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Abstract: The reliable generation of dissipative Kerr solitons (DKSs) enables applications in com-
munications, metrology, optical clocks, and, more recently, artificial intelligence. We show how
single DKS can be generated by Si3N4 dual-coupled microring resonators (DCMs). We modeled
this coupled structure using the Lugiato–Lefever equation (LLE), including mode interactions in the
dispersion profile. We also characterized the pump power and detuning parameter space for several
mode interaction strengths and frequencies, and we found parameters for which a DKS could be
deterministically obtained using a single, adiabatic frequency sweep with a constant pump power.
We demonstrated deterministic single DKS generation for this path by simulating 200 times with
different random noise inputs. This result paves the way for reliable, inexpensive, and deterministic
single DKS generation in a simple setup.

Keywords: photonic; microring resonator; solitons

1. Introduction

Optical frequency combs (OFCs) can be generated using mode-locked lasers, electro-
optical modulation of continuous-wave light, or integrated microresonators [1]. When
these combs are produced in an integrated microresonator, they are called Kerr combs.
Kerr combs have recently attracted a large amount of attention in the photonics research
community; they have applications in areas such as communications, metrology, optical
clocks, photonic radars, artificial intelligence, and quantum information [2–7]. Ensuring
their reliability, robustness, and low cost is a key challenge.

Dissipative Kerr solitons (DKSs) are a special type of Kerr comb. DKS yield a
series of discrete, equally spaced frequency lines in the output spectrum with a con-
stant frequency offset. DKS generation can be performed using a single microring res-
onator (MRR) [1–3,8–10], defining paths in which the laser pump power and detuning
are controlled [8,11]. To understand the dynamics of this structure, the different operating
regions of the MRR in the parameter space (∆, |S|2) have been identified [8,12,13]. These
regions correspond to cnoidal waves, including Turing rolls, perfect soliton crystals, and
single solitons or single DKSs, as well as chaotic solitons, soliton molecules, and imperfect
soliton crystals. Specifically, Jose Jaramillo et al. defined a deterministic path for single
DKS generation in a Si3N4 MRR, based on the above-mentioned regional classification [8].
However, it is difficult to apply this technique in experiments because it requires the pump
laser power and wavelength to be changed rapidly along a defined path.

Other approaches include thermal control, pulse-triggers, multiple laser pumps, and
engineered spatial mode interactions, among others [1,2,14,15]. Although these approaches
can generate solitons deterministrically, they involve difficult and expensive experimental
setups. In [16,17], it was demonstrated that mode-crossings due to spatial mode-interactions
can allow deterministic single soliton generation in a single MRR. However, its approach
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is conditioned by the structure’s geometry, limiting achievable dispersion profile and
constraining generation to the paths proposed by the study, which may not be optimal.
One of the limitations of a single MRR is the inability to control mode interactions.

Recently, the use of dual-coupled microring resonators (DCM) has been proposed to
facilitate single DKS generation [1,18–21]. This structure allows the formation of specific
dispersion profiles that depend on the coupling of the auxiliary ring, thus facilitating the
manufacturing and engineering of dispersion. DCM can be controlled to modify mode
interactions and enlarge the region of the parameter space within which single solitons are
stable, making them easier to obtain deterministrically. Approaches such as [18–20,22–25]
demonstrate mathematical models and the dynamics governing light propagation in this
structure. While these approaches demonstrate the formation of a DKS, those structures do
not control mode interaction. As a result, their impact is fixed and confined to the specific
case studies.

Other work studies the stability and accessibility of DKSs in dual-coupled microres-
onators (DCMs) as the system parameters vary [26–29]. These approaches have led to
mathematical frameworks that facilitate the study of frequency combs, in particular en-
abling the determination of parameter regimes (within which stationary waveforms such
as Turing rolls and DKSs exist) and their stability. However, a drawback in these studies
is that the models are exclusively designed for microresonators with normal dispersion,
overlooking structures with anomalous dispersion. Additionally, the structures analyzed
do not control the mode interaction, restricting the generalization of the obtained results.
In [22], the authors propose a DCM to generate Turing rolls and single DKS. This struc-
ture considers anomalous dispersion and establishes a configuration of mode interactions,
simplifying the acquisition of DKS based on the characterization of the parameter space
(∆, |S|2). Additionally, they perform a stability analysis to identify regions in the param-
eter space in which DKSs are stable. However, the effect of mode interaction on DCM
waveforms has not been thoroughly examined, nor their role in potentially limiting the
accessibility of single DKS regions in the parameter space (∆, |S|2).

In this study, we numerically demonstrate the generation of a single DKS using
a straightforward constant pump power with an adiabatic frequency sweep in a dual-ring
Si3N4 structure, which is sufficiently slow that the state of the optical waveform is not
affected by the rate of the sweep. In the DCM, the mode interactions are electrically
controlled by a microheater in the auxiliary microring. We chose strength and frequency
values that facilitated access to the soliton and avoided the chaotic region, based on
these characterizations. Finally, we verified the deterministic generation of the DKS. This
document has the following structure: First, we characterize within the parameter space
(∆, |S|2) by fixing values of a and b. These values are experimentally chosen to generate
DKSs in the lower region of the space, thereby circumventing the chaotic region. Next, we
fixed values for four points of the (∆, |S|2) space and computed the probability of DKS
generation for each point. These points are manually selected, considering the position
facilitating the DKS generation with a constant |S|2 and a sweep from blue to red. Following
this, we select four sets of values for a and b where the DKSs generation probability is
high and compute the parameter space for these configurations. This process allows us to
visualize potential regions where DKSs may generate and to ascertain which configurations
exhibit a more pronounced presence of these waves. Finally, we analyze the stability of
each zone to determine if reliable generation of DKSs is feasible with these values.

