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Abstract: The design and multi-objective optimization of auxetic sandwich panels (ASPs) are per-
formed to enhance the blastworthiness of armored fighting vehicles (AFVs). Various metastructures
in the form of four auxetic geometries are proposed as the sandwich core: re-entrant honeycomb
(REH), double-arrow honeycomb (DAH), star honeycomb (SH), and tetra-chiral honeycomb (CH).
This paper employs a combination of finite element and machine learning methodologies to evaluate
blastworthiness performance. Optimization is carried out using the nondominated sorting genetic
algorithm II (NSGA-II) method. The optimization results show significant improvements in blast-
worthiness performance, with notable reductions in permanent displacement and enhancements in
specific energy absorption (SEA). Global sensitivity analysis using SHapley Additive exPlanations
(SHAP) reveals that cell thickness is the most critical factor affecting blastworthiness performance,
followed by the number of cells and corner angle or radius for CH. The application of optimized
ASP on AFVs shows promising results, with no failure occurring in the occupant floor. Furthermore,
AFVs equipped with the optimized ASP DAH significantly reduce maximum displacement and
acceleration by 39.00% and 43.56%, respectively, and enhance SEA by 48.30% compared to optimized
aluminum foam sandwich panels. This study concludes that ASPs have potential applications in
broader engineering fields.

Keywords: blastworthiness; auxetic structure; sandwich panels; protective structures; finite element;
machine learning; armored fighting vehicle

1. Introduction

Landmines continue to pose significant threats to both military personnel and civilians.
According to casualty statistics from military conflicts, approximately 60% of injuries
are attributable to the explosion of mines and improvised explosive devices (IEDs) [1].
The International Campaign to Ban Landmines (ICBL) reported that in 2022, the total
number of casualties and specifically anti-vehicle mines resulting from explosive remnants
of war reached 4710 and 102, respectively [2]. Consequently, the development of blast-
resistant or blastworthy structures for armored fighting vehicles (AFVs) as blast-load
mitigation remains critical.

As blast load and IEDs become more powerful, the blastworthy structures of AFVs
must be increasingly resilient to withstand such threats. Various methods for blast-loading
mitigation have been researched through analytical, numerical, and experimental methods.
As the simplest structure, single plates have been widely studied regarding their response
to blast loading [3–6]. To enhance blastworthiness performance, modifications to single
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plates have been explored, such as adding stiffeners [7,8] and altering the flat plate to a
V-shape [9,10]. However, single plates are insufficient for mitigating extreme blast loading.
One of the most effective alternative blastworthy structures is the sandwich panel.

Sandwich panels are composite materials in which two or more different materials
are combined at a macroscopic scale to produce a new material with superior performance
compared to the constituent materials [11]. A sandwich panel consists of two thin, rigid
face sheets bonded to a thick, lightweight core. This hybrid design fundamentally in-
creases the moment of inertia of the structure without significantly adding mass. Various
core structures have been studied for sandwich panels under blast loading. For exam-
ple, Dharmasena et al. [12] investigated the blast response of metallic square honeycomb
sandwich panel (HSP) structures. The results showed that the deformation of the back
face of the sandwich panel was 40–90% smaller than that of an equivalent solid plate.
Zhu et al. [13] conducted experimental studies on the blast responses of metallic hexago-
nal HSPs. The introduction of the hexagonal HSP significantly decreased the structure’s
deflection. Zhang et al. [14] experimentally investigated the influence of geometric param-
eters of metallic trapezoidal corrugated-core sandwich panels subjected to blast loading.
The results showed that increasing the sheet and cell thickness, as well as increasing the
corrugated angle, enhanced the blast resistance. In addition to honeycomb and corrugated
cores, aluminum foam has also proven effective as a core material in sandwich panels for
withstanding blast loading. Numerous studies have examined aluminum foam sandwich
panels (AFSPs) [15–17]; for instance, Hanssen et al. [18] examined the behavior of AFSPs
under blast loading experimentally, analytically, and numerically. The results demonstrated
that using foam as a sacrificial layer can control the contact stress level, providing local
protection to the structure. Liu et al. [19] studied the responses of AFSPs under blast
loading and found that the peak load of the sandwich panel was reduced by 61.54–64.69%
compared to a single plate.

Conventional honeycomb structures typically exhibit positive Poisson’s ratio char-
acteristics. Over the past three decades, there has been increasing interest in negative
Poisson’s ratio (NPR) or auxetic materials due to their unique and contrasting properties
compared to conventional materials. These auxetic materials are a prime example of metas-
tructures, which are artificially designed structures with specific geometrical arrangements
leading to unusual physical and mechanical properties. Auxetic structures, as a subset of
metastructures, expand in all directions when stretched and contract when compressed.
This opposite deformation behavior of auxetic materials leads to enhanced mechanical
properties, such as more resistance to indentation [20,21], increased shear modulus [22,23],
improvement in fracture toughness [24–26], and high energy absorption [20,27]. Auxetic
materials also outperform conventional materials in other aspects, such as high energy
harvesting efficiency for vortex-induced vibration problems [28] and improved acoustic
performance [29]. Due to these superior properties, auxetic materials have found applica-
tions in diverse fields such as medicine, biomedicine, sports, and engineering (for more
details, see reference [30]). Although auxetic materials have superior mechanical properties,
the application of ASPs in AFVs remains relatively uncommon and under-researched.

Several studies have investigated auxetic sandwich panels (ASPs) under air-blast
loading. For instance, Imbalzano et al. [31] and Yan et al. [32] studied the responses of
ASPs and hexagonal HSPs to blast loading numerically and experimentally, respectively.
Both studies demonstrated that ASPs exhibit higher blast resistance than conventional
HSPs due to increased compressive stiffness as the impact zone of the ASP shrinks in-
ward. Lan et al. [33] examined the dynamic response of cylindrical ASPs, conventional
HSPs, and AFSPs subjected to blast loading. The results showed that cylindrical ASPs
outperformed both conventional HSPs and AFSPs across all design parameter combina-
tions. Qi et al. [34] conducted experiments on close-in blast loading on ASPs. The results
showed that the introduction of the ASP effectively prevented damage to the concrete
base under close-in blast loading. Chen et al. [35,36] conducted experimental studies on
the blast response of ASPs with re-entrant and double-arrow structures as the core under
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paper tube-guided air-blast loading. The results showed that the double-arrow structure
had 10.9–20.5% less permanent displacement than re-entrant structures. Yan et al. [37]
conducted blast experiments on 3D-printed auxetic honeycomb sandwich beams (AHSBs).
The results showed that AHSBs possess better blast performance than regular honeycomb.
Overall, most research on ASPs under blast loading indicates that the ASP offers superior
blastworthiness compared to previous structures.

The primary objective of blastworthiness performance is to protect occupants within
a structure. One quantifiable metric is the displacement or acceleration experienced by
occupants. Additionally, blastworthy structures must achieve sufficient lightweight con-
struction to facilitate the mobility of AFVs. Given the complex and nonlinear relationships
between the geometric parameters of auxetic structures and their blastworthiness perfor-
mance, machine learning (ML) methods have emerged as valuable tools for modeling these
intricate interactions. By utilizing surrogate models or metamodels, researchers can better
predict outcomes based on various input variables. Furthermore, ML has been applied
to predict specific properties of metamaterials, particularly auxetic structures, such as
stiffness [38,39], sound absorption [40], Poisson’s ratio [39,41–43], and energy absorption
capacity [38,44]. Accurately modeling these properties enhances the design and perfor-
mance of the blastworthy structures.

