this structure gained prominence after
the discovery of N-ribosyl-dimethylbenzimidazole, which acts as cobalt’s axial ligand in
vitamin B12 [8]. Over time, benzimidazole derivatives have shown immense value in
medicinal chemistry, exhibiting a wide range of activities, including antiparasitic (e.g.,
albendazole), antiulcer (e.g., omeprazole), antihypertensive (e.g., candesartan), antihistaminic
(e.g., bilastine), anticancer (e.g., bendamustine), and antipsychotic effects [9,10].

Chemically, N-aryl-benzimidazolones are classified as benzimidazole derivatives with an
aryl group attached to the nitrogen atom in the imidazole ring. This structural modification
distinguishes these compounds within the broader benzimidazole family, imparting specific
physical and chemical properties that enhance biological interactions, particularly for
HSP90 inhibition. The N-aryl-benzimidazolone class includes compounds known for their
ability to inhibit the HSP90 protein [11,12] However, despite their promising efficacy,
some compounds in this family face challenges in terms of metabolic stability, selectivity,
and potential toxicity [5,13]. To address these issues, our study employs computational
approaches to identify structural analogs that are predicted to retain the inhibitory potential
of N-aryl-benzimidazolone compounds, with improved pharmacokinetic and safety profiles.
Although experimental validation is still needed, this approach provides insights that may
aid in discovering optimized HSP90 inhibitors as safer alternatives to current options.

Modeling methods, such as virtual screening, pharmacophore modeling, molecular
dock, and molecular dynamics, are crucial tools in the discovery of new drug candidates.
Virtual screening often begins with similarity searching, where structural analogs are
identified for their potential to share biological activities with a lead compound [14]. Phar-
macophore modeling then helps identify chemical features essential for interaction with a
target, facilitating the virtual screening of large databases. Molecular docking allows the
prediction of the binding affinity between a molecule and a biological target, facilitating
the identification of potentially active compounds [15]. Finally, molecular dynamics plays
a critical role in assessing the stability and flexibility of molecular complexes [16]. By
simulating the motions of molecules over extended periods of time, it provides a deeper
understanding of ligand–target interactions, improving the accuracy of predictions regard-
ing compound behavior under realistic biological conditions. These integrated approaches
not only reduce development costs and time, but also optimize the targeting of complex
pathologies, making the drug discovery process more efficient and accurate.

In light of the modeling methods discussed, we will apply these approaches to explore
potential new drug candidates. We will start with a known HSP90 inhibitor and then
search for similar compounds in available databases. This similarity search will be followed
by pharmacophore modeling to refine the chemical features essential for interaction with
HSP90. Then, we will perform molecular docking to assess the binding affinity of the
identified compounds with the biological target. Finally, we will use molecular dynamics
to verify the stability and flexibility of the proposed molecular complexes. This integrated
approach will allow us to efficiently screen compounds and propose potential candidates
as new HSP90 inhibitors. Thus, this methodical approach aims to optimize the discovery of
new treatments targeting HSP90 and contribute to the advancement of cancer therapies.
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2. Materials and Methods
2.1. Protein and Ligand Preparation

In this study, the HSP90 inhibitor MEY (N-{[1-(5-chloro-2,4-dihydroxyphenyl)-2-oxo-
2,3-dihydro-1H-benzimidazol-5-yl]methyl}naphthalene-1-sulfonamide), crystallized with
the HSP90 protein (PDB code: 3OWD), was utilized as a reference structure for identifying
structurally related compounds. A detailed search of the PubChem database was conducted
by using the MEY structure as the query. This was achieved by inputting its SMILES
notation and performing a similarity search to retrieve compounds with similar chemical
scaffolds. The search results yielded 30,994 compounds that shared structural features
with MEY, with a minimum similarity of 80%. These compounds were then filtered using
Lipinski’s rule of five to assess their drug-likeness and pharmacokinetic properties. The
filtering criteria included the molecular weight (less than 500 Da), the octanol–water
partition coefficient (LogP less than 5), hydrogen bond donors and acceptors, and the
number of rotatable bonds. Compounds that did not meet these criteria were excluded from
further analysis, ensuring the selection of drug-like candidates for subsequent molecular
docking and dynamics simulations.

The crystal structure of the human HSP90 protein (PDB code: 3OWD, resolution
1.63 Å), obtained from the Protein Data Bank [17], was also used in this study for both
protein and ligand preparation. LigPrep (Schrödinger, 2018) was employed to prepare
the ligands by optimizing their geometry and protonation states, ensuring their suitability
for further computational analysis. Additional methodological details can be found in
previous publications from our research group [18].

