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Featured Application: A decision support system for optimising anti-corrosive painting main-
tenance planning in offshore platforms through integrating 3D CAD/CAE models, machine
learning for corrosion prediction, and multi-criteria optimisation strategies considering regulatory
demands, criticality, and resource constraints.

Abstract: This research presents an innovative solution to optimise maintenance planning and
integrity in offshore facilities, specifically regarding corrosion management. The study introduces a
prototype for maintenance planning on offshore oil platforms, developed through the Design Science
Research (DSR) methodology. Using a 3D CAD/CAE model, the prototype integrates machine
learning models to predict corrosion progression, essential for effective maintenance strategies.
Key components include damage assessment, regulatory compliance, asset criticality, and resource
optimisation, collectively enabling precise and efficient anti-corrosion plans. Case studies on oil
and gas platforms validate the practical application of this methodology, demonstrating reduced
costs, lower risks associated with corrosion, and enhanced planning efficiency. Additionally, the
research opens pathways for future advancements, such as integrating IoT technologies for real-
time data collection and applying deep learning models to improve predictive accuracy. These
potential extensions aim to evolve the system into a more adaptable and powerful tool for industrial
maintenance, with applicability beyond offshore to other environments, including onshore facilities.

Keywords: offshore maintenance; corrosion prediction; maintenance optimisation; machine learning;
multi-criteria decision making; reliability centred maintenance

1. Introduction

Maintenance strategies are crucial in offshore activities, as they involve significant
environmental, social, and financial risks. In this sector, it is estimated that maintenance
costs alone account for 40% of total costs, with a large portion linked to inadequately
planned maintenance activities [1]. Consequently, given these factors and the nature of
the asset-intensive sector comprising hundreds of continuously operating equipment,
maintenance management is considered highly critical [2]. From the viewpoint of offshore
installations, corrosion is the primary factor impacting the longevity and reliability of
offshore assets, with 80% of the total maintenance costs in the oil and gas exploration
industry related to corrosion. Studies estimate that 20% to 30% of these costs could
be saved by adopting good corrosion management practices, including inspection and
prevention strategies [3]. Consequently, maintenance planning represents a crucial strategic
process within industrial plants, particularly for equipment requiring prolonged and
comprehensive inspections [4]. In this context, performing the right task at the right
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time with the right equipment is essential to ensure that the facility remains in a reliable
operational condition [2].

1.1. Research Gaps and Questions

For complex technical systems like offshore platforms, traditional maintenance man-
agement approaches such as Risk-Based Inspection (RBI) and Reliability-Centred Main-
tenance (RCM) have been fundamental in enhancing the effectiveness of inspection and
maintenance planning [5]. These methodologies provide structured frameworks for priori-
tising maintenance activities based on risk assessments and the equipment’s criticality [6].
However, their implementation often relies heavily on expert judgment and historical data,
which may not effectively capture the dynamic nature of corrosion progression.

Recent advancements in artificial intelligence (AI) have significantly transformed cor-
rosion prediction and assessment capabilities [7]. AI-based systems can process and analyse
vast inspection data [6], enabling more accurate predictions of corrosion progression pat-
terns [8]. These systems overcome traditional limitations by providing data-driven insights
for maintenance decision-making, reducing dependency on subjective assessments [9].
Emerging research indicates that combining RBI/RCM methodologies with AI-driven
predictive capabilities offers promising results in maintenance optimisation. For instance,
computational intelligence has been successfully applied to transformer maintenance [10],
and AI-enhanced RCM systems have significantly improved maintenance efficiency [11].
Comprehensive reviews of the evolution of power system maintenance suggest that this
integrated approach represents the future of maintenance strategies [12]. However, despite
these advances in the power sector, similar integrated approaches have not been adequately
explored or implemented in the oil and gas industry, particularly for offshore facilities [13].

