
Citation: Hao, L.; Cheng, Q.; Liu, H.;

Zhang, Y. Adaptive Position Control

of Pneumatic Continuum Manipulator

Based on MAML Meta-Reinforcement

Learning. Appl. Sci. 2024, 14, 10821.

https://doi.org/10.3390/app142310821

Academic Editor: Grigorios Beligiannis

Received: 3 October 2024

Revised: 6 November 2024

Accepted: 21 November 2024

Published: 22 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Adaptive Position Control of Pneumatic Continuum Manipulator
Based on MAML Meta-Reinforcement Learning
Lina Hao *, Qiang Cheng , Hongshuai Liu and Ying Zhang

Department of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China;
qcheng1022@163.com (Q.C.); liuhongshuai_1995@163.com (H.L.); zhangying@me.neu.edu.cn (Y.Z.)
* Correspondence: haolina@me.neu.edu.cn

Abstract: Reinforcement learning algorithms usually focus on a specific task, which often performs
well only in the training environment. When the task changes, its performance drops significantly,
with the algorithm lacking the ability to adapt to new environments and tasks. For the position
control of a pneumatic continuum manipulator (PCM), there is a high degree of similarity between
tasks, and the training speed of new tasks can be accelerated by utilizing the training experience
from other tasks. To increase the adaptability of control policies to new tasks, this paper proposes
an adaptive position control algorithm of the PCM based on the Model-Agnostic Meta-Learning
(MAML) meta-reinforcement learning algorithm. The MAML meta-reinforcement learning algorithm
is used to train the control strategy of PCM, and the information and experience collected during
the training process across multiple tasks are used to quickly learn the control policy for new tasks,
improving the ability of PCM to quickly adapt to new tasks. The experimental results demonstrate
that after training with the MAML meta-reinforcement learning algorithm, the PCM can significantly
reduce the training time when faced with new tasks and obtain the control policies suitable for these
new tasks.

Keywords: pneumatic continuum manipulator; position control; MAML meta-reinforcement learning

1. Introduction

The continuum manipulator is a bionic, slender super-redundant manipulator that
provides superior reach and dexterity capabilities in cluttered environments. However,
because of its high nonlinearity, the precise control of a continuum manipulator still remains
a significant challenge.

Reinforcement learning is a model-free control method and has been used for the
control of continuum manipulators. You [1] and Sreeshankar [2] used the Q-Learning
algorithm and DQN algorithm to train the control policy for a planar continuum manipula-
tor, achieving the position control of the manipulator. Sreeshankar [3] and Li [4] applied
the Deep Deterministic Policy Gradient (DDPG) algorithm to the control of a continuum
manipulator, achieving end-effector path tracking control. Centurelli [5] used the Trust Re-
gion Policy Optimization (TRPO) algorithm to learn the controller policy of the continuum
manipulator, achieving position control of the continuum manipulator.

Although reinforcement learning algorithms have achieved great success in PCM
control, they ignore the similarities between tasks, making them unable to effectively utilize
training experiences from other tasks. Consequently, when faced with new tasks, the learn-
ing process often has to start from scratch, consuming substantial time and resources [6].
Therefore, how to use previous experience to improve the adaptability of agents to new
tasks has become an important research direction. In order to enable the agent to have the
ability to learn and adapt to new tasks quickly, researchers have proposed various solutions.
Policy Distillation [7] extracts experience from multiple policies to form a more generalized
comprehensive policy. This method can improve the adaptability of the strategy through
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self-distillation or cross-task distillation. Multi-task learning [8] improves the generaliza-
tion ability of an agent by simultaneously learning on multiple related tasks. However,
the success of the above methods usually depends on the correlation between tasks. If the
differences between tasks are too great, the effect of experience sharing may not be obvious,
and it may even interfere with the learning process.

Some scholars have proposed the concept of meta-reinforcement learning, combining
meta-learning algorithms with reinforcement learning algorithms based on the ability of
meta-learning to rapidly learn with only a small number of samples [9]. Meta-reinforcement
learning trains on multiple tasks, allowing agents to quickly adapt to new tasks with a small
number of learning samples. Unlike traditional reinforcement learning, which optimizes
control strategies for a single task, meta-reinforcement learning uses multiple tasks as its
training samples. By training on multiple tasks, the agent acquires the ability to learn
quickly. When faced with a new task, it is possible to rapidly learn the policy that adapts to
the new task with only a small number of training samples by leveraging prior knowledge.

