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Abstract: An unmanned aerial vehicle (UAV) swarm has emerged as a powerful tool for mission
execution in a variety of applications supported by deep neural networks (DNNs). In the context
of UAV swarms, conventional methods for efficient data processing involve transmitting data to
cloud and edge servers. However, these methods often face limitations in adapting to real-time
applications due to the low latency of cloud-based approaches and weak mobility of edge-based
approaches. In this paper, a new system called deep reinforcement learning-based resilient layer
distribution (DRL-RLD) for distributed inference is designed to minimize end-to-end latency in UAV
swarm, considering the resource constraints of UAVs. The proposed system dynamically allocates
CNN layers based on UAV-to-UAV and UAV-to-ground communication links to minimize end-to-end
latency. It can also enhance resilience to maintain mission continuity by reallocating layers when
inoperable UAVs occur. The performance of the proposed system was verified through simulations
in terms of latency compared to the comparison baselines, and its robustness was demonstrated in
the presence of inoperable UAVs.

Keywords: resource-constrained UAV swarm; distributed inference; resilient UAV system; deep
reinforcement learning; end-to-end latency optimization.

1. Introduction

In recent decades, unmanned aerial vehicles (UAVs) have been employed in various
applications [1–7] thanks to their flexibility, maneuverability, wide coverage, and real-
time data collection [8]. When equipped with various sensors, UAVs can monitor target
objects and transmit information in real-time during missions [9]. In the initial stages of
UAV applications, missions were conducted with a single UAV, but this approach may be
challenging to apply to large-scale operations, as the malfunction of a single UAV could
result in the abortion of the mission. Unlike a single UAV, a UAV swarm can provide
several advantages, such as reducing operation time, decreasing mission failure rate, and
multitasking capability through cooperation and parallel processing [10,11]. Furthermore,
the UAV swarm is suitable for large-scale operations due to their wide coverage and
enhanced cost-effectiveness [12–14].

The use of convolutional neural networks (CNNs) in a variety of UAV missions has
been the main objective of numerous studies [15,16]. DNN architectures have become more
complicated as UAV missions in a complex plan become more demanding. Naturally, the
memory usage and computational requirements of models have increased, which may
pose challenges when deploying CNN models on resource-constrained UAVs [17]. Several
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solutions have been proposed to address the discrepancy between the substantial resource
requirements of CNN models and the restricted resource supply of UAVs. Cloud-based
intelligence has addressed these challenges by transferring raw UAV data to a cloud server
for CNN inference [18–20]. This approach offers computing resources from powerful
cloud servers. However, it can suffer from high transmission latency due to the long
distance between the UAV and the cloud server. Moreover, unstable network conditions in
battlefield or disaster areas can disrupt data transmission, thereby limiting the feasibility of
cloud-based intelligence. Edge-based intelligence has implemented CNN inference on edge
servers near UAVs to circumvent the resource requirements of CNNs [21–23]. However,
this approach may constrain the mobility of UAV swarms because they need to remain
within the operational range of edge servers to maintain connectivity. Additionally, server
overload may occur when multiple UAVs simultaneously offload to a single edge server.

To address problems related to transmission latency and UAV mobility constraints,
recent works [24–26] have focused on jointly executing inference for complex CNN models
on resource-constrained devices without relying on cloud or edge servers. This approach,
called device–device collaborative edge intelligence (CoEI), performs distributed inference
by partitioning the CNN model into segments (e.g., layers, multiplication tasks) and
assigning the segments to devices. The device–device CoEI is suitable for swarms consisting
of multiple UAVs and enables CNN inference through the collective power of the swarm,
even when the resources of UAVs are limited. In [24], a pipeline-based collaborative method
has been proposed to conduct CNN inference on a resource-constrained UAV swarm.
However, this method was tested with a small number of UAVs, which can lead to concerns
about scalability in a larger UAV swarm. In [25], an optimal UAV-based layer distribution
method was proposed to minimize the end-to-end latency of the distributed inference by
allocating partitioned CNN layers. However, this method does not consider UAV-to-ground
(U2G) communication link needed to transmit results from the UAV network to ground
devices. Incorporating the U2G link can more effectively optimize overall end-to-end
latency. Dhuheir et al. [26] proposed a method for distributed inference by optimizing
layer assignment using deep reinforcement learning (DRL). However, this method may
overlook scenarios where a UAV becomes inoperable due to internal or external factors.
The absence of a resilience mechanism for inoperable UAVs may lead to mission failure.