2.2. Molecular Docking

The grid file required for docking was created using Glide’s grid-generating panel.
The location of the cocrystallized ligand in the protein active site served as the basis for
defining the grid’s center. Using BIOVIA Discovery Studio Visualizer (Dassault Systems,
San Diego, CA, USA), the poses of the ligands with the most advantageous binding energies
were displayed following the docking calculations in SP and XP modes.

2.3. Pharmacophore Modeling and Virtual Screening

In this research, a pharmacophore model was designed using the “Generate a pharma-
cophore from a protein–ligand complex” function in the Phase module, while maintaining
the default parameters. This model was then used to perform a virtual screen on a database
of similar compounds from PubChem. Following this screening, 3019 compounds from the
PubChem database were identified and selected based on their correspondence with the
criteria defined by the pharmacophoric model.

2.4. ADME-T and Drug-Likeness Properties

When a drug is supplied to a human, it must have appropriate properties for ADME.
Given this, determining the safety or toxicity profiles for any drug candidate by in silico
ADMET analysis is an important stage in the drug development process [19]. The AD-
METlab 2.0 server (obtained on 24 February 2024) [20] was used to predict the ADMET
profile of the top lead compounds. In addition, the ProTox-II web server [21] was utilized
to test the compounds’ cytotoxicity, mutagenicity, immunotoxicity, carcinogenicity, and
hepatotoxicity.

2.5. Molecular Dynamics Simulation

According to the results of the molecular docking analysis and ADMET evaluations,
three different complexes were submitted to all-atom molecular dynamics simulations:
HSP90_L1, HSP90_L2, and HSP90_MEY as a reference complex. The three simulations
were run at 300 ns with the CHARMM36 force field from the Gromacs-2023 program.
The molecular topology data of the identified inhibitors and the reference drug (MEY)
were derived from the SwissParam platform (http://swissparam.ch/ accessed on 10 June
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2024) [22]. Additionally, the editconf function was used to create a simulation box on
the complex with an absolute minimum distance of 10 Å to any wall. Furthermore, the
intermolecular potential using the TIP3P water model was utilized to fill the box with
solvent molecules with the application of the gmx solvate command [22]. The charge for
each system was neutralized by the addition of (Na+, Cl−) ions. The steepest descent
technique (1000 ps) for protein configuration was used to minimize the energy. For energy
minimization, set nsteps to 50,000 were modified to an energy step size (emstep) of 0.01 [23].
NVT equilibration was conducted at 300 K for 500 ps using a V-rescale thermostat. The NPT
was then adjusted for 100 ps using a Berenson pressure-coupling system and a coupling
value of 2.0 ps. Finally, the MD simulation was performed at 300 ns for each system, using
nsteps of 150,000,000 specified in the md.mdp data.

We analyzed the MD simulation results to gain understanding of the compactness,
flexibility, and stability of the complexes that were produced. While the root mean square
fluctuation (RMSF) was used to evaluate the flexibility of all residues, the root mean square
deviation (RMSD) was used to determine the structural change of each system during
300 ns of simulation. Each complex’s compactness was ascertained using the radius of
gyration (Rg). In order to assess the overall stability of the complexes that were generated,
we also calculated the solvent-accessible surface area (SASA). To analyze the simulated
trajectories, the Grace program (http://plasma-gate.weizmann.ac.il/Grace/ accessed on
12 June 2024) was used. Lastly, we used the free energy landscape (FEL) to investigate the
systems’ molecular stability.

Calculating Binding Free Energy

The molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) is a popular
approach for estimating a protein–ligand complex’s binding free energy. The MM-PBSA
binding free energy (∆Gbind) evaluation was performed using the g_mmpbsa tool’s speci-
fied technique. The binding free energy was computed in the following way:

∆Gbind = Gcomplex − (Gprotein + Gligand)

Here, Gcomplex indicates the native protein’s binding energy, whereas Gprotein and
Gligand reflect the protein’s and ligand’s binding energies.

3. Results
3.1. Target-Based Pharmacophore Modeling

We want to find drugs that suppress the human HSP90 protein to treat cancer. We
created a target-based pharmacophore model using the Schrödinger software, 2018, suite
and the human HSP90 protein structure. The MEY–HSP90 complex from XP docking
was used to generate the pharmacophore model. We found the best MEY ligand binding
arrangement in the HSP90 protein binding site using XP docking. Figure 1 shows that our
pharmacophore model revealed essential properties for successful inhibition by examining
ligand–protein interactions.