Typical meta-reinforcement learning algorithms include the memory context-based
RL2 algorithm [10], the SNAIL algorithm [11], and the CMRL algorithm [12]. These meth-
ods are easily combined with other learning algorithms and have a variety of network
structures. However, complex learning tasks may require more complex models to process
data and tasks, as well as more computational resources and training time. There are also
task-inference-based algorithms, such as PEARL [13], MetaCURE [14], and MQL [15]. How-
ever, such methods may ignore some specific information related to the task during the task
inference process, and their reliance on specific environmental conditions makes them diffi-
cult to generalize across different tasks [16]. Additionally, there are gradient descent-based
algorithms, such as MAML meta-reinforcement learning [17]. As a novel meta-learning
framework, MAML has spawned numerous improvements and extensions, including FO-
MAML, ES-MAML [18], Reptile [19], MAESN [20], and Taming MAML [21]. The advantage
of these algorithms lies in their model-agnostic nature, allowing them to be applied in
various reinforcement learning scenarios and offering good generalization performance.

At the same time, there are also some works that applied meta-reinforcement learning
algorithms to the control of manipulators. Li [22] combined the MQL algorithm with DDPG
to propose a sample-efficient and generalizable method for manipulator skill learning.
This method uses information such as the state of the end-effector and target pose as
input to learn a policy that controls the manipulator’s end-effector to reach the desired
pose. Hao [23] combined the MAML meta-learning algorithm with the proximal policy
optimization algorithm to design the M-PPO meta-reinforcement learning algorithm for
learning the task of turning on a light with a manipulator. Schoettler [24] studied meta-
reinforcement learning for industrial assembly tasks, using the PEARL algorithm to learn
the latent representations of a task, enabling the rapid generation of policy for the current
task based on its representation. Peng [25] integrated the Particle Swarm Optimization
(PSO) algorithm with MAML, proposing the PSO-MAML algorithm. This algorithm was
applied to the learning of grasping tasks, enabling the manipulator to quickly adapt to new
tasks. Wang [26] proposed an offline policy meta-reinforcement learning algorithm SMRL-
TO and applied it to the policy training of pushing tasks, door opening tasks, and assembly
tasks of the manipulator, successfully achieving rapid adaptation of the manipulator to
new tasks.

Meta-reinforcement learning has demonstrated strong generalization capabilities in
the application of manipulators, but it has not yet been applied to the control of continuum
manipulators. Because of the model-agnostic nature of the MAML algorithm, it can be
applied in different reinforcement learning scenarios, and it exhibits good generalization
performance. This paper employs the MAML meta-reinforcement learning algorithm to
train the control policy of pneumatic continuum manipulators, improving the ability of
pneumatic continuum manipulators to rapidly adapt to new tasks.
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2. MAML Meta-Reinforcement Learning

The core objective of MAML meta-reinforcement learning is to train a set of initial
policy parameters such that the policy initialized with these parameters can adapt to a new
task rapidly by fine-tuning the parameters with minimal interaction dates.

The training process of MAML meta-reinforcement learning involves an inner rein-
forcement learning loop and an outer reinforcement learning loop.

Within the inner loop, the agent randomly samples K different training tasks Ti from
the task distribution p(T ) and interacts with the environment for each task Ti to collect
data Di. Let πθ represent the agent’s policy, where θ represents the policy parameters. The
interaction process generates an action at based on the observed current state at according
to the policy. The environment moves to the next state st + 1 and generates a reward rt after
the agent executes the action. The expected reward for each task Ti can be expressed as

LTi ( fθ) = Ext ,at∼ fϕ ,Ti

[
H

∑
t=1

ri(xt, at)

]
(1)

The policy parameters are updated by maximizing the expected reward in the inner
loop, and the update formula can be expressed as

θi
′=θ − α∇θLTi ( fθ) (2)

Within the outer loop, the parameters of the policy are updated according to the total
expected rewards collected from each task. Within the inner loop, the agent interacts with
the environment for each task Ti to collect data Di

′ using the new policy πθ′ , which was
trained in the inner loop. Sum up the expected return LTi

′

(
fθi

′

)
for each task to obtain

K
∑

i=1
LTi

′

(
fθi

′

)
. The policy parameters are updated by maximizing the sum of the expected

returns
K
∑

i=1
LTi

′

(
fθi

′

)
, and the update formula can be expressed as

θ = θ − β∇θ

K

∑
i=1

LTi
′

(
fθi

′

)
(3)

The overall training procedure of the MAML meta-reinforcement learning algorithm
is illustrated in Algorithm 1.