As previously mentioned, the objectives of minimizing structural displacement of-
ten conflicts with the effort of weight reduction. Multi-objective optimization has been
demonstrated as effective in addressing this challenge. Numerous studies have focused on
multi-objective optimization of blastworthiness performance; for instance, Cong et al. [10]
optimized the design of multi-V hulls for light AFVs using artificial neural networks
(ANNs) and the nondominated sorting genetic algorithm II (NSGA-II). They optimized for
lower tibia force and hull mass, achieving a 33–42% improvement in blastworthiness and a
43% reduction in mass compared to the baseline design. Qi et al. [45] and Wang et al. [46]
conducted optimizations of curved and graded AFSPs, respectively, using NSGA-II with
ANN and Kriging models as metamodels. Qi and Jiang et al. [47,48] optimized re-entrant
ASPs using the radial basis function and NSGA-II. The optimum design produces better
performance by reducing maximum deflection by 33% and increasing the areal specific
energy absorption by 158.6%. Wang et al. [49] and Lan et al. [50] further optimized 3D
double-arrow sandwich panels.

Previous studies have primarily focused on re-entrant and double-arrow structures as
cores for ASPs. However, other fundamental auxetic structures, such as star honeycomb
and chiral honeycomb, remain largely unexplored. This study investigates ASPs incorporat-
ing four basic auxetic geometries: re-entrant honeycomb (REH), double-arrow honeycomb
(DAH), star honeycomb (SH), and chiral honeycomb (CH), specifically for air-blast-loading
scenarios. Numerical simulations were employed to evaluate the blastworthiness perfor-
mance of these ASP configurations. Subsequently, a metamodel was developed to establish
relationships between the design variables of ASPs and their blastworthiness performance.
Global sensitivity analysis was conducted to highlight the influence of each design variable
on blastworthiness. Following this, multi-objective optimization was performed to generate
a Pareto-optimal front. Finally, the optimal design from the Pareto front was identified as a
protective structure suitable for AFVs subjected to air-blast loading.

2. Materials and Methods
2.1. Geometry Description

The configuration of the auxetic sandwich panel (ASP) is shown in Figure 1. The ASP
consists of two face sheets, with a thickness of t f , and an auxetic core, which has the
total dimensions of L × W × H. The L, W, and H are the length, width, and height of
the auxetic core in the x, y, and z directions, respectively. The auxetic core consists of
repetitive 2D unit cells of auxetic geometry with the number of cells being Ny and Nz
in the y and z directions, respectively. The auxetic core is oriented with its cells’ longi-
tudinal direction parallel to the two face sheets. As research by Walkowiak et al. [51]
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shows, this configuration yields better blastworthiness than when the cells’ longitudi-
nal direction is perpendicular to the face sheets. The size of the ASP is determined
based on the floor size of the armored fighting vehicle (AFV) and the availability of
additional space as a protective structure. Based on reference [52], the typical floor size
of a small AFV is L = 1400 mm, W = 2500 mm, and H = 120 mm. The stand-off dis-
tance (SoD) from the blast charge position to the front face is 800 mm. However, to re-
duce the computational time, the half scale of ASP model was used, where L = 700 mm,
W = 1250 mm, and H = 100 m with an SoD of 400 mm to compensate for the smaller size
of ASP.

Figure 1. (a) Configuration of the auxetic sandwich panel (ASP), which consists of two face sheets
and an auxetic core. (b) Overall dimensions of the ASP: L × W × H. (c) Zoomed-in view of the face
sheets and auxetic core of the ASP, highlighting the region marked by the red dashed line in panel (b).

In this study, four auxetic basic geometries were proposed as the core of the ASP,
which are re-entrant honeycomb (REH), double-arrow honeycomb (DAH), star honeycomb
(SH), and tetra-chiral honeycomb (CH). Figure 2 shows the unit cell configuration of each
auxetic geometry. There are four independent geometric parameters which are defined
in this study: the cell width w, the cell height h, the corner cell angle θ and node radius
r for CH, and the cell thickness t. The variables w and h are proportional with Ny and
Nz, respectively, except for the variable h of DAH, which depends on Nz and θ. Other
dependent geometric parameters include inner cell spacing d (d1 and d2 for SH), strut
length l1 and l2, and inner corner angle θ′ for DAH. Table 1 summarizes the geometric
parameters and geometric constraints of each auxetic geometry. The relative density is
defined as the ratio of the effective density of the structures to the density of the matrix or
constitutive material. This parameter indicates the porosity of the cellular structure. Based
on those geometric parameters, the relative density (ρr) of each auxetic geometry can be
expressed as follows:

ρr,REH =
t

w(t + H)

(
2h

cos θ
Nz +

w + h tan θ

2
(2Nz + 1)

)
ρr,DAH =

2tNz

wH

(
w

2 cos θ
+

√
h2 +

w2

4

)

ρr,SH =
3t
wh

(w + h)(1 + cos θ + sin θ)

2 cos θ(cos θ + 1)

ρr,CH =
t

wh

(
2πr +

√
w2 − 4r2 +

√
h2 − 4r2

)
(1)
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Table 1. Definition of geometric parameters for each auxetic geometry.

Geometry Independent Variable Dependent Variable Constraint

REH Ny (w), Nz (h), θ, t
l1 = h/(2 cos θ)

θ < tan−1(w/h)l2 = (w + h tan θ)/2
d = (w − h tan θ)/2

DAH Ny (w), Nz, θ, t

h = [H + (Nz − 1)(w/2) tan θ]/Nz

θ < tan−1(2h/w)
l1 = (w/2) sec θ

l2 =
√

h2 + (w/2)2

d = h − (w/2) tan θ

θ′ = tan−1(2h/w)− θ

SH Ny (w), Nz (h), θ, t

l1 = w/(4 cos θ) + h tan θ/(4(cos θ + 1))

θ < min
(
tan−1(l1/l2), tan−1(l2/l1)

)l2 = h/(4 cos θ) + w tan θ/(4(cos θ + 1))
d1 = 2(l1 cos θ − l2 cos θ)
d2 = 2(l2 cos θ − l1 cos θ)

CH Ny (w), Nz (h), r, t l1 =
√

w2 − 4r2/2 r < min(w/2, h/2)
l2 =

√
h2 − 4r2/2

Figure 2. Geometric parameters of the unit cell for (a) re-entrant honeycomb (REH), (b) double-arrow
honeycomb (DAH), (c) star honeycomb (SH), and (d) tetra-chiral honeycomb (CH).

2.2. Numerical Modeling

In this study, numerical analysis was employed for all aspects of the ASP design analysis,
including data sampling and the application of the ASP to AFVs. All numerical simulations
were conducted using the nonlinear explicit finite element (FE) software LS-DYNA.

2.2.1. Geometry, Boundary Conditions, and Contact Modeling

The ASP was modeled as a quarter-symmetric model, as shown in Figure 3, due to
the symmetric nature of the simulation. This approach reduces computational time by
up to four times compared to a full model. Therefore, the quarter model of the ASP had
dimensions of L = 350 mm, W = 625 mm, and H = 100 mm. Symmetric boundary conditions
in x and y directions were applied to the ASP side in the y − z and x − z planes, respectively,
while the outer face sheets were fixed on the other two sides. The face sheets and auxetic
core were modeled using a fully integrated shell with five and two integration points,
respectively, to minimize the hourglass energy. For the data sampling process, the thickness
of both face sheets was set to 5 mm. The mesh convergence analysis was performed to
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obtain the mesh size for the auxetic core, which converged at a mesh size of 3 mm, while 10
mm was used for the face sheets [52]. AUTOMATIC_SINGLE_SURFACE was applied to
all parts of the ASP for self-contact, while AUTOMATIC_SURFACE_TO_SURFACE was
applied between the auxetic core and both face sheets to prevent penetration. The upper
and lower nodes of the auxetic core was assumed to be fully connected with both face
sheets using TIED_NODES_TO_SURFACE. The Static and dynamic coefficients of friction
for all contact were 0.3 and 0.2, respectively.