Research has highlighted integrating advanced technologies to enhance decision sup-
port in infrastructure management. Digital twins, combining monitoring and simulation,
are proposed for risk management in underground gas storage [14] and lifecycle opti-
misation of civil infrastructure [15]. These advancements aim to improve infrastructure
management’s sustainability, safety, and efficiency [16]. However, research has not ade-
quately addressed the specific application of these advanced technologies in the context of
offshore platforms, particularly in corrosion maintenance and planning for anti-corrosive
painting [17]. Despite advances in managing onshore infrastructure, a significant gap
exists in integrating 3D CAD/CAE models with decision support systems for offshore
platforms [18]. This research gap emphasises the need to develop integrated technological
solutions that specifically address the challenges of maintenance and integrity management
on offshore platforms, combining the power of machine learning models and optimisation
algorithms tailored to this unique environment.

The current research presents a notable gap in addressing the specific application of
these advanced technologies in offshore platforms, particularly regarding maintenance
planning and the optimisation of anti-corrosive painting [19]. The growing demand for
more efficient and risk-based maintenance strategies [20], aimed at reducing the high costs
associated with corrosion [21] and improving the reliability of assets in this critical sector,
remains a pressing need [21]. Given this scenario, innovative solutions that optimise the
inspection and maintenance process in offshore installations, considering the particularities
and challenges of this sector, are needed. The Design Science Research (DSR) methodology
emerges as a promising approach to addressing this problem, focusing on designing and
developing artefacts that solve relevant and complex problems [22].

Given this complex scenario, this study aimed to answer the following research
question (RQ):

RQ: How can the DSR approach contribute to developing innovative solutions for
maintenance challenges in the offshore sector?
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1.2. Research Aims and Contributions

Considering this question, this research aimed to develop a technology to test an
integrated analysis and decision support environment based on a machine learning model
with computational tools to aggregate real and simulation data, aiming at the maintenance
and integrity of surface installations. To accomplish this overarching goal, the following
specific objectives (SO) were set.

SO1: Propose a decision support system based on 3D CAD/CAE and machine learning
models to optimise maintenance and painting planning on offshore platforms.

SO2: Assess the impact of optimisation strategies (person-hour/PH limits, cor-
rosion integrity, regulatory demand, and criticality) on generating painting plans for
offshore platforms.

By integrating the 3D CAD/CAE design model with simulation and inspection data,
computational mechanisms will be applied to improve maintenance and integrity planning
activities, generating a more predictive and less reactive maintenance plan.

This research is innovative in proposing an integrated approach to improving main-
tenance planning in offshore installations, focusing on integrity management through
anti-corrosive maintenance optimisation. Its originality lies in combining design, simula-
tion, instrumentation, and inspection data with computational mechanisms, applying the
DSR methodology to develop the prototype. The main contributions include filling gaps in
the literature on corrosion assessment models, developing prototypes as practical tools for
optimising painting planning, creating a machine learning model for predicting corrosion
progression, conducting case studies on real platforms, and generating knowledge about
factors influencing the criticality and progression of corrosion. These contributions offer
valuable insights for future studies and decision-making in the offshore sector, promoting
the development of more effective solutions to maintenance and integrity challenges.

This work is structured into six sections. Section 1 describes the context and the current
challenges in maintenance management and corrosion control in offshore installations,
establishing the theoretical foundation of the research. Section 2 presents a structured
literature review on offshore maintenance and asset management. Section 3 details the DSR
methodology adopted for developing the prototype and the specific tools and approaches
employed, such as CAD/CAE modelling and machine learning. Section 4 presents the
findings from case studies conducted on oil and gas platforms, highlighting the proposed
system’s benefits and limitations. Section 5 discusses the current literature’s findings,
exploring the model’s practical and scientific implications. Finally, Section 6 concludes the
article, summarising the contributions of the research and suggesting directions for future
investigations in the field of maintenance optimisation in offshore infrastructure.