Algorithm 1: MAML meta-reinforcement learning

Require: Task distribution
Require: Learning rates
1: Randomly initialize policy parameters
2: while not done do:
3: Sample a batch of tasks
4: if all Ti do:
5: Interact with the environment using policy fθ to collect data Di
6: Calculate ∇θLTi ( fθ) based on Di and LTi
7: Update θi

′=θ − α∇θLTi ( fθ)
8: Interact with the environment using policy fθ′ i to collect data Di

′

9: end for

10: Update θ = θ − β∇θ

K
∑

i=1
LTi

′

(
fθi

′

)
11: end while
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2.1. Inner Reinforcement Learning Loop

The inner loop is updated by REINFORCE. The REINFORCE algorithm follows a
straightforward idea of performing gradient ascent on the parameters of the policy θ to
gradually improve the performance of the policy πθ . The learning objective of REINFORCE
is to maximize the expected reward, and the update formula can be expressed as

Gt =
T

∑
k=t+1

γk−t−1rk (4)

where γ is the discount factor.
The policy parameters θ are updated by maximizing the expected reward using the

gradient descent method. The update formula is as follows:

θt+1 = θt − ηGt ln π(at|st, θt) (5)

But, REINFORCE has been observed to suffer a large variance when estimating the
gradient. To alleviate the large variance problem, a baseline b(st) can be subtracted from
the expected reward Gt, where b(st) is a function only depending on st. One approach to
selecting the baseline is to use the expected return starting from state st under the current
policy as the baseline; that is, b(st) = E[rt + rt+1 + . . . + rT−1]. With the baseline b(st), the
update formula of policy parameters can be represented as

θt+1 = θt − η(Gt − b(st))∇θt ln π(at|st, θt) (6)

2.2. Outer Reinforcement Learning Loop

The outer loop uses trust-region policy optimization (TRPO) as the optimizer. The
goal of TRPO is to find an updated policy πθ′ that improves the current policy πθ , that is,
find better policy parameters θ′ based on the current parameter θ to make J(θ′) ≥ J(θ).
J(θ) is the excepted reward from the start state under the current policy πθ , which can be
denoted as

J(θ) = Es0 [V
πθ (s0)]

= Eπθ′

[
∞

∑
t=0

γtVπθ (st)−
∞

∑
t=1

γtVπθ (st)

]

= −Eπθ′

[
∞

∑
t=0

γt(γVπθ (st+1)− Vπθ (st))

] (7)

Define the advantage function Aπθ (st, at) as

Aπθ (st, at)=r(st, at) + γVπθ (st+1)− Vπθ (st) (8)

Based on the above equation, the difference in the excepted reward between the new
and old policies can be represented as

J(θ
′
)− J(θ) = Es0

[
Vπ

θ
′ (s0)

]
−Es0

[
Vπθ (s0)

]
=

1
1 − γ

Es∼νπθ
′Ea∼π

θ
′ (·|s)

[
Aπθ (s, a)

] (9)

Therefore, learning the optimal policy πθ is equivalent to maximizing the bonus
optimization object:

Lθ(θ
′) = J(θ) +E

s∼Vπ′
θ
Ea∼πθ′ (·|s)

[
Aπθ (s, a)

]
(10)
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When the old and new policies are very close, the optimization objective can be
substituted with

Lθ(θ
′) = J(θ) +Es∼νπθ Ea∼π

θ
′ (·|s)[A

πθ (s, a)]

= J(θ) +Es∼νπθ Ea∼πθ(·|s)

[
πθ′(a | s)
πθ(a | s)

Aπθ (s, a)

]
(11)

To ensure that the new and old policies are sufficiently close, TRPO uses KL diver-
gence to measure the distance between strategies. Then, the optimization formula can be
expressed as

max
θ′

Lθ

(
θ′
)

s.t.Es∼υπθ [DKL(πθ(· | s), πθ′(· | s))] ≤ δ
(12)

Performing Taylor expansions on the objective and constraint to a leading order
around θk, the optimization formula can be expressed as