In mission-critical applications, such as disaster response, search and rescue, and
surveillance, minimizing the end-to-end latency and ensuring system resilience are es-
sential. The aforementioned methods for distributed CNN inference may fail to perform
their mission due to the lack of mechanisms for ensuring system resilience. Therefore, the
proposed system aims to enhance mission continuity by prioritizing latency minimization
and system resilience. In this paper, a DRL-based resilient layer distribution (DRL-RLD)
system is proposed to enable resilient distributed inference in UAV swarm. The proposed
system is designed to minimize end-to-end latency through distributed inference, con-
sidering the UAV’s position, available resources, and operability. The proposed system
also incorporates both UAV-to-UAV and UAV-to-ground communication links, ensuring
that final outputs reach ground devices with minimal latency. The proposed system is
designed to ensure network resilience by dynamically reallocating CNN layers in real time
when UAV malfunctions occur. This mechanism can ensure mission continuity. In addition,
the robustness and scalability of the proposed system are demonstrated by evaluating
its performance across various environmental conditions and swarm sizes. The main
contributions of this paper are summarized as follows:

• The proposed system minimizes the end-to-end latency of distributed CNN inference
by considering both U2U and U2G communication links. Therefore, the proposed
system can optimize the entire process from image acquisition to transmitting the final
prediction to the ground device.

• The DRL-RLD system is proposed to optimize resilient distributed inference in
resource-constrained UAV swarm. The resilience of the UAV network can be en-
hanced through dynamic reallocation of layers even when UAVs become inoperable.
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This dynamic layer reallocation ensures the continuous operation of the network and
enables adaptive real-time mission execution.

• Extensive simulations have been conducted with various CNN models, available
resources, and UAV configurations to evaluate the performance of the proposed sys-
tem. In particular, the proposed system has been simulated with a larger number of
UAVs than the settings in the previous research, with practical conditions of UAV mal-
function. Therefore, it has the potential to offer greater scalability and generalization
performance compared to conventional methods.

The remainder of the paper is structured as follows: The system model is described
in Section 2. The optimization problem is formulated in Section 3. The proposed deep
reinforcement learning model for layer distribution is detailed in Section 4. The simulation
results are presented in a variety of scenarios in Section 5. The conclusions and future
directions are summarized in Section 6.

2. System Model

The system model is depicted in Figure 1, where UAV swarms are configured to
form a wireless ad hoc network. The network consists of N UAVs, which are employed in
target area monitoring, intermediate data transmission, and classification tasks (e.g., human
detection, forest fire detection, highway accident detection). At each time step t, requests are
received, which are defined as units of classification tasks to be processed by UAV swarm.
RQt is the total number of requests at time step t. Each UAV i ∈ {1, . . . , N} operates
under two significant constraints: a maximum memory usage mmax

i and a maximum
computational capacity cmax

i . The position of the UAV is represented by 3D coordinates
(x, y, z).

Figure 1. The proposed system model for resilient distributed CNN inference.

The proposed system is operated under the following assumptions: First, UAVs can
explore the entire mission area, but not all cells are of equal importance. For instance,
the system can intensively monitor hot cells that are established to be of high importance
(e.g., areas where fires occurred). Second, CNN layers are assigned to each UAV by the



Appl. Sci. 2024, 14, 10832 4 of 15

DRL model, and the requests are processed in accordance with the layer assigned to each
UAV. Herein, the DRL model distributes layers to minimize end-to-end latency. The end-
to-end latency is defined as the sum of transmission and computational latency. Here,
transmission latency represents the time required to transmit intermediate data between
UAVs or between a UAV and a ground device, and computational latency represents the
time required to process data within each UAV. This end-to-end latency can be affected
by several factors, including the distribution of CNN layers, the distance between UAVs,
and the available computing and memory resources of each UAV. Third, the proposed
system is designed to ensure mission continuity, even if certain UAVs become inoperable
due to hardware failures or cyber-attacks. The DRL-RLD model leverages current state
information that includes an inoperable state parameter for each UAV. When this parameter
is set to be zero, it indicates that a specific UAV is no longer operational. In such scenarios,
the DRL-RLD model reallocates layers based on the current state of the remaining UAVs,
including available memory, computational capacity, and location.