The ADDRR pharmacophore model has one hydrogen bond acceptor, two donors,
and two hydrophobic groups.

Before employing the pharmacophore model in screening, it is essential to validate
its ability to accurately distinguish active inhibitors from non-active compounds. In this
study, we utilized enrichment-based validation to ensure that the model reliably prioritizes
active molecules. We compiled a validation set comprising 35 active compounds identified
from the literature [24], along with 1000 decoys obtained from the DUD-E decoy database.
This approach allows us to evaluate the model’s sensitivity and specificity in identifying
potential inhibitors among a large set of decoys. The pharmacophore model validation
results (Table S1) demonstrate strong predictive capabilities, underscoring the model’s
efficiency in distinguishing active HSP90 inhibitors from decoys. The high BEDROC scores
across varying alpha values, especially the 0.955 score at the strictest alpha (160.9), suggest

http://plasma-gate.weizmann.ac.il/Grace/
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that the model excels at early recognition of actives. This is complemented by the ROC
value of 0.83, which confirms the model’s accuracy in classifying actives versus decoys.
Additionally, the RIE value of 11.39 and an area under the accumulation curve of 0.85
indicate substantial enrichment, meaning that the model prioritizes actives within the
ranked list effectively, which is crucial for streamlined screening. Moreover, the distribution
data reveal that a significant portion of actives—up to 77.1%—appears within the top 20%
of results, further affirming the model’s capacity to rank potential inhibitors at the forefront.
With 30 out of 35 actives correctly ranked and an average of 33 decoys outranked by each
active, these metrics highlight the model’s robustness and reliability, suggesting that it
can play a valuable role in the efficient identification of promising HSP90 inhibitors for
subsequent validation steps. A detailed analysis, including the ROC curve and additional
metrics, is provided in the Supplementary Figure S1.
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Our pharmacophore model ADDRR was then used to screen related compounds. We
accurately discovered 3019 compounds that closely fitted the model and met its 4–5 feature
super-positions throughout screening.

3.2. Target-Based Virtual Screening and Molecular Docking

Target-based virtual screening (TBVS) is widely used to identify potential drug candi-
dates by focusing on interactions with specific molecular targets. In our study, we selected
compounds that met Lipinski’s drug-likeness criteria [17] and aligned with the pharma-
cophore model designed for targeting the HSP90 protein. These selected compounds were
further analyzed through molecular docking experiments to evaluate their interactions and
binding affinity with HSP90. The docking results revealed binding patterns, energy scores,
and potential interactions between the compounds and the HSP90 protein.

Our research involves redocking the reference ligand MEY to test our molecular
docking technique’s accuracy and reliability. Figure 2 shows that our enzyme active site
determination was accurate RMSD: 1.553. HSP90’s binding pocket had two components:
a hydrophobic component with Ala55, Ile96, Met98, Leu107, Phe138, and Val150, and a
hydrophilic component with Asn51, Asp93, and Thr184. These findings support previous
research [25].

To improve the accuracy and efficiency of our screening process, we first employed the
standard precision (SP) docking approach, which is fast and allows selecting compounds
capable of forming stable complexes. Subsequently, the compounds, identified by SP, were
subjected to a more precise docking analysis using the extra precision (XP) approach [26].
The strength of the binding between the chemical compounds and the protein target is
shown by the results obtained during the docking process. Lower scores indicate higher
binding strength between the chemical and the protein; the interactions in the docking
process can be better understood by analyzing and interpreting these results.
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Five compounds (L1, L2, L3, L4, and L5) displayed docking scores lower than the
reference ligand MEY (−7.94 kcal/mol), indicating strong binding affinities (Table 1). This
suggests that these compounds bind more effectively and stably to the N-terminal ATP-
binding region of HSP90. A visual analysis of the complex interactions, as shown in
Figure 3, allowed us to further examine the doc king data. For an overview, Table S2
summarizes the types of interactions observed. Hydrogen bonds, which are known for
their electrostatic strength and ability to stabilize ligand–receptor complexes, were essen-
tial in our compounds’ binding to HSP90, specifically involving residues Gly97, Thr184,
Asn51, and Asp93 [27–29]. Notably, these same residues were observed in the binding of
the reference ligand MEY, indicating a shared interaction pattern and consistent binding
mode that support the reliability of our docking results. Both hydrophobic interactions
and hydrogen bonding were present between our compounds and HSP90, specifically
with residues Met98, Ala55, Asp54, and Phe138, consistent with prior findings [18,22].
Particularly, Met98 forms a pi–sulfur interaction with our compounds; in this noncovalent
interaction, the pi-electron system of the aromatic rings aligns with the sulfur atom in
methionine, which enhances ligand–protein affinity. Multiple interactions with the protein
improve the stability of our compounds within the active site, suggesting their strong
potential as HSP90 inhibitors. A summary of the compounds’ properties is provided in
Table S3. The pharmacokinetics and drug-likeness profiles of these candidates will be
discussed in the following section.