2. Characterization of Pump Power and Detuning Parameter Space

To understand the influence of mode interactions in the DCM, we explored the op-
erating regions in the parameter space (∆, |S|2). This study is necessary to identify the
region where DKSs are generated. The characterization of the operating regions depends
on applying the Lugiato–Lefever equation (LLE) [8,15]. The LLE serves as a mathematical
framework to simulate and characterize the propagation of light within a microring res-
onator, modeled through the parameters of loss, coupling factor, and chromatic dispersion.



Appl. Sci. 2024, 14, 10819 3 of 13

This framework is decisive when responding to input pump and damping parameter
variations, providing a comprehensive tool for our analysis.

The DCM was modeled by incorporating an avoided mode crossing (AMX) in the
LLE [17]. This AMX accounts for the optical effects caused by an auxiliary ring with a
smaller radius within the main ring, as illustrated in Figure 1. The AMX on the physical
device can be controlled using a microheater positioned on top of the auxiliary ring. The
observed two peaks in the DCM (see Figure 1e) relative to the MRR result from mode
interactions caused by AMX, where the resonance modes of the primary microring and
the auxiliary ring couple strongly, manifesting as peaks in the spectral response. These
peaks represent resonant states with altered mode density and enhanced light confinement,
enabling specific dispersion profiles that support DKS generation. The LLE equation can
be expressed as follows:

tR
∂E(t,τ)

∂t =
[
−α−iδ0−iL β2

2
∂2

∂τ2 +iγL|E|2
]
E+

√
ϕEin+i ∑µ

a/2
µ−b Ẽµ(t)eiµτ (1)

where E(t, τ) is the complex envelope of the total intracavity field, t is the time variable,
τ is the fast time variable, tR is the round-trip time, α is half of the total loss per round
trip, δ0 is the frequency detuning, L is the cavity length, β2 is the second-order dispersion
coefficient, γ is the Kerr coefficient, ϕ is the coupling coefficient between the waveguide
and the microring resonator, Ein is the pump field, a and b are the strength and frequency
of the mode interaction, respectively, and Ẽµ(t) is the Fourier transform, defined as

Ẽµ(t) =
1

TR

∫ TR

0
E(t, τ)e−iµτdτ. (2)
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Figure 1. (a) Microring resonator structure. (b) Dispersion profile of a single microring in the
anomalous regime. (c) Npeak (∆, |S|2). (d) The structure of a two-coupled-microring resonator,
with heater. (e) Dispersion with mode interactions (f) Npeak (∆, |S|2) with a two-coupled-microring
structure. The blue point in (f) represents the initial point of the simulation.

The LLE equation incorporates AMX effects with the term

i
1
α ∑

µ

[ a
2

µ − b
ψ̃µ(T) eiµθ

]
(3)

The parameter values for a and b were selected based on previous studies that val-
idate this approach [16,30,31]. These studies highlight the role of AMX in facilitating
DKS generation by lowering the threshold for soliton formation under certain dispersion
conditions [30,31]. This incorporation of AMX into the LLE framework allows us to simu-
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late and predict the influence of pump power and dissipation variations on modal dynamics
and DKS formation. This approach is essential for understanding how device parameters
impact DKS generation, providing insights for optimizing design in specific applications.

Equation (1) can be written in terms of three normalized parameters. One standard
way to normalize Equation (1) is to let

∆ =
δ0

α
S = Ein

√
γLϕ

α3 (4)

T =
αt
tR

ψ =

√
γL
α

E (5)

β =
8π3R
t2
Rα

β2 =
4π2L
t2
Rα

β2 (6)

θ =
2π

TR
τ (7)

in which case Equation (1) becomes

∂ψ

∂T
=−i

[
8π3R

t2
R

β2

2α

]
∂2ψ

∂θ2 +i|ψ|2ψ−(i∆+1)ψ+S+i
1
α ∑

µ

[
a/2

µ − b
ψ̃µ(T)eiµθ

]
(8)

where

ψ̃µ(T) =
1

2π

∫ 2π

0
ψ(T, θ)e−iµθdθ (9)

To solve this equation numerically, we used the split-step Fourier method. Note
that the normalized parameter definitions proposed in Equation (8) facilitate our analyses
in a more general framework, and allow for comparison with other methods presented
in the literature [8,15]. To perform the simulation of the LLE model, we used the same
parameters as in [8] which correspond to a Si3N4 structure. The parameters used were
a main radius of 100 µm, tR = 1/226 GHz, β2 = −4.7 × 10−26 [s2m−1], α = 1.61 × 10−3,
γ = 1.09 [W−1m−1], L = 2π × 100 [µm], and θ = 6.4 × 10−4. The parameters chosen
in the LLE model are founded on experimentally validated values from real physical
devices [8,32,33]. Additionally, we replicated real conditions in the simulation by initializing
the intracavity field with Gaussian noise, set at a standard deviation σnoise = 10−9 [W1/2],
which is added at each iteration. This approach ensures that our simulations are closely
aligned with practical implementations, accurately reflecting the behavior of physical
photonic systems. Due to the complexity and computational cost, thermal shift was not
included in the model.