Figure 3. Finite element (FE) model of the ASP subjected to air-blast loading at the center. The ASP
is modeled with quarter symmetry due to its symmetric response. The red, green, and blue lines
represent the fixed boundary condition and the symmetric boundary conditions in the y–z and
x–z planes, respectively.

2.2.2. Material Modeling

Considering its high strain capability, good manufacturability, and low cost, the ASP
was modeled using stainless steel 304 material (SS304). Due to strain rate dependency in
the blast simulation, a modified Johnson–Cook (J-C) model was adapted for the simula-
tion. According to this constitutive model, the effective plastic stress σ

p
e f f is given by the

following equation:

σ
p
e f f =

(
A + B

(
ε

p
e f f

)n)(
1 +

ε̇

ε̇0

)C(
1 −

(
T − Tr

Tm − Tr

)m)
(2)

The first term represents material plasticity, where ε
p
e f f is the effective plastic strain,

A is the yield strength, and B and n are strain-hardening parameters. The second term
accounts for the strain rate dependency, where ε̇ is the strain rate, ε̇0 is the reference strain
rate, and C is the strain rate sensitivity coefficient. The final term addresses tempera-
ture dependency, where T, Tr, and Tm are the working temperature, room temperature,
and melting temperature, respectively, and m is the thermal softening coefficient.

All material parameters can be determined through curve fitting of experimental
data. The modified J-C parameters for SS304 were obtained from curve fitting of the stress–
strain curve by references [14,53,54], as shown in Figure 4. These material parameters are
summarized in Table 2.

Table 2. Modified Johnson–Cook parameters of 304 stainless steel.

E ν ρ A B n ε̇0 C Tr Tm m Cp χ α
(GPa) (-) (kg/m3) (MPa) (MPa) (-) (s−1) (-) (K) (K) (-) (J/kg·K) (-) (K−1)

200 0.3 7900 310 1872 0.96 0.001 0.016 293 1673 1 500 0.9 1.5 × 10−5
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Figure 4. The curve fitting of modified Johnson–Cook parameters of 304 stainless steel with
the experiment [14].

For the material failure criterion, the Cockcroft–Latham damage evolution rule (D)
was used to simulate the failure of the modified J-C model. This criterion is based on
the concept that ductile fracture occurs when the accumulated plastic strain energy in
a material reaches a critical value [55]. Mathematically, the Cockcroft–Latham damage
criterion can be written as

D =
DC
WC

max(σ1, 0)εp
e f f (3)

where DC is the critical damage parameter, σ1 is the maximum principal stress, and
WC =

∫ ε f
0 max(σ1, 0)dε

p
e f f is the plastic strain energy, with ε f as the strain failure. The value

of DC is 1 [52], while WC is obtained from the stress–strain curve, with a value of 296 MPa.
In this study, failure criteria were not applied during the data sampling process but were
only considered for the application of the AFV subsystem.

2.2.3. Blast Load Modeling

Several blast-load models can be implemented in numerical simulations. The simplest
model for blast-load simulation is the Conventional Weapons Effects Program (CONWEP),
developed by Kingery and Bulmash [56]. This model is selected for its computational
efficiency, as it does not require Euler field or particle calculations. The CONWEP model
considers two types of pressure from a blast load: reflected pressure and incident pressure,
as given in the following equation:

P = Pr cos2 θi + Pi

(
1 + cos2 θi − 2 cos θi

)
(4)

where θi is the incidence angle, Pr is the reflected pressure, and Pi is the incident pressure.
This empirical model is valid in the range of 0.147 m/kg1/3 < Z < 40 m/kg1/3, where
Z = R/m1/3 is called the scaled distance, with R is the stand-off distance (SoD) and m is
the mass of TNT. As previously mentioned, the R and m used in this study are 400 mm and
8 kg, respectively, such that Z equal to 0.2 m/kg1/3, which is still inside the range.

Another method for simulating blast phenomena is smoothed-particle hydrodynamics
(SPH), a particle-based computational technique developed by Gingold and Monaghan [57]
and Lucy [58]. SPH is a mesh-free Lagrangian method where the system’s state is repre-
sented by a finite number of discrete particles whose positions can move according to the
velocity field. In this study, the SPH model does not account for the effects of air particles
and the casing of the charge. The material model HIGH_EXPLOSIVE_BURN was used
for the explosion, characterized by parameters such as density (ρ), detonation velocity
(vD), and Chapman–Jouget pressure (PCJ). The corresponding Jones–Wilkins–Lee (JWL)
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equation of state (EOS) was employed to compute pressure as a function of initial relative
volume and internal energy per unit volume. The EOS of JWL is defined by

P = A
(

1 − ω

R1V

)
e−R1V + B

(
1 − ω

R2V

)
e−R2V +

ωE
V

(5)

where A, B, R1, R2, and ω are the constants, E is the internal energy per unit volume,
and V = ρ/ρ0 is the ratio of the density at the time of the explosion and the initial
density of TNT. The material parameters and the corresponding JWL EOS of TNT are given
in Table 3.

Table 3. High explosive burn material and Jones–Wilkins–Lee equation of state parameter of TNT [59].

ρ vD PCJ A B R1 R2 ω E0 V0
(kg/m3) (m/s) (GPa) (GPa) (GPa) (-) (-) (-) (MJ/m3) (-)

1630 6930 21 371.2 3.231 4.15 0.95 0.3 7000 1

2.3. Machine Learning Model

Machine learning (ML) methods are employed to develop a surrogate model ca-
pable of predicting outputs based on specific input variables. The predicted output
Ŷ = {ŷ1, ŷ2, . . . , ŷn} is related to the input variables X = {x1, x2, . . . , xm} via a black
box function f̂ (X), where m and n are the dimensions of input and output variables, respec-
tively. The ML model f̂ (X) serves multiple purposes. Firstly, it can be utilized to explore
the design space, providing valuable insights into how each input variable interacts and
contributes to the output. Secondly, it is used for optimization, enabling the determination
of the Pareto front of the model for specific objective functions.

2.3.1. Metamodel

This study utilizes an artificial neural network (ANN) as the metamodel to predict
outputs. A typical ANN works like a black box to predict outputs based on given inputs.
The working concept of ANNs is inspired by the working process of a biological neuron
system, where many neurons are interconnected to form a complex and nonlinear network.
The adaptive nature of input changes allows the ANN method to produce the best output
without altering the output criteria. A typical ANN architecture consists of three layers:
(1) the input layer, (2) hidden layers, and (3) the output layer. Neurons at the input and
output layers represent the number of input and output variables, respectively. Each pair
of neurons is connected with the connection weight w, and each neuron possesses a unique
bias b. Mathematically, the output of the l-th layer in an ANN algorithm can be expressed
as follows:

o(l) = fa

(
W (l)o(l−1) + bl

)
, l = 1, 2, ..., k (6)

where k is the number of layers, fa is the activation function, W(l) is the weight matrix,
and b(l) is the bias vector. o(0) and o(k) represent the input and output layers, respectively.
During the model training process, the weight and bias values undergo meticulous up-
dates through tailored training algorithms and optimizers, aimed at improving prediction
accuracy and minimizing the loss incurred during prediction. For regression problems,
common loss functions used to evaluate model training include the maximum absolute
error (MAX) and mean squared error (MSE). Additionally, R-squared (R2) is employed to
quantify how effectively the input variables explain the variability in the output variable.
These metrics, MAX, MSE, and R2, are calculated as follows:

MAX = max|yi − ŷi| (7)

MSE =
1
ns

ns

∑
i=1

(yi − ŷi)
2 (8)
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R2 = 1 − ∑ns
i=1(yi − ŷi)

2

∑ns
i=1(yi − ȳ)2 (9)

where ns is the number of samples, yi is the actual value, and ȳ is the mean value.