Table 1. SP and XP docking binding energy in kcal/mol. Method for finding the best chemicals.

Compound CID SP (kcal/mol) XP (kcal/mol)

L1 CID69438556 −7.910 −9.795

L2 CID69441313 −9.373 −9.636

L3 CID117208203 −8.687 −8.687

L4 CID52948538 −8.383 −8.383

L5 CID117209048 −8.262 −8.264

MEY CID 50925477 −7.225 −7.946
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Figure 3. Highest-ranking compounds were assessed for their adherence to the structure-based
pharmacophore model ADDRR, as well as their 2D mapping and 3D interactions within the binding
area of the HSP90 protein (PDB ID: 3OWD).

3.3. ADMET Profiles of the Lead Compound

Pharmacokinetic aspects are important when it comes to evaluating the indemnity and
efficacy of a lead compound [30]. In this study, various properties, including physicochemi-
cal, medicinal, pharmacokinetics, and toxicity, were examined for the top lead compounds
obtained (L1, L2, L3, L4, and L5).

3.4. Physicochemical Properties

Table 2 presents the physicochemical properties of the selected compounds, which
have a lower molecular weight and volume (<380) compared to the reference ligand MEY,
potentially enhancing their therapeutic properties and interactions with HSP90. The lead
compounds contain an acceptable number of rings (3–4) and heteroatoms (4–9) within
optimal ranges, supporting effective interactions within the protein’s active site. Flexibility
values range from 0.118 to 0.217, with L1 being the most flexible, aiding in adaptability to
the binding site. High bioavailability is confirmed for all compounds through total polar
surface area (TPSA) values (35–79 Å2) and rotatable bonds (2–5), with L1 and L2 having the
highest TPSA values. All compounds have suitable solubility values (Log S) except for L4,
which may face membrane permeability issues. The octanol–water partition coefficient (log
P) for L4 is ideal (0–3), with other compounds having acceptable values except L2, which
slightly exceeds the optimal range. Table 2 highlights a correlation between logD and logP
values, with L5 achieving the best logD at 2.963.



Appl. Sci. 2024, 14, 10817 9 of 19

Table 2. Physicochemical properties of the top lead compounds.

Comp. L1 L2 L3 L4 L5 MEY

MW 360.150 350.160 308.080 348.070 254.110 495.070

Volume 376.842 364.819 281.648 293.697 263.446 459.902

n-Rot 5 3 3 3 2 5

nRing 4 4 3 3 3 5

nHet 5 5 7 9 4 10

Flexibility 0.217 0.125 0.176 0.188 0.118 0.167

TPSA 78.250 78.250 58.020 35.500 58.020 124.420

logS −3.958 −3.931 −3.971 −5.746 −3.045 −4.776

logP 4.422 5.019 3.464 4.655 2.836 4.562

logD 3.937 4.146 3.674 4.138 2.963 3.492

3.5. Medicinal Chemistry

In drug design, the Lipinski Rule, Pfizer Rule, GSK Rule, and the concept of the Golden
Triangle are key guidelines for selecting compounds with high potential for therapeutic
efficacy and safety. The Lipinski Rule of Five [31] outlines criteria for oral bioavailability,
including limits on the number of hydrogen bond donors and acceptors, a molecular
weight under 500 Da, and a LogP value below 5. The Pfizer Rule [32], or “3/75 rule”,
focuses on reducing toxicity linked to high lipophilicity (LogP > 3) and low polar surface
area (TPSA < 75 Å2). The GSK Rule [33] suggests that compounds with a molecular
weight over 400 Da and a LogP above 4 may face challenges in pharmacokinetics and
safety. Finally, the Golden Triangle [34] concept targets optimal ranges of molecular weight,
lipophilicity, and polar surface area, where compounds achieve a balanced profile of efficacy,
safety, and bioavailability. Table S4 outlines the medicinal chemistry properties of the lead
compounds as predicted by ADMETlab 2.0. Compounds L3, L4, and L5 demonstrate
strong drug-likeness with high quantitative estimate of drug-likeness (QED) scores (>0.67).
All compounds show favorable synthetic accessibility (SA score < 6), indicating ease of
synthesis. L5 meets the criteria of Lipinski, Pfizer, GSK, and Golden Triangle rules, reflecting
excellent bioavailability and promising drug-likeness. Compounds L1 and L2 meet all
criteria except the GSK Rule due to logP values over 4. Compounds L3 and L4 do not meet
the Pfizer Rule, suggesting potential toxicity risks. No compounds raised alerts for PAINS
or BMS, indicating a lower risk of false-positive or misleading outcomes.