Additionally, we set the pump power for the single MRR at a detuning (∆ = 0) and
a pump power of |Pin|2 = 6 (57.1 mW), ensuring a well-defined behavior in the cnoidal
wave region. Similarly, for the DCM, we tuned the pump power at a detuning (∆ = 0)
and |Pin|2 = 5 (47.6 mW). These values were chosen because this is the starting point
for obtaining stable solitons [8]. Then, a single step jump was made to a point in the
parameter space (∆, |S|2) and maintained for 1.5 µs (≈ 1310 tph). We chose a configuration
(a, b) that shifted the single soliton region to be accessible from the blue side of the comb
generation region in the parameter space (∆, |S|2). These values are a = 2π × 9.71 [GHz]
and b = 15.48, in which we observed the shift of DKS region taking into account that
the should potentially be replicated in experiments. To emphasize, generating a mode
interaction strength greater than a = 2π × 10 [GHz] could be physically unfeasible in
chip design because achieving this interaction with the geometric designs proposed in
the literature poses a challenge [1,34]. Hence, exploring values below this threshold is
warranted to align with experimental limitations.

Figure 1c,f show the simulation results for a single MRR and DCM, respectively. In
these simulations, we show the number of peaks in the time domain for each endpoint
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(∆, |S|2) after 3 µs. In the first simulation with a single ring (see Figure 1c), we emphasize
the presence of the thin black DKS region on the right side of the comb generation zone.
The location of this region in the parameter space poses challenges for accessing DKS. The
difficulty occurs because the path must avoid the chaotic zone, requiring the proposal
of a non-linear route. Next, we simulated the DCM by introducing the mode interaction
with the parameters (a, b) we previously proposed. The shift of the DKS area to the left
and bottom of the region where combs are generated is apparent. This new position of
the single soliton region makes it accessible in a path at constant pump power and with
detuning that sweeps directly from blue to red, as shown by the black arrow in Figure 1f.

We next study the impact of parameters (a, b) on the generation of single DKS. Instead
of fixed values, we aim to identify effective combinations of a and b, increasing the proba-
bility of single DKS generation. This approach deepens system understanding and helps
pattern recognition, aiding future research. To define (a, b), we analyzed the single DKS
generation probability at four key points in the parameter space (∆, |S|2), producing an
explicit function of a and b. The choice of these specific points was deliberate, guided by
their strategic location below the chaotic region, avoiding crossing this region and making
it accessible in a path with detuning that sweeps directly from blue to red. The probability
calculation at each point was determined by systematically varying the (a, b) values across
the specified ranges, where a ranged from 0 to 2π × 18 [GHz], and b ranged from 0 to 20.
The number of iterations used in the probability calculation was 30 simulations, introduc-
ing variability in the initial field and in the integration path through Gaussian noise with
σnoise = 10−9 [W1/2].

Figure 2 presents the probability of single DKS generation as a function of different
parameter values (a, b), exploring these variations at the four specified points. Notably,
various configurations of (a, b) exist, enabling reliable single DKS generation. However,
many of these configurations are unattainable in a physics device, so we prefer those with
a value of a less than a = 2π × 10 [GHz]. To maximize the generation probability, we have
deliberately chosen specific values corresponding to the regions of the graph marked with
red, magenta, green, and black rectangles. These values, proven to be potential in terms of
DKS generation, are as follows: (a1 = 2π × 7.71 [GHz], b1 = 10.56), (a2 = 2π × 8.67 [GHz],
b2 = 16.32), (a3 = 2π × 9.71 [GHz], b3 = 13.44), (a4 = 2π × 15.71 [GHz], b4 = 15.48).
This selection is based on the maximum generation probability associated with the chosen
points, aiming to ensure reliable device performance under consideration.
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Figure 3 displays the parameter space (∆, |S|2) for the previously proposed parameters
(a, b). It is important to note that all four figures show a single DKS area in the lower right
part of the parameter space, highlighted in black. This signifies direct access to the soliton
region without passing through the chaotic zone. In Figure 3d, the (∆, |S|2) parameter
space exhibits a larger DKS region than with other choices of a and b (see Figure 3).
However, the crossing strength is relatively large with a = 2π × 15.71 [GHz], which may
pose challenges in a physical experiment. Conversely, Figure 3a,c reveal a considerable
area and offer potential values for a potential physical experiment. Although Figure 3
demonstrates the presence of single DKS in these spaces, verifying if the generation in
these areas is deterministic is required. There is a possibility that a single DKS may not
always be obtained, potentially compromising the reliability of the path. To verify path
accuracy, it is necessary to conduct multiple simulations, as proposed in [17], and confirm
the repeatability of the path under different noise conditions.
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ters. (c) Npeak (∆, |S|2) with the (a3, b3) parameters. (d) Npeak (∆, |S|2) with the (a4, b4) parameters.