θk+1 = arg max
θ′

gT(θ′ − θk)

s.t. 1
2 (θ

′ − θk)
T H(θ′ − θk) ≤ δ

(13)

where g represents the gradient of the objective function with respect to the policy parame-
ters θ′ and H denotes the Hessian matrix of the KL divergence between the new and old
policies. The expressions for g and H are given as follows:

g = ∇θ′Es∼υπθ Ea∼πθ(·|s)

[
πθ′(a | s)
πθ(a | s)

Aπθ (a | s)
]

(14)

H = H
(
Es∼υπθ

[
DKL

(
πθ

(
·
∣∣∣s), πθ′

(
·
∣∣∣s))]) (15)

This approximate problem can be analytically solved by the methods of Lagrangian
duality, yielding the following solution:

θk+1 = θk +

√
2δ

gT H−1g
H−1g (16)

Because the TRPO algorithm approximates the objective function and the constraint
conditions with first-order and second-order approximations, respectively, during the opti-
mization process, it does not achieve an exact solution. Consequently, the new policy may
not necessarily outperform the old one or may fail to satisfy the KL divergence constraint.
Therefore, TRPO performs a linear search at the end of each iteration to ensure that a new
policy that meets the conditions is found. The update formula of policy parameters θ can
be expressed as

θk+1 = θk + ϖi

√
2δ

gT H−1g
H−1g (17)

where ϖ ∈ (0, 1) is the backtracking coefficient.

3. Position Control Policy Traning of the PCM Based on MAML
Meta-Reinforcement Learning
3.1. The Structure of the PCM

The PCM consists of two sections, and each section adopts the same layout. Each
section of the manipulator is composed of three contractile pneumatic muscles, which are
distributed at 120◦. The PCM is shown in Figure 1. The overall length of the PCM is 830 mm,
with each section having a length of 415 mm and a radius of 37.5 mm. Each section of the
PCM has the ability to bend in different directions. PCM is driven by pneumatic muscles
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by adjusting the air pressure of the pneumatic muscles to control the length changes of
the pneumatic muscles. The length changes of the pneumatic muscles can cause the
length of the manipulator to change and lead to local bending of the manipulator. By
changing the lengths of the pneumatic muscles, the direction and radius of bending of the
manipulator can be controlled to drive the manipulator to perform movements such as
extension, deflection, and bending.

(a) (b)

Figure 1. The structure of the PCM. (a) The PCM; (b) the cross-section of the PCM.

The task of end position control for the PCM involves randomly generating a target
position within the workspace and controlling the pressure of each pneumatic muscle to
drive the PCM to achieve the target position. The motion range of the PCM along the x-axis
is [−200, 200] mm; along the y-axis, it is [−200, 200] mm; and, along the z-axis, it is [−100,
100] mm. The movement range of the end-effector along the x-axis is set to [−200, 200] mm;
along the y-axis, it is set to [−200, 200] mm; and, along the z-axis, it is set to [−100, 100]
mm. For end position control, each target position corresponds to a task, and these tasks
collectively form a task distribution. The task distribution p(T ) of the PCM is a uniform
distribution within its range of motion.

3.2. Meta-Reinforcement Learning Modeling and Policy Network Structure Design

State space (s). State information is crucial for making action decisions. The state of the
continuum manipulator is determined by the current pressure values of each pneumatic
muscle. Therefore, the state space is composed of the current pressure values of each
pneumatic muscle, denoted as s = [u11, u12, u13, u21, u22, u23] with a dimension of 6.

Action space (a). The action space encompasses the entire set of actions available
to the agent. Each pneumatic muscle of the PCM can be independently pressurized and
depressurized. So, the pressure increments of each pneumatic muscle ∆u can be used as
actions, that is a = [∆u11, ∆u12, ∆u13, ∆u21, ∆u22, ∆u23] , with a dimension of 6.

Reward function (r). The reward function plays a critical role in reinforcement learning
training. It is primarily used to guide the agent’s behavior. For actions that align with the
desired behavior, the reward function provides a positive reward, while for actions that do
not, it provides a negative reward. Thus, the design of the reward function directly impacts
the learning speed, operational efficiency, and the final control performance of the trained
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model. As the objective of this paper is to control the end-effector of the PCM to reach
a specified position, the negative of the difference between the current end position and
the target position can be used as the reward function to encourage the policy to control
the end position of the PCM as closely as possible to the target position. So, the reward
function can be expressed as

r = −
[(

x − xtarget
)2

+
(
y − ytarget

)2
+

(
y − ytarget

)2
]

(18)

where (x, y, z) is end position of the PCM and
(
xtarget, ytarget, ztarget

)
is the target position.