3.6. Absorption and Distribution

Table 3 presents absorption and distribution properties for the compounds. All com-
pounds show favorable Caco-2 permeability (>−5.15) and high passive MDCK permeability,
except L4, which has intermediate permeability. Compounds L2, L3, and L5 effectively
inhibit plasma glycoprotein (PGP), with L4 showing moderate inhibition. All lead com-
pounds show low human intestinal absorption (HIA < 30%, values < 0.1), indicating
potential for poor intestinal absorption. Only L3 and L4 display favorable oral bioavailabil-
ity at 20%, while other compounds exceed a permeability threshold of 0.7. High plasma
protein binding (PPB > 95%) suggests a limited therapeutic index. Volume of distribution
(VD) values (0.196–4.954 L/kg) indicate appropriate distribution, but only L3 has mod-
erate blood–brain barrier (BBB) penetration, potentially affecting the CNS, while other
compounds show minimal BBB penetration (<0.3).
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Table 3. In silico prediction of absorption and distribution of the top lead compounds.

Comp. L1 L2 L3 L4 L5 MEY

Absorption

Caco-2
Permeability −5.108 −5.030 −4.849 −4.989 −4.815 −5.856

MDCK
Permeability 1.8 × 10−5 2.3 × 10−5 1.2 × 10−5 9.2 × 10−6 2.7 × 10−5 1.3 × 10−5

Pgp-inhibitor poor excellent excellent medium excellent medium

HIA excellent excellent excellent excellent excellent medium

F20% poor poor excellent excellent poor excellent

Distribution

PPB 97.989% 98.221% 95.037% 98.178% 95.329% 98.622%

VD L/Kg 0.501 0.196 0.781 4.954 0.424 0.429

BBB Penetration excellent excellent medium excellent excellent excellent
<0.3; excellent, 0.3–0.7; medium, 0.7–1.0; poor.

3.7. Metabolism and Excretion

The ability of an active substance to inhibit certain enzymes is of crucial importance
in the development of new drugs and in clinical applications. To better understand a
compound’s pharmacokinetic characteristics and maximize its therapeutic application, it
is important to determine which enzymes it inhibits. Based on the data in Table S5, all
compounds may be potent cytochrome P450 (CYP) inhibitors. All compounds exhibited
moderate renal clearance, with values ranging from 6.567 to 11.818. Compound L5 exhibited
the highest value. With the exception of compound L4, which had a low value of 0.051,
all compounds have an intermediate half-life (T1/2), ranging from 0.568 to 0.892. It is
important to remember that drugs with short half-lives and poor clearance are generally
excreted comparatively quickly [35,36].

Prediction of Toxicity

The ADMETlab 2.0 server showed that the five lead compounds would not block the
human ether ago-ago gene (hERG) (hERG score < 0.3), meaning that these compounds
would not cause cardiotoxicity. Furthermore, they would not cause acute oral toxicity
in rats, like MEY, which provides visions of possible dangers related to their ingestion.
Determining the mutagenic potential of a compound is crucial for drug development, as
substances that are too toxic can never be employed as drugs [37]. Table S6 shows that
compound L3 has a safety profile in terms of mutagenicity, like MEY, but compounds L4
and L5 were classified as moderately mutagenic, while the remaining compounds were
toxic. Only compounds L3, L5, and MEY did not cause skin sensitization; compound L4
has a moderate effect, while compounds L1 and L2 are considered sensitizers. Compounds
L2 and L4 showed respiratory toxicity, while compound L3 was moderately harmful. The
other compounds did not show any respiratory toxicity (Table S6).

Table S7 summarizes the toxicity predictions obtained with the Protox-II platform.
According to the data, the probability that one of the studied compounds is hepatotoxic,
carcinogenic, immunotoxic, mutagenic, or cytotoxic is low. On the other hand, MEY is
not immunotoxic, mutagenic, carcinogenic, or cytotoxic but could be hepatotoxic with a
probability of 0.55.