2. Literature Review: Offshore Maintenance and Asset Management

A systematic search strategy was employed to structure the literature review, covering
relevant studies published in the last five years. The academic databases selected were
Web of Science (WoS) and Scopus due to their broad engineering and applied sciences
coverage. The keywords used in the search included “offshore maintenance”, “corrosion”,
“resource optimisation”, “structural integrity”, and “asset management”, ensuring an
accurate selection of works directly related to the topic of study. The selection process
for the studies involved a thorough analysis, including a review of the titles, abstracts,
and, where necessary, the full text of each identified article. Only studies addressing
relevant aspects of maintenance planning in offshore environments, corrosion management,
and resource optimisation methodologies were considered. This strategy allowed for a
solid foundation of references supporting this research’s arguments and methodological
approach, ensuring that the theoretical framework is aligned with the most recent and
pertinent developments in the field.
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2.1. Design Science Research for Developing Maintenance Solutions

DSR has emerged as a valuable methodology for developing innovative solutions
in various fields, including service design [23] and project scheduling [24]. It offers a
systematic approach to creating artefacts, methods, and models while bridging the gap
between research and practice [25]. DSR has been applied to complex problems such
as distribution system reconfiguration [26] and knowledge management systems [27].
These studies demonstrate the potential of DSR and related methodologies in addressing
real-world challenges across diverse domains.

In the context of maintenance for offshore facilities, integrating Design Science Re-
search (DSR) with artificial intelligence technologies has enabled the development of more
robust planning and optimisation systems [28]. Integrity management in marine envi-
ronments represents a challenge where DSR has demonstrated its value [29]. Current
research focuses on developing predictive models integrating multiple environmental and
operational variables [30]. A crucial aspect in the evolution of DSR has been its ability to
incorporate site-specific constraints and dynamic resource allocation [31]. The developed
models consider factors such as weather conditions, accessibility, and resource availability,
which are fundamental elements in the offshore context [32].

Several studies have investigated the factors influencing offshore outsourcing decisions
for application maintenance, identifying critical success factors such as cost, communication,
and project management [23]. Opportunistic maintenance has been proposed as a cost-
effective solution for offshore wind farms, introducing market-based opportunities [33].
Maintenance cost minimisation models for offshore wind farms have been reviewed, with
some strategies reducing annual costs by up to 23% [34]. Additionally, distributed agile
patterns have been developed to address the challenges in offshore development, offering
guidelines for practitioners adopting agile practices in distributed environments [35]. The
integration of these variables has allowed for the generation of solutions that are more
closely aligned with the actual needs of the industry [36].

Currently, research has expanded the scope of DSR by incorporating criticality anal-
ysis and risk assessment [37]. The models consider technical aspects and economic and
environmental factors in decision-making [38]. This holistic approach has resulted in more
effective and sustainable maintenance strategies. The current trend in developing solutions
through DSR points towards creating more integrated and adaptive systems [39]. Recent
research emphasises the importance of combining different technologies and methodolo-
gies to address the complexity of offshore maintenance [40]. Incorporating multi-criteria
optimisation techniques and real-time data analysis redefines traditional maintenance
paradigms [41].

This literature review highlights the importance of a holistic and integrated approach
to offshore asset management. Combining machine learning techniques, optimisation meth-
ods, and digital twin technologies [42] promises to transform maintenance and integrity
management in offshore facilities. However, it also underscores the need for continued
research to address the specific challenges of these complex and dynamic environments.

2.2. Decision Support Systems for Offshore Maintenance and Asset Management

ML techniques are increasingly applied to asset management and predictive mainte-
nance in various industries, including power distribution networks [43] and railways [44].
These techniques improve reliability, availability, maintainability, and safety [45]. ML
models can enhance decision-making processes, predict the remaining useful life, and
detect faults in real time [46]. However, challenges remain in data management, the
models’ interpretability, and performance evaluation [44]. Despite these challenges, ma-
chine learning-based predictive maintenance offers substantial potential to boost efficiency,
minimise downtime, and promote sustainability in various industries [47].