Structure of policy network. For the task of the end position control of the PCM,
the design of the policy network structure is based on the action space and state space.
The policy network learns the mapping from the current state to the optimal action. In
the REINFORCE algorithm, the input to the policy network is the state of the agent at
the current time, and the output is the mean and variance of the normal distribution of
the action taken by the agent. The policy is represented by a four-layer fully connected
network, with 256 neurons in the middle two layers, and each layer uses the tanh activation
function. The Adam optimizer is employed to compute the policy gradient and update the
network weights.

The policy network outputs a Gaussian distribution of the actions taken by the agent.
Sampling from this Gaussian distribution yields the specific action taken by the agent in
the current state, along with the probability of taking that action.

4. Simulation Analysis
4.1. Simulation Environment

For simulation, the dynamic model of the PCM is used. The dynamic model of the
PCM can be expressed as the mapping between the current time control input ut, the
previous control inputs ut−1, . . . , ut−T , the position at the current time xt, and the position
at the previous time xt−1, . . . , xt−T . Specifically, it can be expressed as

xt+1= f (ut, ut−1, . . . , ut−T , xt, xt−1, . . . , xt−T) (19)

where T is the horizon length and f represents the dynamics model of the PCM.
This paper uses an LSTM network to model the dynamics of the PCM. The input of

the LSTM network dynamic model is the pressure value of each pneumatic muscle, and
the output is the end-effector position of the PCM.

Figure 2 illustrates the architecture of the proposed LSTM network for the dynamics
model of the PCM. The network comprises an LSTM layer and a fully connected layer. The
LSTM layer has 200 neurons, while the fully connected layer has three neurons, and the
horizon length T = 3.

Figure 2. The architecture of the dynamics model using LSTM network.
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The dataset is sampled using pseudorandom motor babbling, yielding 21,000 data
points. Normalizing the data, 80% is used for training, with the remainder serving as a
validation set. The LSTM network is trained using the Adam optimization algorithm, with
the root mean square error (RMSE) as the loss function. The initial learning rate is set to 0.1,
the learning rate decay factor is 0.5, the learning rate decay period is 5, the batch size is 32,
and the number of training iterations is 30. The change in RMSE during training is shown
in Figure 3.

Figure 3. The training result of the dynamics model.

As shown in Figure 3, on the training set, the RMSE converges to 0.02 after training.
On the validation set, the RMSE converges to 0.03, and the model’s prediction accuracy
is 91.2%. Therefore, the LSTM model is capable of representing the dynamics model of
the PCM.

4.2. Training Overview of MAML Meta-Reinforcement Learning

To verify the adaptive capabilities of MAML meta-reinforcement learning in end-position
control tasks for PCM, this section investigates the generalization performance of the PCM
control policy trained by MAML meta-reinforcement learning through simulations.

For reinforcement learning, generalization refers to the number of steps an agent needs
to take to achieve good performance in a new task. It includes two evaluation metrics, and
one is the excepted reward of the agent in the new task. The excepted reward reflects the
overall reward that the agent receives in new tasks. The higher the excepted reward that
the agent receives in new tasks, the better its performance in new tasks. The other metric is
the adaptation step number, which refers to how many steps the agent needs to interact
with the environment in order to achieve a good performance in the new task. The number
of adaptation steps reflects the ability of the agent to adapt to new tasks. The fewer the
adaptation steps, the faster the agent adapts to the new tasks.

Different target positions are sampled from the task distribution p(T ) as training tasks,
and the agent interacts with the environment based on these different tasks. In the exper-
iment, the agent is set to interact with the environment to generate 20 trajectories under
each task, with each trajectory having a length of 10. Within the inner loop, each batch of
tasks undergoes only one gradient update during the training phase. The hyperparameters
of the MAML meta-reinforcement learning algorithm during the training process are set as
shown in Table 1.

The training is carried out on a desktop computer with an operating system of Win-
dows 10, the CPU is Intel (R) Core (TM) i7-6700 CPU @ 3.40GHz, and the memory is
16 GB.
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Table 1. Hyperparameters of MAML meta-reinforcement learning.