3. Deterministic Single Soliton Generation

To demonstrate the deterministic access of single DKS in the four previously proposed
configurations of a and b, we conducted 200 repetitions of the LLE simulation, employing
distinct initial random fields for each setting. In the case of configuration (a1, b1), we
maintained a constant normalized power (|S|2) of 1.04. The normalized detuning (∆)
was swept from −1 to 0.98 over a simulation period of 3 µs, as depicted in Figure 4a.
For parameters (a2, b2), the magnitude |S|2 was set to 1.1538, and the detuning ∆ ranged
from −1 to 1.5918. Similarly, for (a3, b3) parameters, |S|2 equaled 1.08, with ∆ spanning
from −1 to 1.24. Finally, in the case of (a4, b4) parameters, |S|2 was fixed at 1.09, and ∆
varied from −1 to 0.93. The values of ∆ and |S|2 chosen for DKS generation along each
path are determined by the trajectories indicated by the magenta arrows in Figure 3.
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Figure 4. (a) OFC features for (a1, b1). (b) OFC features for (a2, b2), (c) OFC features for (a3, b3).
(d) OFC features for (a4, b4). The features are the total intracavity energy—Uintra vs. slow time (left),
optical intensity (center), optical spectrum (right).

We emphasize that these trajectories do not cross the chaotic region. Figure 4a–d
show that we obtain a single DKS state; see the temporal shape (center) and spectrum
(right). It is noteworthy that when the value of a is a = 2π × 7.71 [GHz], the contour of
the spectrum deviates from the a hyperbolic-secant shape. However, increasing a causes
this shape to align more closely with the sech(x) shape. Note that configuration (a1, b1)
does not conform to the sech(x) shape, unlike the other configurations. Figure 4a–d show
that Uintra remains stable and noise-free along the selected paths, supporting controlled
DKS generation. The absence of abrupt fluctuations confirms that the trajectory avoids
chaotic regions, essential for stability. Additionally, the convergence of Uintra to a constant
value indicates that the DKS reaches a stable configuration, which is crucial for maintaining
coherence in different applications.

Figure 5 shows the number of peaks (Npeaks) for the 200 simulations in the four proposed
a and b configurations. We obtained in a single peak in all the realizations, indicating
that a single DKS was always generated, demonstrating that the paths are deterministic.
Although these configurations enable the generation of a single DKS, these simulations do
not demonstrate that the DKS is stable. For this reason, we perform a stability analysis.

To validate DKS generation under variations in the DCM caused by changes in aspect
ratio and manufacturing tolerances, which affect the radius, loss, coupling coefficient, and
dispersion of the device, we conducted a Monte Carlo simulation. In this simulation, we
varied the radius, loss, coupling coefficient, and dispersion randomly within the ranges
specified in Table 1. This approach allowed us to evaluate the robustness of DKS generation
under realistic manufacturing fluctuations, ensuring reliable device performance within
practical tolerance levels.



Appl. Sci. 2024, 14, 10819 8 of 13

Npeak

200

100

1 2 3

C
o
u
n
ts

00

Npeak

200

100

1 2 3

C
o
u
n
ts

00

200

100

1 2 3
00

Npeak

200

100

1 2 3

C
o
u
n
ts

00

200

100

1 2 3
00

Npeak

200

100

1 2 3

C
o
u
n
ts

00

200

100

1 2 3
00

(a) (b)

(c) (d)

Figure 5. (a) Histogram of the number of peaks (Npeak) for 200 simulations for configuration
(a1, b1), with different realizations of the initial noise. (b) Npeak histogram for configuration (a2, b2).
(c) Npeak histogram for configuration (a3, b3). (d) Npeak histogram for configuration (a4, b4).

Table 1. Range of DCM intrinsic parameters.

Parameters Range

radius [99, 103] [µm]
α [1.594 × 10−3, 1.6113 × 10−3]
θ [6.38 × 10−4, 6.49 × 10−4]

β2 [−6.8 × 10−26, −3.8 × 10−26] [s2m−1]

As shown in Figure 6, we conducted 200 Monte Carlo iterations across the four paths
defined in Figure 4, achieving DKS generation in 175 cases (Figure 6a), 130 cases (Figure 6b),
160 cases (Figure 6c), and 181 cases (Figure 6d). These results indicate a DKS generation
probability exceeding 80% for Figure 6a,c,d and 65% for Figure 6b. While variations in the
aspect ratio influenced the results, the method still showed robustness and adaptability
to specific structural changes. Although DKS generation is not entirely deterministic,
our approach can reliably be applied post-fabrication using precise parameters obtained
after manufacturing, once the aspect ratio and device adjustments are confirmed. This
characterization provides key parameters such as quality factor (Q), FSR, α, and θ, enabling
precise DKS generation analysis and parameter mapping that ensures robustness and
adaptability in fabricated devices.
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Figure 6. (a) Monte Carlo histogram of the number of peaks (Npeak) for 200 simulations for configura-
tion (a1, b1), with different intrinsic DCM parameters. (b) Npeak histogram for configuration (a2, b2).
(c) Npeak histogram for configuration (a3, b3). (d) Npeak histogram for configuration (a4, b4).
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4. Single DKS Stability Analysis

The selection of |S|2 and (∆) values is essential for achieving a stable DKS. Conducting
a stability analysis is crucial, as it identifies the specific ranges of |S|2 and (∆) within which
the DKS state can be maintained, thereby avoiding unintended frequency comb patterns or
the absence of comb generation.