3.8. Molecular Dynamics Simulations

Based on the docking results and confirmation of favorable ADME properties, we
selected compounds L1 and L2 for further in-depth analysis through molecular dynam-
ics simulations. We began by calculating the variation in the overall stability of the three
systems’ backbone atoms using the RMSD (nm) measurements. The root mean square devia-
tion values of the created systems were compared with the reference complex (HSP90_MEY)
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over 300 ns of simulation. Figure 4 depicts the RMSD profile for each investigated system.
The RMSD description of the HSP90_L1 complex was substantially more stable, with an
average RMSD of 0.1219 nm, compared to the reference complex (with an average RMSD
of 0.413 nm). At the molecular level, compound L1 established a very stable complex with
the HSP90 receptor, allowing it to selectively inhibit the protein’s essential and biological
functions. In addition, the average RMSD value of the HSP90_L1 complex was 0.288 nm.
This measurement demonstrates that compound L2 forms a less stable complex with the
active site of HSP90 than compound L1, although it is more stable than the reference drug
(MEY). Moreover, The RMSD measures how a protein’s backbone changes from its initial
to its final structural state. Multiple studies have consistently found RMSD values ranging
between 0 and 0.3 nm in their analyses of molecular dynamics simulations. Ultimately, the
findings suggest that compounds L1 and L2 can be promising selective drugs in oncology.
The average values of the various features acquired over a 300 ns period by molecular
dynamics simulation are shown in Table 4. Furthermore, when comparing the reference
system to the detected compounds (L1 and L2) during binding, the average RMSF values of
all residues were almost the same. Each system’s RMSF profile showed variations from its
original structures, pointing to minor dynamic alterations, as can be seen in Figure 5. More-
over, all of the systems’ variations matched those of the MEY medication, demonstrating
the structural stability of the systems being investigated. These suggested chemicals hold
promise as possible candidates for the development of targeted and efficient treatments for
incurable diseases, given the consistent results of RMSF and RMSD investigations.

Table 4. Mean values of various features from 300 ns MD simulations.

System HSP90_L1 HSP90_L1 HSP90_MEY

RMSD (nm) 0.219 0.288 0.413

RMSF (nm) 0.164 0.175 0.164

Rg (nm) 1.724 1.739 1.707

SASA (nm2) 112.311 113.561 111.869
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HSP90′s structural compactness was assessed using Rg. The results revealed that Rg
values across all complexes exhibited slight variations, ranging from 1.707 to 1.739 nm. The
average Rg values calculated for the HSP90_L1, HSP90_L2, and HSP90_MEY complexes
were 1.724 nm, 1.739 nm, and 1.707 nm, respectively. The HSP90 configuration remained
unchanged in the presence of the proposed inhibitors, maintaining a stable radius of
gyration throughout the 300 ns simulation period, indicating the stability of all complexes.
Figure 6 shows the radius of gyration. The solvent-accessible surface area (SASA) predicts
the dynamic changes observed during the interaction time. Figure 7 shows SASA profiles
for each system during 300 ns of simulation. The average solvent-accessible surface area
for the reference system measured 111.869 nm2, while for the complexes HSP90_L1 and
HSP90_L2, the average SASA values were 112.311 nm2 and 113.561 nm2, respectively.
The SASA reached a stable equilibrium throughout the simulation, suggesting that the
configurations of HSP90 remained stable in the presence of the proposed inhibitors (L1 and
L2). This consistency helps elucidate how the proposed molecules interact with the active
site of HSP90 and consistently bind during molecular binding.
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These findings align with previous research, specifically the docking study, which
demonstrates that the proposed compounds form highly stable complexes with the HSP90
protein and effectively inhibit its crucial function. Moreover, snapshots of the three systems
were taken at intervals of 100 to 300 ns. Analysis of the binding poses of each complex
confirms their stability throughout the simulation period, as shown in Figure 8.
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Free Energy Landscape