Depending on the mission of the UAV swarm, an appropriate CNN model can be
selected. Each UAV in the swarm contains a copy of the trained model and performs tasks
associated with the activated layers for distributed inference. The proposed distributed
system is designed with the pipeline, incorporating convolutional and fully connected
layers (FCN) with rectified linear unit (ReLU) activations, and is compatible with CNN
architectures that do not incorporate residual blocks. The CNN model consists of L layers.
For each j ∈ {1, . . . , L}, Kj represents the size of the intermediate output generated at layer
j and transmitted to the subsequent layer j + 1 of the CNN model.

Each CNN layer has memory requirements mj and computational load requirements
cj. The memory requirements of layers mj are determined by the number of weights
Wj of the current layer j and the number of bits b dedicated to storing the weight, and
it is represented as mj = Wj · b. The computational requirements cj are the number of
multiplications needed to execute the layer j [27]. Therefore, the computational load
requirement of the convolutional layers is calculated as follows:

cj_conv = kh · kw · Chin · Fh · Fw · Chout, (1)

where kh and kw are the height and width of the filter, respectively, and Chin is the number
of input channels at layer j, Fh and Fw are the height and width of the output feature map,
respectively, and Chout is the number of output channels at layer j. The computational load
calculations of the fully connected layer j are the number of neurons nj of layer j multiplied
by the number of neurons nj−1 of the layer j− 1, and it is represented as cj_fcn = nj−1 · nj.

Communications Model for U2U and U2G Link

A communication model is used to implement U2U and U2G communication links.
The elevation angle and environmental factors determine the probability of line of sight
(LoS) between two UAVs, or UAV and ground device. The probability of LoS, denoted as
PLoS, can be modeled by

PLoS =
1

1 + a exp(−b(θ − a))
, (2)

θ =
180
π

sin−1
(

h
d

)
, (3)

where environmental factors a and b are set to be 4.88 and 0.43, respectively, under the
assumption of a rural environment with few obstacles and wide-open space [28]. θ denotes
the elevation angle between the UAV and the ground station or another UAV. In addition,
d denotes the Euclidean distance between the UAV and the ground station or another UAV.
The probability of non-line of sight (NLoS) PNLoS is PNLoS = 1 − PLoS. The path loss PL is
calculated by

PL = PLoS · PLLoS + PNLoS · PLNLoS, (4)
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where PLLoS and PLNLoS are the path losses under NoS and NLoS channel conditions,
respectively. PLLoS and PLNLoS are calculated by

PLLoS = 20 log10(d) + 20 log10( f ) + 20 log10

(
4π

c

)
, (5)

PLNLoS = PLLoS + ηNLoS, (6)

where f denotes the carrier frequency, c is the speed of light, and νNLoS is an additional
attenuation factor that is set to 20 dB, assuming a rural environment [28]. The path loss
PL affects the quality of a communication link, and the data transmission rate ρ can be
calculated by the Shannon formula,

ρ = B log2

(
1 +

Pt

PL · N0 · B

)
, (7)

where Pt represents the transmission power, B is the bandwidth, and N0 is the noise power
spectral density.

3. Problem Formulation

An optimization problem is formulated for minimizing the end-to-end latency in
making the final prediction through distributed inference within a resource-constrained
UAV swarm. Based on an optimization discussed in [25], this new optimization problem
considers the UAVs availability and both the U2G and U2U links. The proposed optimiza-
tion problem depends on three decision variables δt,r,i,j, ψt,i,q, and ot,i, which are defined
as follows:

δt,r,i,j =

{
1, if UAV i executes layer j of request r at time t
0, otherwise,

(8)

ψt,i,q =

{
1, if UAV i exists at cell q at time t
0, otherwise,

(9)

ot,i =

{
1, if UAV i is operable at time t
0, if UAV i is inoperative at time t.