To analyze the stability region of the single DKS in the DCM, we propose a new
method based on previous work [8,15]. Our proposed method first solves Equation (10)
while allowing S or ∆ to vary. To solve Equation (10), we employ the split-step Fourier
evolution method, which yields a highly stable and stationary solution. To obtain this
stable solution, we use the paths proposed above, which sweeps the detuning from ∆1
to ∆2 while keeping S constant. Subsequently, we jump to a final point in the range of
0 < |S|2 < 2.5 with a resolution of 0.025 in both parameters. At each point, we wait for
3 µs to evaluate the stability of DKS.

0 = −i

[
8π3R

t2
R

β2

2α

]
∂2ψ

∂θ2 + i|ψ|2ψ − (i∆ + 1)ψ + S

+i
1
α ∑

µ

[
a/2

µ − b
ψ̃µ(T)eiµθ

]
+

[
ts

α

2π

TR

]
∂ψ

∂θ

(10)

In parallel with solving Equation (10) to find the wave solutions, we determine their
stability. We write

ψ = ψ0 + ∆ψ ψ̄ = ψ∗
0 + ∆̄ψ (11)

where ∆ψ and ∆̄ψ are perturbation of the solution ψ0 and its complex conjugate ψ∗
0 . The

perturbations ∆ψ and ∆̄ψ obey the linearized equation

∂∆ψ

∂T
= L∆ψ (12)

where

∆ψ =

[
∆ψ
∆̄ψ

]
(13)

and

L =

[
L11 L12
L21 L22

]
(14)

L11=−i
[
8π3Rβ2

2αtR
2

]
∂2

∂θ2 +2i|ψ0|2− i∆−1+
i
α

F−1
t

[
a/2

µ − b

]
Ft+

ts2π

αtR

∂

∂θ
(15)

L12 = iψ2
0 L21 = −i(ψ0

∗)2 (16)

L22= i
[
8π3Rβ2

2αtR
2

]
∂2

∂θ2 −2i|ψ0|2+ i∆−1− i
α

F−1
t

[
a/2

µ − b

]
Ft+

ts2π

αtR

∂

∂θ
(17)

The terms Ft and F−1
t correspond to the Fourier transform and its inverse function.

Those functions enable mathematical modeling, as these transforms have a matrix rep-
resentation, and the term a/2

µ−b can be assigned to a diagonal matrix, resulting in a series
of matrix operations of dimension N × N that operate on the solution vector ψ(N × 1).
Next, We convert Equation (12) into an eigenvalue equation (L− λI)∆ψ = 0, where I is
the identity operator, and we discretize this equation. We then proceed to computationally
find the set of all eigenvalues λj of this equation. If any eigenvalues are positive in its real

component, the solution ∂ψ
∂T is unstable for ∆ and S values. ts is a drift term introduced in

the model because the avoided crossing introduces a slight drift in the solution, causing it
to become non-stationary. To find ts, we calculate the soliton centroid in two consecutive
round trips, determining the θ difference between both to obtain this value. We repeat
this process 30 times and calculate the average value. To evaluate the stability of single
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DKS at each point, initially we determine the number of peaks by computing the optical
intensity [8]. If the value of the number of peaks is one, it indicates that the wave may be
stable. Otherwise, the wave will be unstable and will converge to a different type of wave.
When the number of peaks is one, it indicates that the wave is a single DKS. Its stability
is evaluated by computing the eigenvalue solution of the eigenvalue of the L matrix and
validating that λi < 0. This process is necessary because a single soliton wave may not be
inherently stable and can exhibit oscillations or breathing, which are considered unstable.

The red area in Figure 7 shows the regions where the single DKS is still stable at the
end of the simulation for the four parameter sets (a, b) that we investigated proposed. This
result shows that the deterministic generation of a single DKS is correlated with a greatly
enhanced stable region. We also observe that the parameter space (a1, b1) exhibits a small
stable region, suggesting that while a substantial number of single DKSs are produced,
they are unstable, rendering them unreliable for deterministic generation (see Figure 7a).
Furthermore, the other parameter spaces have a potential area for soliton generation (see
Figure 7b–d). All the stable zones lie below the chaotic zone, which facilitates the generation
of single DKS, as proposed in this research. Note that configuration (a4, b4) presents a value
greater than a = 2π × 10. This situation poses a challenge in the design and manufacturing
process of DCM. Therefore, it is more feasible to utilize the configurations proposed in
(a2, b2) and (a3, b3).
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Figure 7. (a) Single DKS Stability region for (a1, b1). (b) DKS Stability region for (a2, b2), (c) DKS
Stability region for (a3, b3). (d) DKS Stability region for (a4, b4).