Recent research on offshore O&M optimisation has focused on various approaches to
address challenges in the maritime and renewable energy sectors. Digital twin technology
has been investigated as a means to enhance O&M efficiency and reduce costs in offshore
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wind farms [48]. Multi-criteria decision-making (MCDM) methods, such as spherical fuzzy
AHP and WASPAS, have been applied to optimise the selection of offshore wind power
station sites [49]. Researchers have also investigated condition monitoring, fault diagnosis,
and prognosis techniques to enhance maintenance strategies [50]. The integration of MCDM
methodologies with quality function deployment has been proposed to improve decision-
making processes in offshore renewable energies [51]. These advancements aim to minimise
maintenance costs, increase reliability [52], and ensure the sustainable development of
offshore wind power systems [53].

Research on offshore maintenance and asset management highlights the complexity of
planning and optimising maintenance strategies for offshore assets, particularly wind farms.
Decision support systems incorporating machine learning, multi-criteria decision-making,
and linear programming are being developed to address the challenges in resource alloca-
tion, cost minimisation, and condition monitoring [54]. These systems aim to improve fault
diagnosis, prognosis, and maintenance efficiency [55]. The literature reveals a clear trend
toward more data-driven, intelligent, and holistic approaches to maintenance planning
and optimisation [56]. This aligns closely with the objectives of the proposed prototype,
which aims to integrate multiple data sources and advanced analytical techniques to sup-
port more effective decision-making in offshore painting planning. The proposed study,
with its comprehensive approach integrating 3D modelling, machine learning, and multi-
criteria optimisation, has the potential to address some of these challenges and contribute
significantly to the field.

3. Materials and Methods

The choice of Design Science Research (DSR) as the methodology for this study was
based on its unique ability to integrate scientific rigour with practical relevance, which
is especially crucial in developing complex socio-technical systems for offshore mainte-
nance [34]. Unlike other iterative methodologies such as Agile [57] or Lean [58], which
primarily focus on process efficiency, DSR provides a structured framework that facilitates
both the generation of theoretical knowledge and the creation of implementable practical
solutions [59]. Other methodologies, such as Waterfall [60] and the V-Model [61], which
are common in software development, do not offer adaptability or focus on the creation
of specific artefacts that characterise DSR [62]. Waterfall follows a rigid sequence without
early iteration, limiting its effectiveness in systems requiring constant adjustments [63].
The V-Model, although incorporating validation at each stage, is insufficient in dynamic
environments. DSR, on the other hand, allows for constant feedback among the design, de-
velopment, and evaluation stages, fostering technical accuracy and generating knowledge
relevant to the specific context of use [62].

As illustrated in Figure 1, the research process is structured around the principles of
DSR, integrating various techniques and analytical tools to develop and validate the proto-
type. This framework not only guides the research process but also directly contributes
to creating a portfolio that comprehensively meets the objectives of the investigation. The
portfolio structure is based on several key elements that form a cohesive and thorough
approach. Each of these elements addresses a crucial aspect of offshore maintenance,
providing a solid foundation for developing comprehensive solutions. The research philos-
ophy adopted is based on pragmatism [64], which combines qualitative and quantitative
techniques to address the complex problem of offshore maintenance planning. Pragmatism
allows for methodological flexibility, which is essential for integrating predictive models,
resource optimisation, and condition analysis into a practical decision-support tool [65].
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Figure 1. Framework and portfolio aligned with the research objectives for offshore mainte-
nance optimisation.

Firstly, the fundamental components of the framework (predictive models, regulatory
demand, and criticality indices) represent specific research projects within the portfolio [66].
A rigorous methodology is a central pillar of the portfolio [67]. The inclusion of problem
identification, a literature review, and DSR ensures that each component is grounded in
a solid methodological base [68]. This systematic approach guarantees the validity and
reliability of the results obtained in each research phase.

The research was applied in its nature [17] and aimed to develop and validate an
artefact that addresses specific needs of offshore maintenance management. Additionally,
was is a descriptive–explanatory study [69], exploring and describing the characteristics
of offshore maintenance while also seeking to explain the relationships among corrosion
variables. This combination allowed for a detailed understanding of the problem and
facilitated the creation of practical and adaptive solutions.