2.3.2. Multi-Objective Optimization

A multi-objective optimization problem (MOOP) involves achieving optimal solutions
from two or more conflicting objectives. Genetic algorithms (GAs) are evolutionary opti-
mization techniques widely applied to such problems. The GA operates on the principles
of natural selection inspired by Charles Darwin’s theory, employing genetic operators
including selection, crossover, and mutation [60]. In this study, the second-generation
nondominated sorting genetic algorithm or NSGA-II is used as the multi-objective opti-
mization method. NSGA-II represents an advancement over NSGA proposed by Deb [61],
recognized as a popular GA for generating the Pareto front in MOOP within engineering.
NSGA-II employs two effective sorting principles: elitist nondominated sorting to rank
solutions and crowding distance sorting to maintain diversity in the solution set.

2.3.3. Sensitivity Analysis

A sensitivity analysis assesses how variations in input values influence output vari-
ables, providing insights into the robustness and reliability of an ML model. SHapley
Additive exPlanations (SHAP) [62] comprise an explainability technique based on the
Shapley value concept introduced by Shapley [63] in cooperative game theory. Essentially,
the Shapley value calculates the average contribution of a feature across all possible subsets
F. Unlike variance-based decomposition methods such as Sobol indices, SHAP values offer
a more accurate reflection of the input–output relationship in design exploration, as input
variables are considered to be nonrandom [64]. The Shapley value of the j-th feature is
defined as

ϕj

(
f̂ , X

)
=

1
m ∑

S⊆F\{j}

(
m − 1
|S|

)−1(
f̂S∪{j}

(
XS∪{j}

)
− f̂S(XS)

)
(10)

where S is the one subset of F and the right term is the marginal contribution of feature
j to a subset S. An essential characteristic of the Shapley value is its efficiency, ensuring
that the total sum of Shapley values for all features equals the model output. Therefore,
the output value of f̂ (X) can be expressed as

f̂ (X) = ϕ0 +
m

∑
j=1

ϕj(X) (11)

where ϕ0 is the output of reference input value or f̂∅(X∅). For a global sensitivity analysis,
averaged SHAP values are utilized to assess feature sensitivity at a global scale [64].
Averaged SHAP values indicate the average impact of input variables on specific outputs.
The averaged SHAP of the j-th feature can be expressed as

∣∣ϕ̄j
∣∣ = 1

ns

ns

∑
i=1

∣∣∣ϕj

(
X(i)

)∣∣∣ (12)

3. Results and Discussion
3.1. Numerical Validation

To validate the numerical models employed, the response to blast events was compared
with experimental data. This study encompasses two main validation aspects: (1) validating
the modeling of blast loads and (2) validating the blast response of sandwich panels.
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3.1.1. Validation and Comparison of Air-Blast Model

Firstly, three air-blast models were validated and compared: (1) CONWEP, (2) SPH,
and (3) multi-material Arbitrary Lagrangian–Eulerian (MMALE). The CONWEP and SPH
models are detailed in Section 2.2.3. MMALE represents an advanced method in which
air-blast dynamics are modeled using Eulerian formulations. This approach allows blast
waves to propagate through the air domain and interact with Lagrangian structures. In this
validation, the contact algorithm used between the Eulerian and Lagrangian parts is a
penalty-based method through the keyword CONSTRAINED_LAGRANGE_IN_SOLID.

Experimental data from Børvik et al. [6] used as validation for the air-blast models.
A single AL-6XN steel plate specimen with dimension of 406 × 406 × 3.4 mm3 was
subjected to a 0.15 kg C-4 explosive charge at an SoD of 150, 200, and 250 mm. For the
CONWEP model, 0.15 kg C-4 was equated to 0.18 kg TNT based on mass equivalence [65].
The J-C material model parameters from reference [6] were implemented in the numerical
simulations. The SPH and MMALE methods utilized the MAT_HIGH_EXPLOSIVE_BURN
model and JWL EOS for modeling the C-4 charge, with material properties and JWL EOS
details provided in [59]. The primary comparative metric was the permanent displacement
(δp) of the central node of the plate. Figure 5 illustrates the FE models of the three air-
blast models.

Figure 5. Quarter-symmetric model of a single plate subjected to air-blast loading using three types
of air-blast models: (a) Conventional Weapons Effects Program (CONWEP), (b) smoothed-particle
hydrodynamics (SPH), and (c) multi-material Arbitrary Lagrangian–Eulerian (MMALE). In the
SPH model, the black line represents the SPH calculation domain. In the MMALE model, the C-4
charge and air are modeled using Eulerian formulations, while the single plate is modeled using
Lagrangian formulations.

Table 4 summarizes the numerical results compared to the experimental results.
MMALE shows the smallest error for a SoD of 150 and 200 mm, while CONWEP per-
forms best for a SoD of 250 mm. On average, MMALE exhibits the smallest error, followed
by SPH and CONWEP. Figure 6 shows the bar plot of δp for each air-blast model alongside
experimental data. This observation is consistent with the fact that CONWEP relies solely
on empirical formulas with inherent limitations. In contrast, SPH and MMALE provide
more accurate and detailed simulations by solving the governing equations of fluid and
solid dynamics. However, the computational time required by CONWEP is significantly
faster, approximately 55 times faster than SPH and 305 times faster than MMALE. Con-
sidering computational efficiency, the CONWEP method is chosen for the data sampling
process, while the SPH model is used for final evaluation.
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Table 4. Permanent displacement from various air-blast models and experimental results [6].

SoD Exp.
CONWEP SPH MMALE

Sim. Err. Sim. Err. Sim. Err.
(mm) (mm) (mm) (%) (mm) (%) (mm) (%)

150 17 17.81 4.76 17.75 4.41 17.41 2.41
200 12.7 14.77 16.30 14.23 12.05 12.54 −1.26
250 11.3 11.23 −0.62 11.42 1.06 10.27 −9.12

Figure 6. Comparison of permanent displacement (δp) from various air-blast models with experimen-
tal results [6].

3.1.2. Validation of Sandwich Panels

The experiments conducted by Børvik et al. [6] only involved a single plate, whereas
this study focuses on the blast response of a sandwich panel. Therefore, it is essential
to validate the numerical model of the sandwich panel. Experimental data provided by
Zhang et al. [14] are relevant as they also investigated the blast response of a sandwich panel,
despite using a nonauxetic core geometry. The experimental setup, objectives, and ma-
terial properties align closely with those used in this paper. Zhang et al. [14] conducted
experiments on metallic trapezoidal corrugated-core sandwich panels under air-blast loads.
Figure 7 shows the experimental setup and configuration of a trapezoidal corrugated-core
sandwich panel. Their study primarily explored the influence of geometric parameters
and SoD on midpoint displacements. The horizontal plane had dimensions of 452 mm
× 440 mm, and the exposed area of the blast or the corrugated-core dimensions were
300 mm × 288 mm.

Figure 7. (a) Experimental setup for the blast test of trapezoidal corrugated-core sandwich panels.
(b) Configuration of the trapezoidal corrugated-core sandwich panel [14].

The numerical model utilized a symmetric-quarter model with symmetric boundaries
fixed at the outer sides. The material properties of 304 stainless steel were represented
using a modified J-C model, with parameters listed in Table 2. A 55 g cylindrical TNT
charge, with a radius of 17.5 mm and height of 37.2 mm, was simulated using the SPH
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method due to its specific shape, while the CONWEP method approximated the charge as
a spherical air blast.