5. Adiabatic DKS Generation

After confirming the stability of a single DKS generation, it is important to check if
these paths can create a single DKS using an adiabatic trajectory. To validate those paths, we
propose conducting the DKS generation using the same paths shown in Figure 4, extending
the simulation time to 1 ms. Figure 8 presents the results for the proposed adiabatic paths.
It is noteworthy that for all four configurations, we successfully achieved a single DKS,
indicating the solutions’ stability and ability to maintain their shape over time.
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Figure 8. (a) DKS with adiabatic path and (a1, b1) parameters. (b) DKS with adiabatic path and
(a2, b2) parameters. (c) DKS with adiabatic path and (a3, b3) parameters. (d) DKS with adiabatic path
and (a4, b4) parameters.

6. Conclusions

This work presents a novel method for generating a single DKS using Si3N4 dual-
coupled microring resonators with straightforward laser control. Furthermore, we demon-
strate two dispersion profile that allow us to obtain an accessible single DKS region in the
lower part of the parameter space (∆, |S|2). This change in the parameter space allows us to
use a constant pump power with an adiabatic frequency sweep, and we obtain a direct path
to the region in which a single DKS exists. The results presented in this article could help
reduce the cost and complexity of generating a single DKS for practical applications and
enable the use integrated optical frequency combs in mass produced devices. This work
explores the influence of parameters a and b on the generation of DKS. The results illustrate
that these parameters harbor the potential to produce deterministic and stable single DKS.
Such insights contribute to a comprehensive understanding of this phenomenon in mi-
croresonators, facilitating advancements in their engineering and construction. To continue
with this work, it is necessary to construct DCM with the dispersion profile proposed in this
work (see Figure 3) and to perform an experimental validation of these results. Additionally,
this physical design must consider an appropriate geometry to ensure a suitable aspect
ratio, which is essential for achieving low losses.

Author Contributions: Methodology and implementation, A.F.C.-S.; conceptualization and inves-
tigation, N.G.G.; supervision, writing, and review, J.A.J.-V. All authors have read and agreed to
the manuscript.



Appl. Sci. 2024, 14, 10819 12 of 13

Funding: We would like to thank the Universidad Tecnológica de Pereira and Ministerio de Ciencia,
Tecnología e Innovación de Colombia (MinCiencias) for their support and funding under grant
number 82197.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to our aim to ensure careful use and to
foster collaboration among parties.

Acknowledgments: We thank the Universidad Tecnológica de Pereira for their support in this paper.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Zhang, X.; Wang, C.; Cheng, Z.; Hu, C.; Ji, X.; Su, Y. Advances in resonator-based Kerr frequency combs with high conversion

efficiencies. npj Nanophotonics 2024, 1, 26. [CrossRef]
2. Kippenberg, T.J.; Gaeta, A.L.; Lipson, M.; Gorodetsky, M.L. Dissipative Kerr solitons in optical microresonators. Science 2018,

361, eaan8083. [CrossRef]
3. Shen, Y.; Harris, N.C.; Skirlo, S.; Prabhu, M.; Baehr-Jones, T.; Hochberg, M.; Sun, X.; Zhao, S.; Larochelle, H.; Englund, D.; et al.

Deep learning with coherent nanophotonic circuits. Nat. Photonics 2017, 11, 441–446. [CrossRef]
4. Tara, F.; Esther, B. 20 years of developments in optical frequency comb technology and applications. Commun. Phys. 2019, 2, 153.

[CrossRef]
5. Weiner, A.M. Cavity solitons come of age. Commun. Phys. 2017, 11, 533–535. [CrossRef]
6. Jang, J.K.; Klenner, A.; Ji, X.; Okawachi, Y.; Lipson, M.; Gaeta, A.L. Synchronization of coupled optical microresonators. Nat.

Photonics 2018, 12, 688–693. [CrossRef]
7. Maltese, G.; Amanti, M.I.; Appas, F.; Sinnl, G.; Lemaître, A.; Milman, P.; Baboux, F.; Ducci, S. Generation and symmetry control of

quantum frequency combs. npj Quantum Inf. 2020, 6, 688–693. [CrossRef]
8. Jaramillo-Villegas, J.A.; Xue, X.; Wang, P.H.; Leaird, D.E.; Weiner, A.M. Deterministic single soliton generation and compression

in microring resonators avoiding the chaotic region. Opt. Express 2015, 23, 9618–9626. [CrossRef]
9. Weng, H.; Afridi, A.A.; Li, J.; McDermott, M.; Tu, H.; Barry, L.P.; Lu, Q.; Guo, W.; Donegan, J.F. Dual-mode microresonators as

straightforward access to octave-spanning dissipative Kerr solitons. APL Photonics 2022, 7, 066103. [CrossRef]
10. Wang, P.H.; Ferdous, F.; Miao, H.; Wang, J.; Leaird, D.E.; Srinivasan, K.; Chen, L.; Aksyuk, V.; Weiner, A.M. Observation of

correlation between route to formation, coherence, noise, and communication performance of Kerr combs. Opt. Express 2012,
20, 29284–29295. [CrossRef]

11. Shen, B.; Chang, L.; Liu, J.; Wang, H.; Yang, Q.-F.; Xiang, C.; Wang, R.N.; He, J.; Liu, T.; Xie, W.; et al. Integrated turnkey soliton
microcombs. Nature 2020, 582, 365–369. [CrossRef] [PubMed]