(10)

The proposed optimization problem can be an integer linear programming (ILP)
optimization, and it is formulated as

min
ψt,i,q ,δt,r,i,j

T

∑
t=1

RQt

∑
r=1

N

∑
i=1

N

∑
k=1
k ̸=i

L−1

∑
j=1

δt,r,i,j · ot,k · δt,r,k,j+1 ·
Kr,j

ρi,k
+

N

∑
i=1

ot,i · t
(p)
i + tl , (11)

Constraints:

RQt

∑
r=1

L

∑
j=1

δt,r,i,j ·mj ≤ mmax
i , (11a)

RQt

∑
r=1

L

∑
j=1

δt,r,i,j · cj ≤ cmax
i , (11b)

N

∑
i=1

δt,r,i,j =

{
1, if j ≤ L
0, otherwise,

(11c)

C

∑
q=1

ψt,i,q = 1, (11d)
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N

∑
i=1

ψt,i,q ≤ 1, (11e)

δt,r,i,j ≤ ot,i, (11f)

and where

tl =
N

∑
i=1

ot,i · δt,r,i,L ·
Kr,L

ρi,G
, (12)

t(p)
i =

T

∑
t=1

RQt

∑
r=1

L

∑
j=1

δt,r,i,j ·
cj

cmax
i

. (13)

The proposed optimization problem is divided into three parts to systematically ad-
dress the latency components associated with distributed CNN inference in a UAV swarm.
The first part focuses on inter-UAV transmission latency for transmitting intermediate
data between layers, which is crucial for efficient distributed processing. The second part
addresses the latency of transmitting the final output to the ground station. Lastly, the
third part addresses the computational latency required to process the layers assigned to
each UAV.

1. Inter-UAV transmission latency: the time required to transmit the intermediate data
of layer j assigned to UAV i to UAV k can be represented in

Kr,j

ρi,k
, (14)

where Kr,j denotes the intermediate data generated from layer j of request r, and ρi,k
denotes the transmission data rate between the UAV i and the UAV k.

2. Final output transmission latency to ground devices: in Equation (12), tl is the time
required to transmit the output of the last layer to the ground device G, and Kr,L is
the size of the final output for classification tasks.

3. Computational latency of individual UAVs: In Equation (13), t(p)
i is the total time

required to compute all processing tasks assigned to UAV i. This time is defined as the
ratio of the computational requirement cj of the layer j to the computational capacity
cmax

i of the UAV i.

The constraint in Equations (11a) and (11b) ensures that each UAV i does not exceed
its memory usage and computational capacity while processing its assigned CNN layer,
respectively. The constraint in Equation (11c) guarantees that each layer is assigned to only
one UAV. To prevent collisions, the constraint in Equation (11d) ensures that only one UAV
visits each cell at each time step. The constraint in Equation (11e) restricts each UAV to
visiting only one cell at any given time t. Lastly, the constraint in Equation (11f) ensures
that no layers are assigned to inoperable UAVs.

The proposed ILP optimization problem can be formulated as a combinatorial problem
that includes multiple binary variables and complex constraints. As the size of the proposed
problem which denotes the number of UAVs, CNN layers, and requests increases, the
combinations that can be searched for expand exponentially. The increase in the search
space may lead to a combinatorial explosion. This means that the time required to find
the optimal solution increases exponentially, resulting in a highly time-intensive task. This
complexity poses significant challenges when implementing the proposed system in real-
time applications. Recently, DRL has demonstrated impressive performance in managing
dynamic and realistic systems [29–31]. DRL-based systems can learn optimal solutions by
analyzing environmental states and predicting the best actions based on previous rewards.
Therefore, a DRL-based system is adopted to efficiently solve the proposed optimization
problem and ensure optimal performance.
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4. Deep Reinforcement Learning Model for Layer Distribution

In this section, the DRL-RLD model depicted in in Figure 2 is proposed to address the
optimization problem. The DRL-RLD model is trained offline and performs layer distribu-
tion tasks during UAV missions. The DRL-RLD model can dynamically distribute layers to
ensure optimal performance depending on environmental changes and UAV availability.
The DRL-RLD model is built using a Markov decision process (MDP) framework, repre-
sented as (S, A, P, R, γ), where S represents a state space, A represents an action space, P
represents transition probabilities between states, R represents rewards obtained after each
action, and γ represents a discount factor. At each time step t, an agent observes a current
state st and selects an action at based on observed information. Depending on the chosen
action, the agent obtains a reward rt, and learns optimal policy π∗ through feedback based
on the reward. The agent’s goal is to identify optimal policy π∗, which maximizes value
function Vπ∗(s) for all states. The value function Vπ(s) represents expected cumulative
reward when following policy π starting from state s, and is mathematically expressed as

Vπ(s) = Eat ,st+1

(
∞

∑
k=0

γk−trk | st = s

)
, (15)

Figure 2. The proposed DRL-RLD model for layer distribution.