Parameters Values

Learning rate α 1 × 10−14

Size of the trust-region δ 1 × 10−2

Conjugate gradient iterations 10
Maximum line search iterations 15
Line search backtrack coefficient 0.8

Inner loop task samples 20
Number of trajectories collected per task 20

Inner loop optimization iterations 1
Outer loop task samples 20

Outer loop optimization iterations 1000

4.3. Simulation Result

Using the policy initialized randomly as a baseline policy, compare the generalization
ability on new tasks with that of the policy initialized using MAML meta-reinforcement
learning. In order to verify the effectiveness of MAML meta-reinforcement learning, this
paper samples the following two tasks from the task distribution for analysis.

4.3.1. Task 1

Take the task of controlling PCM to reach the target point (0, 80, 740) mm as the
new task. To evaluate the generalization performance, both the policy initialized using
the MAML meta-reinforcement learning and the baseline policy are trained to adapt to
new tasks using the REINFORCE algorithm, and their generalization performances are
compared. The training processes for both policies employ the same hyperparameters. The
training result is shown in Figure 4.

Figure 4. Result of Task 1.

As illustrated in Figure 4, when faced with a new task, the policy initialized with
MAML meta-reinforcement learning reaches convergence in the excepted reward after
60 updates with a training time of 5 min. The baseline policy reaches convergence in the
excepted reward after 180 updates with a training time of 15 min. By comparison, it is
evident that the MAML meta-reinforcement learning algorithm has learned effective initial
weights for the policy network from historical experiences. These initial weights enable the
policy to adapt to new tasks with minimal updates, improving the adaptive capability for
end position control of the PCM.

After the training of the policy initialized by MAML meta-reinforcement learning is
completed, we use the trained policy to control the PCM. The position changes and the
position error changes of the PCM are shown in Figures 5 and 6, respectively.
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Figure 5. The position changes of the PCM after policy adaptation in Task 1.

Figure 6. The position error changes of the PCM after policy adaptation in Task 1.

The position error is (2.77, −2.82, −2.78) mm, and the maximum error is within 1.4%.
Thus, the policy initialized with MAML meta-reinforcement learning can effectively control
the PCM to reach the new target point after training.

To compare the performance with other reinforcement learning algorithms, the control
policies for PCM are trained using the PPO algorithm, the Actor–Critic algorithm, and
the PILCO algorithm. The hyperparameters of the PPO algorithm are as follows: the
clipping parameter ε = 0.2, the learning rate for the policy network la = 1 × 10−4, and the
learning rate for the value network lc = 5 × 10−3. Both the policy network and the value
network have one hidden layer, and the number of neurons in the hidden layer is 256. The
hyperparameters of the Actor–Critic algorithm are as follows: the learning rate for the policy
network la = 1 × 10−4, and the learning rate for the value network lc = 5 × 10−3. Both the
policy network and the value network have one hidden layer, and the number of neurons
in the hidden layer is 256. After the training of the policy, we use the trained policy to
control the PCM. The position changes and position error changes of the PCM are shown in
Figures 7 and 8, respectively.
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Figure 7. The position changes of the PCM after training by PPO in Task 1.

Figure 8. The position error changes of the PCM after training by Actor–Critic in Task 1.

The training times and errors of these algorithms are shown in Table 2.

Table 2. Comparison of training results in task 1.

Algorithm Training Time (min) Maximum Absolute Error (mm)

MAML meta-reinforcement learning 5 2.82
PPO 28 41.12

Actor–Critic 17 23.97
PILCO 47 4.6

From Table 2, it can be seen that the policy initialized with MAML meta-reinforcement
learning requires the shortest training time and achieves higher control precision during
new task training. Compared to other algorithms, this approach enhances both training
speed and control accuracy.

4.3.2. Task 2

Take the task of controlling PCM to reach the target point (22, −166, 736) mm as the
new task. To evaluate the generalization performance, both the policy initialized using
the MAML meta-reinforcement learning and the baseline policy are trained to adapt to
new tasks using the REINFORCE algorithm, and their generalization performances are
compared. The training processes for both policies employ the same hyperparameters. The
training result is shown in Figure 9.
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Figure 9. Result of Task 2.

As illustrated in Figure 4, when faced with a new task, the policy initialized with
MAML meta-reinforcement learning reaches convergence in the excepted reward after
60 updates with a training time of 5 min. The baseline policy reaches convergence in the
excepted reward after 180 updates with a training time of 15 min. By comparison, it is
evident that the MAML meta-reinforcement learning algorithm has learned effective initial
weights for the policy network from historical experiences. These initial weights enable the
policy to adapt to new tasks with minimal updates, improving the adaptive capability for
end-position control of the PCM.