12. Chen, N.; Zhang, B.; Yang, H.; Lu, X.; He, S.; Hu, Y.; Chen, Y.; Zhang, X.; Xu, J. Stability analysis of generalized Lugiato-
Lefever equation with lumped filter for Kerr soliton generation in anomalous dispersion regime. In Proceedings of the Asia
Communications and Photonics Conference 2021, Shanghai China, 24–27 October 2021; Optica Publishing Group: Washington,
DC, USA, 2021; p. T4A.187. [CrossRef]

13. Parra-Rivas, P.; Gomila, D.; Matías, M.A.; Coen, S.; Gelens, L. Dynamics of localized and patterned structures in the Lugiato-
Lefever equation determine the stability and shape of optical frequency combs. Phys. Rev. A 2014, 89, 043813. [CrossRef]

14. Joshi, C.; Jang, J.K.; Luke, K.; Ji, X.; Miller, S.A.; Klenner, A.; Okawachi, Y.; Lipson, M.; Gaeta, A.L. Thermally controlled comb
generation and soliton modelocking in microresonators. Opt. Lett. 2016, 41, 2565–2568. [CrossRef] [PubMed]

15. Qi, Z.; Wang, S.; Jaramillo-Villegas, J.; Qi, M.; Weiner, A.M.; D’Aguanno, G.; Carruthers, T.F.; Menyuk, C.R. Dissipative cnoidal
waves (Turing rolls) and the soliton limit in microring resonators. Optica 2019, 6, 1220–1232. [CrossRef]

16. Bao, C.; Xuan, Y.; Leaird, D.E.; Wabnitz, S.; Qi, M.; Weiner, A.M. Spatial mode-interaction induced single soliton generation in
microresonators. Optica 2017, 4, 1011–1015. [CrossRef]

17. Liu, H.; Wang, W.; Yang, J.; Yu, M.; Kwong, D.L.; Wong, C.W. Observation of deterministic double dissipative-Kerr-soliton
generation with avoided mode crossing. Phys. Rev. Res. 2023, 5, 013172. [CrossRef]

18. Rebolledo-Salgado, I.; Quevedo-Galán, C.; Helgason, B.; Lööf, A.; Ye, Z.; Lei, F.; Schröder, J.; Zelan, M.; Torres-Company, V.
Platicon dynamics in photonic molecules. Commun. Phys. 2023, 6, 303. [CrossRef]

19. Marti, L.; Vasco, J.P.; Savona, V. Slow-light enhanced frequency combs and dissipative Kerr solitons in silicon coupled-ring
microresonators in the telecom band. OSA Contin. 2021, 4, 1247–1257. [CrossRef]

20. Komagata, K.; Tusnin, A.; Riemensberger, J.; Churaev, M.; Guo, H.; Tikan, A.; Kippenberg, T.J. Dissipative Kerr solitons in a
photonic dimer on both sides of exceptional point. Commun. Phys. 2021, 4, 159. [CrossRef]

http://doi.org/10.1038/s44310-024-00030-9
http://dx.doi.org/10.1126/science.aan8083
http://dx.doi.org/10.1038/nphoton.2017.93
http://dx.doi.org/10.1038/s42005-019-0249-y
http://dx.doi.org/10.1038/nphoton.2017.149
http://dx.doi.org/10.1038/s41566-018-0261-x
http://dx.doi.org/10.1038/s41534-019-0237-9
http://dx.doi.org/10.1364/OE.23.009618
http://dx.doi.org/10.1063/5.0089036
http://dx.doi.org/10.1364/OE.20.029284
http://dx.doi.org/10.1038/s41586-020-2358-x
http://www.ncbi.nlm.nih.gov/pubmed/32555486
http://dx.doi.org/10.1364/ACPC.2021.T4A.187
http://dx.doi.org/10.1103/PhysRevA.89.043813
http://dx.doi.org/10.1364/OL.41.002565
http://www.ncbi.nlm.nih.gov/pubmed/27244415
http://dx.doi.org/10.1364/OPTICA.6.001220
http://dx.doi.org/10.1364/OPTICA.4.001011
http://dx.doi.org/10.1103/PhysRevResearch.5.013172
http://dx.doi.org/10.1038/s42005-023-01424-5
http://dx.doi.org/10.1364/OSAC.418271
http://dx.doi.org/10.1038/s42005-021-00661-w


Appl. Sci. 2024, 14, 10819 13 of 13

21. Wu, W.; Huang, D.; Cheng, Z.; Li, F.; Wai, P.K.A. Deterministic generation of Kerr soliton microcomb in coupled microresonators
by a single-shot pulsed trigger. In Proceedings of the Fourteenth International Conference on Information Optics and Photonics
(CIOP 2023), Xi’an, China, 7–10 August 2023; SPIE: Bellingham, WA, USA, 2023; Volume 12935, p. 129354G. [CrossRef]

22. Wu, Z.; Gao, Y.; Zhang, T.; Dai, J.; Xu, K. Switching dynamics of dissipative cnoidal waves in dual-coupled microresonators. Opt.
Express 2021, 29, 42369–42383. [CrossRef]