Figure 8 shows a correlation plot of δp, comparing experimental and numerical simula-
tion results. The close alignment of data points around the line of a perfect match indicates
strong agreement between numerical predictions and experimental data. The average error
across all samples, as detailed in Table 5, is less than 10%. To further validate the numer-
ical model’s reliability, deformation modes of three sandwich panels with different core
configurations were compared between numerical simulations and experimental results.
As shown in Figure 9 (left), the numerical model accurately reproduces major deformations,
including local indentation in the middle area of the corrugated core and plastic buckling of
the core web. Figure 9 (right) also shows the cross-sectional displacement profiles, showing
close correspondence between numerical and experimental results. Overall, the numerical
methods employed in this study demonstrate validity and accuracy suitable for subsequent
optimization processes.

Figure 8. Comparison of permanent displacement (δp) between numerical and experimental re-
sults [14] for trapezoidal corrugated-core sandwich panels.

Table 5. Permanent displacement from numerical and experimental results [14] for trapezoidal
corrugated-core sandwich panels.

Specimen

Front Sheet Back Sheet

Exp. Sim. Err. Exp. Sim. Err.
(mm) (mm) (%) (mm) (mm) (%)

TZ-2 28.81 27.97 −2.92 14.14 15.19 7.43
TZ-4 34.33 30.89 −10.02 19.81 18.37 −7.27
TZ-5 25.35 24.00 −5.33 11.47 11.39 −0.70
TZ-6 29.55 27.65 −6.43 16.17 16.46 1.79
TZ-7 26.77 26.86 0.34 13.33 14.02 5.18
TZ-8 31.07 29.49 −5.09 17.15 17.15 −0.06
TZ-9 26.94 26.09 −3.16 13.00 13.81 6.23

TZ-10 29.90 28.13 −5.92 16.49 17.64 6.97
TZ-11 27.37 25.71 −6.07 13.91 14.38 3.38
TZ-12 23.98 23.49 −2.04 16.23 17.65 8.75
TZ-13 35.72 34.53 −3.33 11.26 11.07 −1.69
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Figure 9. Comparison of deformation (left) and cross-sectional displacement profiles of face sheets
(right) between numerical simulations and experimental results [14] for specimens (a) TZ-12, (b) TZ-2,
and (c) TZ-13. The red and green dashed lines represent plastic buckling and local indentation after
blast impact, respectively.

3.2. Metamodel and Multi-Objective Optimization

In this study, MOOP was defined and solved to find the optimal solution from two
conflicting objectives. As previously mentioned, the metamodel was constructed using
an ANN method, while the multi-objective optimization was performed using NSGA-II.
Before establishing the ANN algorithm, a design of experiments (DoE) was generated using
numerical methods. To construct the metamodel, 160 samples for each auxetic geometry
were generated using the Latin Hypercube Sampling (LHS) method and simulated using
the explicit FE solver LS-DYNA R12.1.0.

3.2.1. Design Variables, Objective Function, and Constraint

Two conflicting objective variables were optimized in this MOOP, which are the
permanent displacement (δp) of the ASP back face and specific energy absorption (SEA)
of the auxetic core. The δp was obtained by averaging the displacement-time history in
the area where the displacement had already converged, while the SEA of the core was
calculated by dividing the internal energy E by the core mass m. The objective functions
are to minimize the δp and −SEA.

The design optimization focused solely on the independent geometric parameters
of each auxetic geometry. The two face sheets, material types, and other variables were
not optimized since this study focuses only on the influence of auxetic geometry on blast
responses. The independent variables w and h were converted into the number of cells Ny
and Nz, respectively, due to the constraint of fixed ASP dimensions. The design variables
for the MOOP for REH, DAH, and SH are specified as follows:

min
(
δp, −SEA

)

s.t.


5 ≤ Ny ≤ 25
2 ≤ Nz ≤ 6
0 < θ < θmax

0.5 ≤ t ≤ 2

(13)
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and for the CH, the variable θ is changed with the r:

min
(
δp, −SEA

)

s.t.


5 ≤ Ny ≤ 25
2 ≤ Nz ≤ 6
2 < r < rmax

0.5 ≤ t ≤ 2

(14)

Design constraints for the MOOP are listed in Table 6, taking into account the geometric
limitations. Based on the design variables and constraints, the design space with the
corresponding normalized relative density (ρr) for each auxetic model is presented in
Figure 10. As shown in Figure 10, higher input variables result in a higher ρr of the model.

Table 6. Design constraints for each auxetic model in the multi-objective optimization problem.

Geometry Design Constraint

REH d > 4
DAH θ′ > 10

SH d1, d2 > 4
CH r < min((w − 4)/2, (h − 4)/2)

Figure 10. Design space of (a) REH, (b) DAH, (c) SH, and (d) CH for multi-objective optimization
problem (MOOP). The color represents the normalized relative density (ρr).

3.2.2. Metamodel Accuracy

In establishing the metamodel, 90% of the DoE samples were used as the train set,
while 10% were reserved as the test set. Additionally, 10% of the training set was employed
as the validation set during the training process. This ratio was chosen to ensure model
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accuracy given the limited number of sampling points generated in this study. The Adam
optimizer was used due to its efficiency in accelerating the gradient descent algorithm.
A learning rate of 0.001 and an early stopping algorithm were also employed to monitor the
loss of the validation set, preventing overfitting. All hidden layers used the ReLU (rectified
linear unit) activation function to capture model nonlinearity, while the output layer used a
linear activation function to produce continuous values.

The error parameters of each metamodel are presented in Table 7. All MAX values are
less than 5 mm for δp and 0.5 J/g for the SEA, respectively. Generally, the R2 values of all
metamodels are greater than 0.95, indicating that the predicted values from the ANN model
are very close to the simulation values. The predicted values of the trained metamodel
for each auxetic geometry are shown in Figure 11. The deviations between the predicted
values and the simulation sampling points are very small. Based on the three evaluation
parameters, all metamodels are confirmed to be accurate and can be used for the subsequent
multi-objective optimization process.

Table 7. Error parameters of all auxetic metamodels.

Geometry

δp SEA

MAX MSE R2 MAX MSE R2

(mm) (mm2) (-) (J/g) (J2/g2) (-)

REH 3.059 0.713 0.991 0.418 0.009 0.996
DAH 3.307 0.684 0.994 0.302 0.006 0.997

SH 4.524 1.188 0.992 0.250 0.006 0.997
CH 4.309 1.779 0.982 0.498 0.012 0.996

Figure 11. Scatter plots of predicted values from metamodel versus simulation results of δp (left) and
SEA (right) for (a) REH, (b) DAH, (c) SH, and (d) CH models. The black diagonal line represents the
ideal case where predicted values match simulation values, indicating perfect accuracy.

3.2.3. Global Sensitivity Analysis

In this section, the sensitivities of each input variable are analyzed using the SHapley
Additive exPlanations (SHAP) method on 50,000 generated samples. The average SHAP
values for δp are presented in Figure 12a. It can be observed that the variables Ny and t
exhibit very high average SHAP values, indicating a significant influence on δp. On average,
varying Ny and t results in changes in δp of 5.06 mm and 5.68 mm, respectively. In contrast,
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the variables Nz and θ/r have relatively low average SHAP values in δp of 2.07 mm and
1.42 mm, respectively. The averaged SHAP of SEA is given in Figure 12b. Similar to δp,
the variable t has the highest average SHAP value, contributing an average change of
1.21 J/g, followed by Nz with 0.89 J/g, Ny with 0.77 J/g, and θ/r with 0.43 J/g. Overall,
the variable t has the greatest influence on both blastworthiness performance metrics, while
θ/r has the least influence.

Figure 12. Averaged SHapley Additive exPlanations (SHAP) values of (a) δp and (b) SEA for each
auxetic model.