4.1. Design for DRL-RLD Model

The state space S consists of the following components to provide the agent with
comprehensive state information that accurately reflects the environment: the position
of the UAVs in the grid, the current memory usage of the UAV i, and the computational
capacity of the UAV i. The CNN layers currently assigned to UAV i, the operational status
of UAV i, the position of the ground device in the grid, and the positions of hot cells in
the grid.

The action a is defined as the allocation of CNN layers to the entire UAV swarm. The
agent is capable of undertaking actions based on the current state of each UAV, including
the computation capacity, memory usage, and operational status.

The reward is designed to provide a higher reward when the end-to-end latency of
distributed inference is low and impose penalties when the constraints of the system are
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violated. This structure can enable the DRL-RLD model to learn how to distribute layers in
a way that minimizes end-to-end latency. The penalties are imposed when the constraints
below are not satisfied.

• Constraint 1: All layers within a CNN model must be allocated to UAV swarm,
and each layer must be allocated to exactly one UAV. This constraint is violated if
unassigned layers occur or a layer is assigned to multiple UAVs.

• Constraint 2: for each UAV i, the sum of the memory requirements and computational
requirements of the assigned layers must not exceed the UAV’s memory usage and
computational capacity, respectively.

• Constraint 3: CNN Layers can only be assigned to operational UAVs, and assigning
layers to inoperative UAVs violates this constraint.

A penalty mechanism is structured so that if any constraint is violated, the reward for
that specific time step is set to be zero. For example, if a UAV exceeds its resource limits as
specified in Constraint 2, the corresponding variable is set to zero (Cons2 = 0), effectively
setting the reward to zero. Conversely, when all constraints are satisfied, the variables for
each constraint are set to 1, ensuring that rewards are granted only when all conditions are
satisfied. This penalty mechanism ensures that the model learns to distribute layers while
strictly satisfying the constraints. A reward function applying the penalty mechanism R is
defined as:

R =
A

Lcomp + Ltran
·Cons1 ·Cons2 ·Cons3, (16)

where Consi is a parameter that denotes whether Constraint i is violated, Lcomp is total
computation latency, Ltran is total transmission latency, A is a constant, and the value of the
reward function increases as Lcomp and Ltran decrease.

4.2. Proximal Policy Optimization Algorithm

Proximal policy optimization (PPO) [32] is one of the policy gradient methods designed
to optimize the policy π while maintaining stability during training. The main objective
function of PPO is defined as

JPPO = Et[min(η ∗ Adπ(st, at), clip(η, 1− ϵ, 1 + ϵ)Adπ(st, at))], (17)

η =
π(at | st)

πold(at | st)
, (18)

where Adπ(st, at) is the advantage function, ν denotes the policy probability ratio, and
ϵ denotes the clipping parameter that restricts ν within the range of [1− ϵ, 1 + ϵ]. The
clipping ensures that policy updates are not too large, thereby avoiding instability during
training. The advantage function Adπ(st, at) provides insight into the expected future
rewards for acting at in state st, and it is defined as

Adπ(st, at) = Q(st, at)−Vπ(st), (19)

where Q(st, at) is the action-value function that represents the expected cumulative rewards
obtained according to the policy π when performing specific action at in state st, and Vπ(st)
is the value function that represents the expected cumulative rewards from state st under
policy π.

The PPO algorithm iteratively updates the policy πθ and the value function using
experiences stored in the rollout buffer. During each policy update, the probability ratio η
is calculated, and the clipping function is applied to prevent large updates. The clipping
parameter ϵ can constrain policy updates to ensure training stability without drastic changes
in a single step. The training process of the DRL-RLD model is summarized in Algorithm 1.
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Algorithm 1 DRL-RLD model training algorithm.