The FEL (free energy landscape) technique is instrumental in identifying the repre-
sentative conformational state of a system. This state is ascertained by pinpointing the
minimum on the FEL, which represents the most stable structural minimum or the equili-
brated conformational state. To examine the structural shift of the HSP90 protein following
the biomolecular interactions in each system, we generated an FEL to illustrate changes
in the protein’s configuration. We utilized two specific reaction parameters for the FEL
analysis: the RMSD of the HSP90 protein, which reflects the protein’s structural stability
over 300 ns of simulation, and the Rg, which provides insight into the protein’s folding
behavior. Figure 9 depicts the FEL right after interactions with HSP90 and the L1, L2, and
MEY molecules.
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First, we identified a prominent well at RMSD values of 0.140 to 0.200 nm and Rg
values of 1.65 to 1.73 nm when HSP90 interacted with the proposed molecule L1. In
addition, upon interaction with the second proposed molecule L2, a distinct well was
observed, concentrated at Rg values of 1.67 to 1.74 nm and RMSD values of 0.11 to 0.30 nm.
On the other hand, across interactions with the reference medication (MEY), we definitely
identified a centered zone at RMSD (0.12, 0.25 nm) and Rg (1.64, 1.71 nm). The simulations
suggest that the low-energy regions on the free energy maps indicate a reasonably stable
biomolecular structure and dynamics. Compounds L1 and L2 form highly stable complexes
with the protein receptor, unlike the medication MEY, as further corroborated by the
conspicuous wells seen in the free energy landscape maps when these molecules are
attached to the HSP90 receptor. Finally, the extraction of HSP90 structures from the three
regions indicated minimal conformational changes in the HSP90 configurations following
interaction with the proposed inhibitors.
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3.9. Binding Free Energy Calculation

To fully analyze the binding energies connected to the three ligands’ interactions
with the protein receptor, MM-PBSA calculations were carried out [38]. In many cases,
noncovalent interactions are important in molecular interactions. Van der Waals interactions
and electrostatic forces are two examples of these interactions, and they can both have a
positive or negative effect on the total binding energy. For each system, Table 5 shows
the binding free energy expressed in kcal/mol. The binding of the three complexes was
characterized by a high frequency of electrostatic interactions, with −53.49, −41.46, and
−40.74 kcal/mol for the HSP90_L1, HSP90_L2, and HSP90_MEY complexes, respectively.
Furthermore, the suggested inhibitors L1 and L2 formed a stable complex with the HSP90
receptor in comparison to the reference drug MEY. The results of this study demonstrate
that these designed inhibitors possess the potential to inhibit the vital activity of the HSP90
protein, and the docking modeling findings have been validated.

Table 5. Binding free energy, reported in kcal.mol−1 for each system, was computed using MM-
PBSA techniques.

HSP90_L1 HSP90_L2 HSP90_MEY

∆EVDW −39.99 −35.12 −37.74

∆EEEL −53.49 −41.46 −40.74

∆EPB 63.30 48.18 51.44

∆ENPOLAR −4.14 −3.81 −3.93

∆GGAS −93.49 −76.58 −78.48

∆GSOLV 59.16 44.37 47.51

∆TOTAL −34.33 −32.21 −30.97

4. Discussion

In this study, we aimed to identify N-aryl-benzimidazolone analogs as potential inhibitors
of the HSP90 protein, a chaperone involved in multiple signaling pathways and associated
with diseases like cancer and inflammatory conditions.

In this study, we focused on the design and analysis of N-aryl-benzimidazolone deriva-
tives as potential inhibitors of the HSP90 protein, which plays a crucial role in numerous
signaling pathways related to cancer, inflammation, and other diseases [39]. Our approach
combined pharmacophoric modeling, molecular docking, and molecular dynamics simu-
lations to explore the interactions between these compounds and HSP90, as well as their
physicochemical and pharmacokinetic properties.

The pharmacophore model developed from the MEY ligand successfully highlighted
key features for effective binding in the HSP90 active site. These features included hydrogen
bonding and hydrophobic interactions, which are well-documented in the literature as
critical for HSP90 inhibition [40]. The selected compounds demonstrated compatibility
with these critical binding characteristics, showing a similar interaction profile to the MEY
ligand. Specifically, hydrophobic interactions with residues such as Met98 and Ala55 played
an essential role in stabilizing the ligand–protein complex. This supports the notion that
these compounds are capable of mimicking known interaction patterns, which is crucial
for developing effective inhibitors [41].

The physicochemical properties of the top lead compounds were also favorable for
drug development. Their molecular weights and volumes were within acceptable limits,
ensuring good pharmacokinetics. The TPSA values indicated adequate membrane perme-
ability, while the LogP values were generally optimal for effective distribution, aligning
with the expected range for drug-like molecules. However, some compounds showed
slightly lower solubility, which could affect bioavailability; this is consistent with findings
from other studies that emphasize the importance of balancing solubility and lipophilicity
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for drug efficacy [42]. Nevertheless, the overall drug-likeness scores derived from ADMET
predictions confirmed that these compounds hold promise for further optimization.