To provide a more intuitive understanding of how each input variable affects the
output, summary plots of SHAP for each auxetic geometry are presented in Figure 13.
These summary plots display the SHAP values for each variable alongside the input values
for each sample. The sign of SHAP values indicates the change in output value with respect
to the reference value. In this case, the reference value is the baseline design. The baseline
design configuration is determined by selecting the midpoint value of the design variable
range, with the thickness set to 1 mm. In general, higher input values result in lower outputs
for both δp and SEA, as indicated by the gradual change in color. However, the θ variable
shows a nonlinear influence on δp, as indicated by disordered coloring. Figure 14 shows
the scatter plots of the influence of each feature for all auxetic geometries. As illustrated in
Figure 14, high input values, especially for variables Ny and t, correspond to the lower-left
region of the plot, indicating small δp and small SEA, and vice versa. The SHAP values
from Figure 13 are consistent with the trends observed in Figure 14, as both depict the same
influence of inputs on outputs. This consistency between SHAP values and scatter plots
highlights the robustness of the input–output relationship analysis.

Figure 13. SHAP summary plot of δp (left) and SEA (right) for (a) REH, (b) DAH, (c) SH, and
(d) CH models.
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Figure 14. Scatter plot showing the influence of input variables for (a) REH, (b) DAH, (c) SH, and
(d) CH models.

3.2.4. Pareto Front and Optimal Solution

Based on NSGA-II optimization, the Pareto front for each auxetic model is shown in
Figure 15. Each orange circle in Figure 15 represents a nondominated solution. As expected,
the Pareto front illustrates the conflict between the two objectives, positioned at the outer
side of the prediction sample marked with light blue circles. As δp increases, SEA also
increases, and vice versa.

Several design points from Figure 15, including the baseline, ideal, balanced, and opti-
mized designs, are listed in Table 8. The table shows that the average prediction error from
the ML model compared to the simulation is relatively small, with values less than 10%,
except for the ideal design with minimum δp and the optimized designs for the REH and
CH models. However, when examining the absolute value difference between prediction
and simulation, it remains below the MAX value from our trained model, as indicated in
Table 7. Therefore, considering the small sample size used in this study, we can conclude
that the model’s error is within an acceptable range, indicating that the optimization results
are reliable.
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Figure 15. Pareto front of the MOOP for (a) REH, (b) DAH, (c) SH, and (d) CH models. The Pareto
front is limited to δp < 50 mm.

Table 8. Design variables and blastworthiness performance of selected design point for all
auxetic geometries.

Geometry Type
Ny Nz θ/r t ρr

δp SEA

Pred. Sim. Err. Pred. Sim. Err.
(-) (-) (◦/mm) (mm) (-) (mm) (mm) (%) (J/g) (J/g) (%)

REH

Baseline 15 4 30.0 1.00 0.115 27.50 27.64 −0.51 2.13 2.06 3.40
Ideal min δp 25 6 45.3 1.99 0.434 10.07 8.32 21.03 0.20 0.22 −9.09

Ideal max SEA 5 2 0.1 0.54 0.022 49.96 50.89 −1.83 8.52 8.58 −0.70
Balanced 19 2 26.3 0.53 0.059 31.83 33.99 −6.35 3.98 4.08 −2.45

Optimized 9 3 61.5 1.63 0.203 18.58 17.92 3.68 1.40 1.19 17.65

DAH

Baseline 15 4 30.0 1.00 0.123 30.39 33.12 −8.24 2.25 2.32 −3.02
Ideal min δp 23 6 0.1 2.00 0.310 3.16 2.93 7.85 0.64 0.63 1.59

Ideal max SEA 6 2 2.6 0.5 0.024 48.88 49.51 −1.27 8.58 8.56 0.23
Balanced 25 2 0.1 0.68 0.070 31.56 33.90 −6.90 3.66 3.43 6.71

Optimized 15 5 0.1 1.72 0.205 10.24 9.76 4.92 1.29 1.31 −1.53

SH

Baseline 15 4 17.0 1.00 0.115 34.85 35.41 −1.58 2.44 2.39 2.09
Ideal min δp 20 6 16.1 2.00 0.328 11.33 11.78 −3.82 0.72 0.65 10.77

Ideal max SEA 13 2 1.1 0.51 0.032 49.89 50.25 −0.72 7.42 7.59 −2.24
Balanced 25 2 0.6 0.89 0.081 32.76 33.77 −2.99 3.69 3.57 3.36

Optimized 15 5 0.3 1.86 0.207 14.94 14.42 3.61 1.25 1.29 −3.10

CH

Baseline 15 4 5.0 1.00 0.091 38.51 38.95 −1.13 3.17 3.12 1.60
Ideal min δp 25 6 6.3 2.00 0.346 14.64 11.81 23.96 0.42 0.53 −20.75

Ideal max SEA 17 2 2.1 0.62 0.034 49.92 49.91 0.02 6.93 6.92 0.14
Balanced 18 3 14.5 0.66 0.072 32.57 34.33 −5.13 3.61 3.53 2.27

Optimized 18 3 14.6 1.88 0.206 18.87 15.44 22.22 1.62 1.28 26.56
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3.3. Discussions
3.3.1. Comparative Analysis

A comparison between the Pareto front and selected design points was conducted to
evaluate improvements achieved through the NSGA-II optimization. First, the baseline
design, marked with a red triangle, is located at the lower right of the Pareto front, as shown
in Figure 15. The optimization results in an improvement of 12.55–35.60% in δp reduction
for the same SEA and 26.21–83.68% in SEA enhancement for the same δp. Therefore,
the Pareto front offers superior performance in at least one objective.

Next, the balanced design, marked by the purple pentagon in Figure 15, is compared
with the baseline design. A balanced design is defined as a point on the Pareto front that
represents the balanced trade-off among conflicting objectives. This point is identified as
the one with the minimum distance to the utopia point. The utopia point, an idealized
design point represented by dark blue squares in Figure 15, corresponds to the optimal
objective values (in this study, the optimal objective values are the lowest δp and highest
SEA). Therefore, the utopia point is linked to the two ideal design points, marked by
green “+” symbols. As given in Table 8, although the balanced designs for REH and
DAH have larger δp than the baseline design by 22.97% and 2.36%, respectively, they offer
superior blastworthiness in SEA, with improvements of 98.06% and 47.84%, respectively.
Meanwhile, the SH and CH models outperform the baseline design in both δp and SEA
by 4.63–11.86% and 13.14–49.37%, respectively. These results indicate that the balanced
models yield optimal design points that balance multiple objectives and still surpass the
baseline design in at least one objective.

The optimized design of ASP from Table 8 was selected by comparing it with other
optimized designs. This is carried out to assess the effectiveness of the optimization results.
In this study, the optimized design used for comparison is the optimized aluminum foam
sandwich panel (AFSP) researched by Pratomo et al. [52]. The optimized AFSP shares the
same dimensions as the ASP with a relative density of 0.6. The material of aluminum foam
was modeled as CRUSHABLE_FOAM. The design point from the Pareto front with the
same mass as the optimized AFSP was selected as the optimized design for ASP. Figure 16
shows the comparison between the optimized ASP and AFSP. The selected optimized
design of each auxetic geometry is marked with a black “X,” while the optimized AFSP is
marked with a yellow diamond in Figure 15.

Figure 16. Comparison of optimized ASP models: (a) REH, (b) DAH, (c) SH, (d) CH; and (e) optimized
aluminum foam sandwich panel (AFSP) model [52].

As shown in Figure 15 and Table 8, the optimized ASP for all auxetic geometries
outperforms the optimized AFSP in SEA by 133.33–156.86%. However, some auxetic
models exhibit worse δp, specifically REH and CH, by 16.21% and 0.13%, respectively.
In contrast, DAH and SH models produce a better δp by 36.71% and 6.49%, respectively.
Overall, the optimized ASP results from the Pareto front, with the same mass as the opti-
mized AFSP, demonstrate superior blastworthiness. Furthermore, the DAH configuration
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in Table 8 shows promising performance compared to the optimized AFSP and other
auxetic geometries.