1: Initialization
2: initialize the parameters θ of the policy network
3: initialize the parameters θold of the policy network: θold ← θ
4: initialize the parameters ϕ of the value network
5: initialize rollout buffer
6: randomly distributed UAVs in the grid
7: for each UAV in C do
8: distributed all UAVs in the grid
9: end for

10: PPO training
11: for each episode r ∈ R do
12: for each timestep t ∈ T do
13: randomly render arbitrary UAVs inoperable
14: select and execute action at
15: compute reward rt
16: store transition in buffer
17: PPO update
18: end for
19: end for

5. Simulation Results
5.1. Simulation Settings

The simulations are conducted in a scenario where a UAV located in a hot cell captures
images and performs distributed inference with a swarm of surrounding UAVs. The UAVs
are assumed to perform the mission while maintaining a fixed height z = 40 m. The UAV
swarm operate in a 100 m × 100 m area, divided into 25 cells, with one of the 25 cells set as
a hot cell. Three CNN models were employed in the simulation: AlexNet [33], VGG16 [34],
and YOLO [35]. These models were selected because they are widely used in the object
classification or object detection. The AlexNet and VGG16 were trained using the ILSVRC
2014 dataset [36], and YOLO was trained using the PASCAL VOC 2007 dataset [37]. The
parameters and depths of these architectures are listed in Table 1. Here, M refers to one
million. It is assumed that each UAV has two memory usage levels (low: 1 GB; high: 2 GB)
and one computational capacity level (11.2 GFLOPS). The inoperable state parameter is set
to be two, and the model is trained in an environment where zero to two UAV becomes
inoperable during each episode. Parameters for training the proposed DRL-RLD model
are listed in Table 2. The values of the training parameters were determined empirically
through extensive trials. The bandwidth and transmission power were configured to
assume communication channel within a low-power, resource-constrained environment, as
typically encountered in disaster response and surveillance applications [26]. The noise
power spectral density was selected based on the standard thermal noise level. The end-to-
end latency is employed to evaluate the performance of the proposed DRL-RLD system.
This evaluation metric measures the total time required for an image acquired in a hot cell
to undergo distributed inference across the layers assigned to the UAV swarm and for the
final output to reach the ground device.

Table 1. Comparison of CNN models.

Name Parameters Depth

AlexNet [33] 74.7 M 8
VGG16 [34] 169.8 M 16
YOLO [35] 295.5 M 20
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Table 2. Simulation parameters of DRL-RLD model.

Name Parameters

discount factor 0.99
actor learning rate 0.0003
critic learning rate 0.001

clip range 0.2
inoperable state parameter 2

noise power spectral density 4× 10−21

transmission power 0.1 W
bandwidth 1 kHz

5.2. Performance Evaluation

The average cumulative rewards per episode are shown in Figure 3, where AlexNet,
YOLO, and VGG16 were employed as deployed CNN models for the mission. The maxi-
mum reward line in Figure 3 is the value that the UAV swarms are optimally distributed
within the mission area. The proposed system is unable to achieve the maximum reward
due to a penalty resulting from the UAV’s positions being initialized by following a Gaus-
sian distribution. However, it was confirmed that as the number of UAVs in the swarm
increased, the converged reward improved significantly. This performance improvement
is attributed to flexibility of data transmission paths and resource utilization efficiency
within the UAV swarm. The optimal solution was achieved by the AlexNet architecture
with a slight difference from the maximum reward, a marginal difference was conformed
with the YOLO architecture, and a moderate difference was exhibited with the VGG16
architecture. Additional UAVs may be necessary to reach optimal performance in VGG16,
as it requires more average computational requirements required by a layer than other
deployed CNN models. The limitations observed in the simulations are that as the swarm
size increases, the instability in the early stages of learning increases and the model requires
more episodes to reach saturation. This phenomenon can be attributed to the increased
environmental complexity, which is a consequence of the expanded state and action spaces
concomitant with an increased number of UAVs in the swarm.
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Figure 3. Average cumulative rewards by CNN models: (a) AlexNet; (b) YOLO; (c) VGG16.

The performance of the proposed model compared to three baselines is shown in
Figure 4. The performance of the proposed model is evaluated under the same conditions,
including fifteen UAVs, 1 GB memory, and a computational capacity of 11.2 GFLOPS.
The Layer-Avg method [24] refers to the method that distributes layers to each UAV
as uniformly as possible according to the layers of the CNN model. The Comp-Avg
method [24] distributes the computational load assigned to each UAV as uniformly as
possible according to the computational load of the CNN layers. The Heuristic method [25]
searches the nearest neighboring node with sufficient resources to process the remaining
layers during intermediate data transmission. The proposed model outperformed the
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Layer-Avg and Comp-Avg methods in all three CNN models. The Layer-Avg and Comp-
Avg methods focus on evenly distributing the requirements of the CNN layers. However,
the Layer-Avg and Comp-Avg methods do not adequately consider the physical distances
between UAVs, which significantly impact transmission latency. In contrast, the proposed
model achieves superior performance by accounting for transmission latency between
UAVs. The heuristic method prioritizes short-term benefits when distributing layers. On
the contrary, the proposed system achieves long-term benefits by distributing layers with a
comprehensive consideration of available resources and UAV arrangement. Consequently,
the proposed model was confirmed to have lower the end-to-end latency than the three
baseline methods by thoroughly considering factors such as UAV locations, communication
links, and resource constraints during layer distribution.
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Figure 4. The performance of the proposed model compared to three baselines: (a) AlexNet; (b) YOLO;
(c) VGG16.