Our molecular dynamics simulations revealed that compound L1 exhibited exceptional
stability in its complex with HSP90, with an average RMSD of 0.1219 nm, much lower
than the reference drug MEY (0.413 nm). This indicates that L1 formed a highly stable
complex with the HSP90 protein, which is a critical factor for the selective inhibition of its
function. On the other hand, compound L2 showed a slightly less stable interaction but still
demonstrated better stability than MEY. These findings align with previous studies, which
also reported that lower RMSD values correlate with stronger and more stable ligand–
protein binding [43]. Moreover, the RMSF and Rg analyses confirmed that the structural
integrity of HSP90 was well-maintained during the simulations, even in the presence of the
proposed inhibitors. The consistent SASA profiles further supported the notion that L1 and
L2 interact stably with the protein’s active site, facilitating efficient binding throughout the
simulation period.

The free energy landscape (FEL) analysis and binding free energy calculations (MM-
PBSA) provided further validation for the promising inhibitory potential of these com-
pounds. The prominent well observed for L1 and L2 in the FEL analysis suggested they
form highly stable complexes, with L1 showing particularly strong binding interactions,
evidenced by a binding free energy of −53.49 kcal/mol, compared to MEY’s −40.74
kcal/mol. This further substantiates the potential of L1 and L2 as selective and effective
HSP90 inhibitors.

Overall, our study demonstrates that N-aryl-benzimidazolone analogs L1 and L2 possess
excellent binding stability, favorable physicochemical properties, and promising drug-
likeness profiles. These compounds (Table 6) could be developed further as potent and
selective inhibitors of HSP90, with the potential for therapeutic applications in cancer
and other diseases associated with HSP90 dysfunction. Further experimental validation
is required to confirm the in vitro and in vivo efficacy of these compounds, but the find-
ings from our study provide a strong foundation for future drug development efforts
targeting HSP90.

Table 6. Aryl-benzimidazole derivatives proposed as HSP90 protein inhibitors.

PubChem CID Molecular
Formula Structure IUPAC Name

L1 69438556 C22H20N2O3
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such as pharmacophore modeling, virtual screening, in silico ADMET prediction, and 
molecular dynamics simulations, a pharmacophore model based on the target ADDRR 
was developed based on the ligand MEY. This model screened 30,994 compounds, re-
sulting in the identification of 3019 candidates, of which five compounds showed prom-
ising binding affinity (−9.795; −8.264kcal/mol). The top two compounds, L1 and L2, were 
also found to be stable in molecular dynamics simulations, with favorable parameters 
such as RMSD, RMSF, Rg, and SASA. These results suggest a potential for the develop-
ment of effective HSP90 inhibitors, warranting further experimental validation. 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/xxx/s1, Table S1: Results of Enrichment Study for Validating the ADDRR Phar-
macophore Model; Table S2: The specific type of contact and the amino acid residues involved in 

3-[5-[(E)-2-
cyclohexylethenyl]-2,4-
dihydroxyphenyl]-1H-
benzimidazol-2-one
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5. Conclusions

This study identified N-aryl-benzimidazolone analogs as potential inhibitors of the
HSP90 protein, a target implicated in various diseases. Using computational methods
such as pharmacophore modeling, virtual screening, in silico ADMET prediction, and
molecular dynamics simulations, a pharmacophore model based on the target ADDRR was
developed based on the ligand MEY. This model screened 30,994 compounds, resulting in
the identification of 3019 candidates, of which five compounds showed promising binding
affinity (−9.795; −8.264kcal/mol). The top two compounds, L1 and L2, were also found to
be stable in molecular dynamics simulations, with favorable parameters such as RMSD,
RMSF, Rg, and SASA. These results suggest a potential for the development of effective
HSP90 inhibitors, warranting further experimental validation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app142310817/s1, Table S1: Results of Enrichment Study for
Validating the ADDRR Pharmacophore Model; Table S2: The specific type of contact and the amino
acid residues involved in that interaction inside the binding pocket of the hsp90 enzyme (3owd) are
requested; Table S3: Top Potential Hsp90 Inhibitors Based on Docking Results; Table S4: Medicinal
chemistry properties of the top lead compounds; Table S5: In silico prediction of metabolism and ex-
cretion of the top lead compounds; Table S6: In silico prediction of toxicity of the top lead compounds.
Table S7: Toxicity prediction of the top lead compounds; Figure S1: ROC Plot for Pharmacophore
Model Validation of the ADDRR Hypothesis.
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