Figure 17 shows the comparison of the Pareto front for all auxetic models. For small
values of δp or SEA, the DAH exhibits the best blastworthiness performance, whereas
the REH shows the poorest performance. The SH slightly outperforms the CH in terms
of smaller δp or SEA. For large vales of δp or SEA, the REH and DAH share a similar
Pareto front, while the CH performs better than the SH for very large values of δp or SEA.
Overall, the DAH structure demonstrates the best blastworthiness performance among the
structures, followed by the REH, SH, and CH. These results align with the findings from
the experiment conducted by Chen et al. [35], where the DAH structure outperformed the
REH structure.

Figure 17. Comparison of the Pareto front for all auxetic models.

3.3.2. Blastworthiness Analysis

Figure 18 illustrates the deformation of four models with varying ρr, from the lowest
(left) to the highest (right), at 5 ms. The ideal model with maximum SEA shows significant
compression in the central area, whereas the ideal model for minimum δp exhibits minimal
compression. As seen in Figure 18 and Table 8, the ASP with higher values of ρr tends
to exhibit smaller values of δp, whereas those with lower ρr tend to have larger values of
δp. This correlation between ρr and δp is further supported by the SHAP values depicted
in Figure 13, where higher values of design variables correspond to smaller δp. These
visual representations illustrate that increasing the design variables or ρr results in a stiffer
structure, thereby enhancing its resistance to blast impulses. However, higher values of ρr
also lead to lower SEA values due to the increased mass of the ASP.

As seen in Figure 18, global negative Poisson’s ratio (NPR) behavior is not consistently
observed in the ASP. During high-velocity blast impulses impacting the ASP center, the up-
per part of the auxetic core collapses rapidly, limiting full shrinkage. NPR behavior is more
likely to occur in models with lower ρr, where unit cells are less constrained by neighboring
cells, allowing freer deformation. Another influencing factor in NPR behavior of the ASP is
the corner angle or node radius in CH models. Increased corner angles tend to promote
NPR behavior, while smaller node radii increase the likelihood of NPR behavior in the CH
because slender ligament struts make it easier for nodes to rotate. Figure 19 shows the dis-
placement vector of the ASP when subjected to air-blast loading. From Figures 18 and 19,
REH and CH show the most dominant NPR behavior, followed by DAH, while SH
very rarely exhibits NPR behavior. In general, auxetic structure configurations enhance
blastworthiness as the material flows toward the impact zone (central area), as seen
in Figure 19.
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Figure 18. Deformed shapes of four model types for each ASP, (a) REH, (b) DAH, (c) SH, and (d) CH,
at 5 ms. The configurations of each model type are listed in Table 8. From left (lowest relative density)
to right (highest relative density): ideal design of maximum SEA, balanced design, baseline design,
and ideal design of minimum δp.

Based on the global sensitivity analysis results, as indicated by the SHAP values
(Figures 12 and 13), the most influential design variable in ASP under air-blast loading is
the thickness (t). This finding aligns well with the analytical solutions for dynamic crushing
stress or plateau stress of auxetic structures, as discussed in studies by [66,67]. According to the
formula for dynamic crushing stress in structures such as REH and SH, the variable t exhibits
a quadratic relationship, reflecting its role in the plastic bending moment: Mp = σybt2/4,
where σy is the yield strength and b is the strut length. Therefore, increasing t results in a
quadratic increase in crushing stress. Additionally, the variable Ny significantly influences
blastworthiness performance. Figure 14 illustrates that design points with higher Ny values
tend to cluster near the Pareto front. This is attributed to the increased number of cells stacked
at the central blast point, enhancing ASP resistance. In contrast, variables Nz and θ/r show
opposite effects compared to Ny, with higher values typically located in the bottom-right
region, away from the Pareto front. Although increasing Ny and θ/r reduces δp, this reduction
is relatively minor and primarily affects SEA reduction, as depicted in Figure 13.

Figure 19. Displacement vectors of ASP: (a) REH, (b) DAH, (c) SH, and (d) CH. The red lines indicate
the areas that commonly exhibit negative Poisson’s ratio (NPR) behavior except for the SH model.
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3.4. Application of the Optimized Auxetic Sandwich Panel for Armored Fighting Vehicle Protection

In this section, the optimized ASP DAH is applied to the subsystem of an armored
fighting vehicle (AFV) to achieve blastworthiness according to NATO STANAG 4569
level 3b standards [68]. Based on documents from AEP Volume 2, evaluating armored
vehicles against blast threats involves three steps: (1) structural integrity test, (2) occupant
survivability test, and (3) occupant survivability test overmatch. In the first step, the struc-
ture of an armored vehicle is tested for integrity under blast-load conditions. The structure
passes this test if there are no holes or cracks that increase the likelihood of blast penetration
into the passenger compartment. In this study, the addition of ASP protective structures to
armored vehicles was evaluated based on the requirements of the structural integrity test.

3.4.1. Numerical Model of an Armored Fighting Vehicle

Figure 20 shows the FE model of an AFV subsystem subjected to an 8 kg TNT blast.
This model is adapted from reference [52] based on NATO STANAG 4569 [68] and sim-
ulated to evaluate the blastworthiness of the additional protective structure on the AFV.
The structural integrity of an AFV includes the floor or occupant side plate (OSP), struck
side plate (SSP), lower hull, and vehicle mass, which are supported by four holders. In this
case, the vehicle mass is set to 14,000 kg and modeled as a rigid part. The bottom side of
the support and steel pot are fixed. The 8 kg cylindrical TNT with diameter of 270 mm and
height of 90 mm is modeled using the SPH method, which was validated in Section 3.1.2.
INTITAL_DETONATION is defined at the center of the charge with the SoD of 0.8 m to the
floor. The materials chosen for the OSP and lower hull are high-strength martensitic steels
of 1500 T, while hot-rolled (HR) steel 500 is used for the SSP. The material properties for
both 1500 T and HR 500 are given in reference [52]. The thickness of the OSP and SSP are
10 mm and 6 mm, respectively.

Figure 20. The FE model of the armored fighting vehicle (AFV) subsystem under 8 kg TNT: (a) side
view, (b) front view, (c) detailed view of 8 kg cylindrical TNT placed on a rigid steel pot.

To assess the blastworthiness of the ASP as a protective structure, a comparative
evaluation was conducted against other structures, which are an AFV without additional
protective structures and an AFV equipped with the optimized AFSP. For the AFV with-
out protective structures, simulations were performed with OSP thicknesses of 10 mm
and 20 mm. The optimized AFSP configuration used in this evaluation is the optimum
configuration from the optimization process conducted by Pratomo et al. [52], while the
configurations of the optimized ASP DAH are presented in Table 8.
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3.4.2. Simulation Results

Figure 21 shows the simulation results of the AFV subsystem deformation under
an 8 kg TNT blast. All deformation and failure modes that occur in the OSP and SSP
are consistent with the failure modes summarized in the research by Jacob et al. [69].
As seen in Figure 21a, the 10 mm OSP without a protective structure fails to meet structural
integrity requirements due to severe perforation. According to the Cockcroft–Latham
damage failure criterion, petaling damage occurs in the middle of the OSP, allowing blast
fragments and debris to enter the occupant compartment. Conversely, other configurations,
including the 20 mm OSP without a protective structure, maintain structural integrity.
As seen in Figure 21b–d, no perforations occur in the OSP. Failure mode I, i.e., large
inelastic deformation, occurs in the OSP for the AFV subsystem with 20 mm OSP and
protective structure. However, the 20 mm OSP without a protective structure suffers
very large deformation compared with the AFV subsystem with the protective structures.
From Figure 21c, the SSP of the AFV subsystem with optimized AFSP experiences failure
mode IIc, i.e., completely tearing at the center area and forming a ring shape or capping.
A different failure mode is observed in the SSP of the AFV subsystem with optimized ASP
DAH, where the SPP experiences failure mode II*c, i.e., partial tearing in the central area of
the blast, as seen in Figure 21d.