23. Tikan, A.; Riemensberger, J.; Komagata, K.; Hönl, S.; Churaev, M.; Skehan, C.; Guo, H.; Wang, R.N.; Liu, J.; Seidler, P.; et al.
Emergent nonlinear phenomena in a driven dissipative photonic dimer. Nat. Phys. 2021, 17, 604–610. [CrossRef]

24. Tikan, A.; Tusnin, A.; Riemensberger, J.; Churaev, M.; Ji, X.; Komagata, K.N.; Wang, R.N.; Liu, J.; Kippenberg, T.J. Protected
generation of dissipative Kerr solitons in supermodes of coupled optical microresonators. Sci. Adv. 2022, 8, eabm6982. [CrossRef]
[PubMed]

25. Helgason, Ó.; Girardi, M.; Ye, Z.; Lei, F.; Schroder, J.; Torres-Company, V. Surpassing the nonlinear conversion efficiency of soliton
microcombs. Nat. Photonics 2023, 17, 992–999. [CrossRef]

26. Helgason, Ó.B.; Arteaga-Sierra, F.R.; Ye, Z.; Twayana, K.; Andrekson, P.A.; Karlsson, M.; Schröder, J.; Torres-Company, V.
Dissipative solitons in photonic molecules. Nat. Photonics 2021, 15, 305–310. [CrossRef]

27. Yuan, Z.; Gao, M.; Yu, Y.; Wang, H.; Jin, W.; Ji, Q.-X.; Feshali, A.; Paniccia, M.; Bowers, J.; Vahala, K. Soliton pulse pairs at multiple
colours in normal dispersion microresonators. Nat. Photonics 2023, 17, 977–983. [CrossRef]

28. Stone, B.; Rukh, L.; Colación, G.; Drake, T. Enhanced thermal stability of soliton states in coupled Kerr microresonators. In
Proceedings of the Frontiers in Optics Laser Science 2023, Tacoma, DC, USA, 9–12 October 2023; Optica Publishing Group:
Washington, DC, USA, 2023; p. JTu4A.44.

29. Xu, X.; Jin, X.; Lu, Y.; Gao, H.; Cheng, J.; Yu, L. Stability analysis of the optical field and spectrum characteristics inside the dual
coupled microcavities. J. Opt. 2020, 22, 115501. [CrossRef]

30. Xue, X.; Xuan, Y.; Wang, H.; Wang, P.H.; Wang, J.; Leaird, D.E.; Qi, M.; Weiner, A.M. Normal-dispersion microcombs enabled by
controllable mode interactions. Laser Photon. Rev. 2015, 9, L23–L28. [CrossRef]

31. Calvo-Salcedo, A.F.; Tu, C.; Gonzalez, N.G.; Menyuk, C.; Jaramillo-Villegas, J.A. Simulation of Electrically-Controlled Mode
Interaction for Adiabatic and Deterministic Single Soliton Generation. In Proceedings of the OSA Advanced Photonics Congress
IPRSN, Virtual Event, 26–30 July 2021; Optica Publishing Group: Washington, DC, USA, 2021; p. JTu1A.5. [CrossRef]

32. Xuan, Y.; Liu, Y.; Varghese, L.T.; Metcalf, A.J.; Xue, X.; Wang, P.H.; Han, K.; Jaramillo-Villegas, J.A.; Noman, A.A.; Wang, C.; et al.
High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation. Optica 2016, 3, 1171–1180. [CrossRef]

33. Kim, S.; Han, K.; Wang, C.; Jaramillo-Villegas, J.A.; Xue, X.; Bao, C.; Xuan, Y.; Leaird, D.E.; Weiner, A.M.; Qi, M. Dispersion
engineering and frequency comb generation in thin silicon nitride concentric microresonators. Nat. Commun. 2017, 8, 372.
[CrossRef]

34. Liu, Y.; Xuan, Y.; Xue, X.; Wang, P.H.; Chen, S.; Metcalf, A.J.; Wang, J.; Leaird, D.E.; Qi, M.; Weiner, A.M. Investigation of mode
coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation. Optica 2014, 1, 137–144.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1117/12.3008017
http://dx.doi.org/10.1364/OE.442535
http://dx.doi.org/10.1038/s41567-020-01159-y
http://dx.doi.org/10.1126/sciadv.abm6982
http://www.ncbi.nlm.nih.gov/pubmed/35363514
http://dx.doi.org/10.1038/s41566-023-01280-3
http://dx.doi.org/10.1038/s41566-020-00757-9
http://dx.doi.org/10.1038/s41566-023-01257-2
http://dx.doi.org/10.1088/2040-8986/abbb5e
http://dx.doi.org/10.1002/lpor.201500107
http://dx.doi.org/10.1364/IPRSN.2021.JTu1A.5
http://dx.doi.org/10.1364/OPTICA.3.001171
http://dx.doi.org/10.1038/s41467-017-00491-x
http://dx.doi.org/10.1364/OPTICA.1.000137

	Introduction
	Characterization of Pump Power and Detuning Parameter Space
	Deterministic Single Soliton Generation
	Single DKS Stability Analysis
	Adiabatic DKS Generation
	Conclusions
	References