A comparative performance of the proposed system under different memory con-
straints (1 GB and 2 GB) is presented in Figure 5. Simulations were performed under the
same conditions, except for memory constraints, with 15 UAVs and a computational capac-
ity of 11.2 GFLOPS. For AlexNet, there was no observable performance variation between
using 1 GB and 2 GB of memory until four requests were processed. This implies that 1 GB
of memory is sufficient for up to four parallel requests. After five requests, it was confirmed
that performance improved with the use of 2 GB of memory. This phenomenon can be
attributed to the positive correlation between the expansion of available memory resources
in the UAV swarm and the consequent increase in the number of requests processed in
parallel. For YOLO and VGG16, it was confirmed that using 2 GB of memory performs
better than 1 GB. The increased memory capacity allows a single UAV to process more
CNN layers. This can reduce the number of intermediate data transmissions between UAVs
and consequently lowers overall transmission latency.

The end-to-end latency in a scenario with inoperable UAVs is shown in Figure 6. The
simulation was conducted using AlexNet with 15 UAVs. Simulations were conducted
with 15 UAVs, 1 GB of memory, and a computational capacity of 11.2 GFLOPS using the
AlexNet model. The end-to-end latency for each model is illustrated in Figure 6 under
three conditions: all UAVs fully operational, one inoperable UAV, and two inoperable
UAVs. It was confirmed that the proposed model exhibits few increase in the end-to-
end latency than the comparison of the three baseline methods. Therefore, the proposed
model can maintain mission continuity by reallocating layers to the remaining UAVs
using the available resources. In contrast, the comparison models lack these resilient
mechanisms and are more adversely affected by inoperable UAVs. The proposed DRL-RLD
model demonstrates superior performance compared to the baseline methods when UAVs
becomes unexpectedly inoperable.
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Figure 5. Performance comparison of the proposed system under different memory constraints:
(a) AlexNet; (b) YOLO; (c) VGG16.
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The proposed DRL-RLD system outperformed existing methods by optimizing CNN
layer allocation to reduce the end-to-end latency. As the number of UAVs in swarm
increases, the converged reward approaches its maximum value. Additionally, the increase
in the end-to-end latency can be diminished by dynamically reallocating layers when
arbitrary UAVs become inoperative. Overall, the system operated efficiently across various
UAV swarm configurations and resource constraints.

6. Conclusions

In this paper, a deep reinforcement learning-based resilient layer distribution (DRL-
RLD) system was proposed to optimize resilient distributed CNN inference in resource-
constrained UAV swarm. The proposed system minimizes the end-to-end latency by
dynamically allocating CNN layers based on the position of the UAVs and their available
resources, considering the U2U and U2G communication links. The system can also
maintain the continuity of the network by reallocating layers when UAVs are inoperable
due to internal or external factors. The performance of the proposed system was evaluated
through simulations under different CNN models, as well as the number of UAVs and
available resources. The simulation results proved that the proposed system can outperform
the baselines in terms of end-to-end latency. It was further verified that mission continuity
can be maintained through layer reassignment, even when inoperable UAVs occur. The
proposed system can be a viable approach for disaster management, search and rescue, and
surveillance due to its enhanced resilience and capabilities for real-time inference. In future
work, the impact of various environmental factors, such as weather conditions, terrain,
and obstacles (e.g., buildings or dense foliage), should be further examined to verify the
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robustness of the proposed system model. Additionally, a dynamic environment model
that accounts for the Doppler effect is necessary to better understand the impact of UAV
mobility on communication link quality. Furthermore, the battery life constraints of UAVs
should be integrated into future works, as real-world deployments are often limited by the
power supply available to each UAV. Addressing these factors will improve the robustness,
and generalizability of the proposed system in practical, real-world applications.
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