Figure 21. Failure modes of the occupant and struck sides (top) and deformation process from 0
to 10 ms (bottom) of the AFV subsystem for different types of structures: (a) 10 mm occupant side
plate (OSP) without a protective structure, (b) 20 mm OSP without a protective structure, (c) with
optimized AFSP, (d) with optimized ASP DAH.

Figure 22 shows the dynamic responses of the AFV subsystem both with and without
protective structures, focusing on the midpoint displacement and acceleration of the OSP.
The results demonstrate that applying protective structures to AFVs significantly reduces the
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displacement and acceleration of the floor or OSP. Furthermore, the optimized ASP DAH
structure decreases OSP deformation more effectively than the 20 mm single plate and the
optimized AFSP. The optimized ASP DAH structure achieves a maximum displacement
reduction of 56.99% and 39.00% compared to the 20 mm single plate and optimized AFSP,
respectively. Additionally, it reduces the maximum acceleration by 52.55% and 43.56% relative
to the single plate and optimized AFSP, respectively, indicating its superior performance.

Figure 22. Dynamic responses of (a) displacement and (b) acceleration on the occupant side of the
AFV for different structure types.

Figure 23 presents the energy absorption (EA) and SEA of the AFV subsystem with
various structural types. It can be seen that in the AFVs with protective structures, the core
structure absorbs the most energy, followed by the SSP and OSP. Additionally, the energy
absorbed by the optimized ASP DAH exceeds that of both the 20 mm single plate and the
optimized AFSP. Notably, the optimized ASP DAH structure achieves SEA improvements
of 335.00% and 48.30% compared to the 20 mm single plate and the optimized AFSP, respec-
tively. This highlights the superior effectiveness of auxetic structures in absorbing energy
under localized loads compared to other structures. Table 9 summarizes the blastworthiness
parameters of AFV subsystems with and without protective structures.

Overall, the ASP, particularly ASP DAH, demonstrates significant potential for ap-
plication as a protective structure in AFVs. Compared to conventional structures such as
honeycomb and aluminum foam, auxetic structures exhibit superior performance, a find-
ing consistent with other studies [32,33,37]. The enhanced performance is attributed to
the unique deformation mechanism of auxetics, specifically their NPR, which causes the
structure to densify in regions near the blast source. This densification increases the en-
ergy absorption capacity and enhances the blast resistance of the structure. Additionally,
the layered arrangement of the auxetic structure in the direction of the blast allows it to
progressively absorb impact energy from the outermost to the innermost layers, thereby
mitigating the direct effects of blast loads on occupants or OSP. However, a significant
challenge in utilizing ASPs as protective structures lies in their manufacturing process.
For large-scale production, auxetic cores with basic configurations, such as REH, DAH,
and SH, can be manufactured using sheet-folding methods. However, this method requires
more effort and time [70] compared to the manufacturing of conventional honeycomb or alu-
minum foam, leading to higher production costs. Furthermore, ensuring effective bonding
between layers presents another challenge in the ASP manufacturing process, as inadequate
bonding can compromise the structural integrity and blast-resistance performance of the
panels. Future research should focus on addressing the manufacturing and cost-related
challenges associated with the large-scale application of ASPs as protective structures.
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Figure 23. Comparison of (a) energy absorption (EA) and (b) SEA for each part of the AFV subsystem
for different structure types.

Table 9. Blastworthiness parameters of the AFV subsystem without and with various types of
protective structures.

Parameter Single Plate (20 mm) Optimized AFSP Optimized ASP DAH

Max. displ. (mm) 156.56 110.40 67.34
(56.99% */39.00% **)

SEA (J/g) 0.60 1.76 2.61
(335.00% */48.30% **)

Max. acc. (1000G) 118.01 99.20 55.99
(52.55% */43.56% **)

* Improvement of optimized ASP DAH with respect to single plate. ** Improvement of optimized ASP DAH with
respect to optimized AFSP.

4. Conclusions

The design and multi-objective optimization of four types of auxetic sandwich panels
(ASPs), including re-entrant honeycomb (REH), double-arrow honeycomb (DAH), star
honeycomb (SH), and tetra-chiral honeycomb (CH), under air-blast loading were success-
fully conducted using a machine learning approach. The blastworthiness performance of
ASPs was evaluated using the finite element method. The optimization objectives were to
reduce permanent displacement (δp) and increase specific energy absorption (SEA). The
nondominated sorting genetic algorithm II (NSGA-II) was employed for optimization,
utilizing an artificial neural network (ANN) metamodel. The results of the optimization
process are summarized as follows:

• The ANN metamodel that was formed was proven to be accurate in predicting the
blastworthiness performance of ASPs. The optimization process using NSGA-II pro-
duces optimal designs efficiently. The optimization results shows that the permanent
displacement conflicts with the SEA.

• Global sensitivity analysis using the SHapley Additive exPlanations (SHAP) method
indicates that cell thickness in ASPs is the primary factor influencing blastworthiness
performance, significantly affecting stiffness and plastic-bending moments within
auxetic cells. Meanwhile, the corner angle and node radius in the CH model are
identified as the least influential variables.

• The configuration of auxetic structures enables effective energy absorption, enhancing
the blast resistance of sandwich structures, as the material flows toward the impact
zone. The occurrence of global negative Poisson’s ratio (NPR) behavior in ASPs under
air-blast loading is influenced by rapid and high-velocity blast impulses, leading to
localized unit cell collapse near the blast source. Generally, the REH and CH models
exhibit more dominant NPR behavior at lower relative densities.
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• Multi-objective optimization substantially enhances blastworthiness performance.
Compared to baseline models, optimization achieves SEA improvements ranging from
26.21% to 83.68% for equivalent permanent displacements and reduces permanent
displacement by 12.55% to 35.60% for equivalent SEA. The balanced REH and DAH
models outperform baseline models in SEA only by 98.06% and 47.84%, respectively,
while SH and CH models exhibit improvements in both permanent displacement
(4.63–11.86%) and SEA (13.14–49.37%). Furthermore, the optimized ASP outperforms
the optimized aluminum foam sandwich panel (AFSP) in SEA by 133.33–156.86%.
However, only optimized DAH and SH produce better permanent displacement
reduction by 36.71% and 6.49%, respectively. Among the four auxetic configurations,
the DAH structure offers the best blastworthiness performance.

• ASPs demonstrate promising results in armored fighting vehicle (AFV) applications,
meeting structural integrity requirements effectively. In dynamic response scenarios,
optimized ASP DAH significantly reduce maximum displacement and acceleration
of occupant floors by 39.00–56.99% and 43.56–52.55%, respectively, compared to
other structures. The AFV subsystem incorporating optimized ASP DAH achieves a
48.30% increase in SEA over optimized AFSP and a remarkable 335.00% increase over
single plates. This indicates that the auxetic core exhibits superior energy absorption
capabilities compared to aluminum foam cores and single plates.

The preliminary results of this study indicate that ASPs have significant potential as
blastworthy structures for broader applications, including defense in buildings, automotive,
and aerospace industries. However, further research is required to comprehensively evalu-
ate the ASP response in practical settings, as this study does not address the manufacturing
aspect or experimental testing and relies solely on empirical methods for modeling air-blast
loading. Additional investigations, such as nonlinear structural analysis and acoustic
analysis due to blast impact, can also further clarify the blast response of the structure.
Future research could incorporate additional objectives, such as minimizing acceleration
and reducing the injury risk of an occupant, as part of a multi-objective optimization frame-
work. Additionally, using explainable machine learning in metamodels could provide
clearer insights into how ASP design variables affect blastworthiness.
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