The integration and synthesis of the individual components are materialised in the
development of the prototype [17]. This aspect of the portfolio demonstrates how the
individual elements combine to create a holistic solution [70]. The prototype represents the
culmination of the research efforts, integrating the various aspects of offshore maintenance
into a cohesive and functional tool.

Validation and practical application are crucial aspects of the prototype [71]. The
case studies and validation in a real-world context provide empirical evidence of the
effectiveness of the proposed solutions [72]. This approach ensures that the solutions
developed are theoretically sound and practically applicable in real offshore environments.
The contribution to knowledge is reflected in the triangulation of results and the practical
and theoretical implications [73]. These elements ensure that the prototype presents results
and provides significant insights into offshore maintenance [74]. This approach guarantees
that the research has a lasting impact on theory and practice.

The decision to conduct focus groups was based on the need to gather various perspec-
tives and experiences from specialists in offshore maintenance planning and painting [17].
The exploratory and confirmatory focus groups provided detailed feedback at the pro-
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totype’s development stages. These were conducted in multiple phases across several
meetings and workshops, with a longitudinal approach and continuous improvement
through iterations in each phase. This included eight focus groups and workshops for data
collection and prototype validation. A convenience sampling method was used, focusing
on key specialists in the offshore maintenance area, specifically painting planners and
maintenance managers, participating in groups of 2 to 3 people per session, totalling eight
work sessions. However, the sample is small, which poses a limitation in generalising the
results. The analysis methods included qualitative methods, including focus groups and
semi-structured interviews, to gather and confirm the maintenance criteria and prototype
decisions. Additionally, quantitative analysis techniques were applied to evaluate and
adjust the model using key indicators through dashboards. The main methodological
limitation lies in the small sample size and the reliance on insights from a limited number
of experts. This could restrict the generalisability of the findings to other platforms or
different offshore contexts.

Finally, the prototype’s interdisciplinary nature is evidenced in the inclusion of MCDM
methods, artificial intelligence applications, and optimisation models [75]. This approach
reflects the research’s interdisciplinary nature, combining perspectives from multiple fields
to address the complex challenges of offshore maintenance [76]. Integrating these diverse
perspectives allows for a deeper understanding and more robust solutions to the sector’s
multifaceted problems. This study employed a DSR approach to develop and evaluate
APM, an innovative decision support system prototype for maintenance planning and
integrity management in offshore facilities. The DSR process comprises six main stages:
problem identification and motivation, definition of the solution’s objectives, artefact
design and development, demonstration, evaluation, and communication, as shown in
Figure 2 [23]. This iterative process allows continuous refinement of the developed artefact
based on feedback obtained at each stage [22].
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The problem addressed in this study was the need to improve maintenance and
integrity planning activities in offshore installations, focusing on external corrosion. This
issue is relevant due to the high costs and risks associated with inadequate maintenance in
this context [77]. Recent studies have highlighted the importance of effective maintenance
strategies to guarantee the reliability and safety of offshore operations [49]. The APM
prototype was developed as an integrated solution composed of six interconnected modules
(Table 1).

Table 1. Modules and descriptions of the APM prototype.

# Module Description

1 Scope (problem) definition This module sets the initial parameters of the maintenance
project, laying the foundation for effective planning.

2 Degradation progress prediction
This module employs machine learning models, specifically the
Random Forest algorithm, to predict corrosion progression
based on environmental and operational factors.

3 Exploratory analysis of the current situation

Provides a detailed view of the platform’s pre-maintenance
condition, using KPIs and graphical visualisations to facilitate
understanding of the current situation and the projected
scenario if no maintenance actions are taken.

4 Objective definition (strategies)

Allows for the selection of various optimisation strategies, each
focused on different critical aspects of maintenance:

• Maximising the amount of degradation addressed;
• Minimising the resources (PH) used to reach a specified

degradation target level;
• Maximising the criticality of intervened systems;
• Maximising compliance with maintenance service

requirements (regulatory demand).

5 Maintenance plan generation and 2D graphic analysis Produces optimised plans and provides visualisations to
facilitate understanding and decision-making.