After the training of the policy initialized by MAML meta-reinforcement learning
is completed, we use the trained policy to control the PCM. The position changes and
position error changes of the PCM are shown in Figures 10 and 11, respectively.

Figure 10. The position changes of the PCM after policy adaptation in Task 2.

The position error is (2.77, −2.82, −2.78) mm, and the maximum error is within 1.4%.
Thus, the policy initialized with MAML meta-reinforcement learning can effectively control
the PCM to reach the new target point after training.

To compare the performance with other reinforcement learning algorithms, the control
policies for PCM are trained using the PPO algorithm, the Actor–Critic algorithm, and
the PILCO algorithm. The hyperparameters of the PPO algorithm are as follows: the
clipping parameter ε = 0.2, the learning rate for the policy network la = 1 × 10−4, and the
learning rate for the value network lc = 5 × 10−3. Both the policy network and the value
network have one hidden layer, and the number of neurons in the hidden layer is 256. The
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hyperparameters of the Actor–Critic algorithm are as follows: the learning rate for the policy
network la = 1 × 10−4, and the learning rate for the value network lc = 5 × 10−3. Both the
policy network and the value network have one hidden layer, and the number of neurons
in the hidden layer is 256. After the training of the policy, we use the trained policy to
control the PCM. The position changes and position error changes of the PCM are shown in
Figures 12 and 13, respectively.

Figure 11. The position error changes of the PCM after policy adaptation in Task 2.

Figure 12. The position changes of the PCM after training by PPO in Task 2.

Figure 13. The position error changes of the PCM after training by Actor–Critic in Task 2.
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The training times and errors of these algorithms are shown in Table 3.

Table 3. Comparison of training results in task 2.

Algorithm Training Time (min) Maximum Absolute Error (mm)

MAML meta-reinforcement learning 5 4.9
PPO 20 34.8

Actor–Critic 25 25.9
PILCO 47 3.9

From Table 3, it can be seen that the policy initialized with MAML meta-reinforcement
learning requires the shortest training time and achieves higher control precision during
new task training. Compared to other algorithms, this approach enhances both training
speed and control accuracy.

5. Experiment
5.1. Experimental Platform

Take the two-section PCM as the experimental object, The experimental platform
is shown in Figures 14 and 15. The setup included a power supply, the PCM, a camera,
proportional valves, an I/O module, a PC, and an air compressor. The camera captured the
position of the manipulator’s end effector, and the PC output control signals to the PCM
based on this position. After receiving the control signals from the PC, the I/O module
would drive the proportional valves to adjust the pressure of the pneumatic muscles,
thereby driving the end effector of the pneumatic continuum manipulator to move.

Figure 14. Experiment setup.

Figure 15. Schematic of experimental setup.
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5.2. Experimental Analysis

In the real world, the same initial and target positions as in Task 1 in the simulation
were selected, that is, to control the PCM to reach the target point (40, 80, 740) mm.

Employing the sim-to-real transfer approach based on policy fine-tuning, the con-
trol policy was fine-tuned on the actual PCM. After fine-tuning, we used the method of
sim-to-real transfer based on policy fine-tuning to retrain the control policy on the PCM.
After training, the position changes and position error changes of the PCM are shown in
Figures 16 and 17, respectively.

Figure 16. The position changes of the real PCM.

Figure 17. The position error changes of the real PCM.

As shown in Figures 16 and 17, the policy can control the PCM to reach the target
position, with maximum errors of 8 mm along the X-axis, Y-axis, and Z-axis. The maximum
error is within 4%.

6. Conclusions

This paper applies meta-reinforcement learning methods to the position control of the
PCM, using MAML meta-reinforcement learning to train the position control policy of the
PCM. MAML meta-reinforcement learning dynamically adjusts control policy to adapt to
different tasks by learning general initialization parameters of policy, thereby enhancing
the adaptability of the policy to new control tasks. Finally, based on the experimental
platform, the adaptive ability of MAML meta-reinforcement learning was verified. The
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results showed that the control policy trained by the MAML meta-reinforcement learning
algorithm could complete the control task of the PCM with minimal training when facing
new tasks, improving the adaptability of the control policy.
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