6 3D visualisation of the maintenance plan Integrates the results with 3D CAD/CAE models for a more
comprehensive spatial representation.

The proposed solution combines real and simulated data to generate a more predictive
and less reactive maintenance plan. It should also enable the consolidation of the scope
of the anti-corrosive painting for use in production plants. Combining data from vari-
ous sources and utilising advanced analytical methods has shown promise in enhancing
maintenance decision-making [78].

At this stage, the artefact (the integrated analysis and decision support environment)
was designed and developed according to the defined objectives. Three-dimensional
modelling techniques, data integration from multiple sources, and the application of com-
putational mechanisms generated maintenance recommendations [42]. Three-dimensional
modelling has been successfully employed to represent and analyse complex systems such
as offshore installations [79].

Moreover, integrating data from different sources, such as inspection, condition history,
engineering characteristics, and simulations, was essential to gain comprehensive insights
into the equipment’s conditions [80]. External corrosion data were collected through
systematic inspections, and the integrated analysis and decision-support environment
was applied to generate optimised maintenance plans based on risk assessment criteria.
Demonstration in real offshore contexts validated the artefact’s efficacy and applicability in
industrial settings [81].

The artefact was evaluated on the basis of the results obtained in the case studies.
Performance indicators such as resource allocation efficiency, the effectiveness of damage
reduction, improvements in regulatory compliance, and coverage of critical systems were
analysed. Feedback from offshore maintenance experts was also collected to refine the



Appl. Sci. 2024, 14, 10902 9 of 26

artefact. Rigorous evaluation is crucial to verify whether the artefact met the proposed ob-
jectives and generated value for stakeholders [82]. The projects’ results are communicated
through scientific publications, conference presentations, and offshore industry workshops.
This allows for the dissemination of the generated knowledge and the obtaining of addi-
tional feedback to improve the developed artefact. Effective communication is essential to
promote the adoption and continuous evolution of the artefact [23].

3.1. Integration of Components in the APM Prototype

Integrating modules in the APM prototype represents a complex and multifaceted
process involving combining various techniques and approaches to develop an effective
decision support tool in painting planning for offshore platforms. This process can be
broken down into five primary stages: variable survey, code structuring, definition of the
data flow, implementation of optimisation models, and integration of the components in
the graphical interface. The implementation leverages several specialised Python libraries:
Pandas [83] for data manipulation and analysis of inspection and maintenance records,
PuLP [84] for implementing the linear programming optimisation models that drive the
different maintenance strategies, sci-kit-learn [85] for advanced analytics and corrosion
prediction models, and PySimpleGUI [86] for creating an intuitive user interface. Each
strategy is formulated as a linear programming problem with objective functions, the direc-
tion of optimisation, decision variables, and appropriate constraints [87]. This integrated
approach efficiently handles complex maintenance planning scenarios while providing an
accessible interface for maintenance engineers and planners.

The variable survey constitutes a crucial stage for problem modelling, which involves
identifying, classifying, and collecting data from competent parties. At this stage, it is
fundamental to understand the variables’ limits and their relationships and to verify their
dependence or independence [88]. Another critical aspect of integration is the definition
of the data flow, which involves the import, transformation, and treatment of inspection
and regulatory demand data, as well as the calculation of key indicators such as corrosion
progress and criticality.

Implementing optimisation models involved developing different strategies (PH limit,
corrosion integrity, regulatory demand, and criticality) that met the specific needs of
painting planning. Finally, the integration of modules in the graphical interface was
carried out by developing an intuitive and easy-to-use interface, which guides the user
through the stages of data input, exploratory analysis, simulation configuration, and results
evaluation, as shown in Figure 3. The optimisation models and the results in visualisation
dashboards are seamlessly integrated into the interface, allowing users to interact with the
prototype’s functionalities.

The system’s structure is designed to capture and process inspection data in various
formats, integrating relevant information on corrosion levels, environmental conditions,
and regulatory constraints. These data are entered into the system through an interface
that allows for the uploading and validating of inspection sheets and specific conditions for
each platform, ensuring that the analysis starts from a standardised and consistent basis.
Subsequently, the system processes this data using predictive models and multi-criteria
analysis techniques, generating visualisations and key metrics, such as the corrosion index
and regulatory demands, to facilitate decision-making for maintenance planning. The
optimisation model in this study managed each maintenance strategy individually as a
single-objective process, allowing each strategy to be executed independently according to
the established priority. The system does not automatically perform the selection of the
painting planning strategy; rather, it depends on managerial decision-making, where the
trade-off among objectives, such as the intervention time and attention to high-criticality
areas, is evaluated. In this context, each strategy is executed according to the selected
objective function, such as minimising person-hours or prioritising areas requiring more
significant corrosion intervention. This approach allows the management to externally
decide which strategy best fits each situation’s specific objectives and regulatory demands.
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Thus, the model optimises resources according to the chosen strategy, providing flexibility
and managerial control over resource prioritisation and ensuring an efficient maintenance
plan tailored to the operational conditions.
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3.2. Case Studies Conducted

Case studies play a fundamental role in validating and demonstrating the applicability
of new methodologies and tools developed in scientific research [89]. In this context, case
studies were conducted that supported the development of the APM prototype and evalu-
ated the effectiveness of the proposed solutions against the real challenges of maintenance
and painting planning on offshore platforms.

The case studies selected for this analysis employed specific selection criteria to ensure
the relevance and applicability of the results in offshore contexts. The main parameters
taken into account involve corrosion levels, categorised by their severity and specific loca-
tion within the structure, along with environmental factors like humidity and temperature,
which directly impact corrosion progression. These parameters were chosen through a
preliminary analysis that identified the variables with the most significant impact on pre-
dictive maintenance and the structural integrity of offshore installations. Additionally,
consistent parameters were used for each variable in the analysis, such as the number of
personnel assigned per team and the duration of person-hours. In this case, each team
had a specific number of painters and a set duration, ensuring that the planning criteria
remained consistent across all simulations. Some criteria were used for specific advances,
while others were applied according to the context of each study, thereby ensuring a robust
and coherent application of the results in real conditions.

The case study on the development of APM aimed to validate, test, and demonstrate
the applicability of the methodologies and models developed in each research using real-
world contexts of offshore oil platforms. A real-world major platform scenario was used to
compare the painting plans generated by each strategy (PH limit, corrosion integrity, regu-
latory demand, and criticality), evaluating the results regarding the remaining corrosion,
pending regulatory demand, the criticality of selected systems, and the required resources.
Optimising maintenance planning through considering multiple criteria and constraints is
a complex problem that demands advanced decision-support tools [90].

Throughout these stages, various data sources were used: semi-structured interviews
(with the interview tool updated according to emerging data), observations (e.g., shipments,
participation in meetings), and documentary sources (e.g., documents from a large company
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in the O&G industry). Several methods were employed to triangulate data from different
sources to achieve greater data reliability and a have solid foundation for the constructs
and propositions.

A mix of exploratory and confirmatory focus groups was employed to assess the
prototype’s design. The exploratory focus groups gathered feedback for design changes
and the artefact’s refinement, serving as a formative evaluation procedure for iterative
design improvement. Additionally, a confirmatory focus group was applied to demonstrate
the utility of the artefact’s design in the application domain. To this end, eight focus group
workshops were conducted with painting planning specialists and maintenance managers
(two to three participants per workshop, with an average duration of 60 min).

4. Results

The APM prototype represents a significant advancement in integrated maintenance
management for offshore platforms, addressing needs comprehensively from conceptual
design to operation. This innovative system merges human resource management with
technical data, benefiting companies and society. The information regarding the painting
area in the system comes from the 3D CAD/CAE tool. This tool uses an identification
system that includes the platform, module, sector, and specific system. This detailed
categorisation allows for precise planning tailored to the particular needs of each platform
component (Figure 4).
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Figure 4 shows the hierarchical structure of the offshore platform, broken down
into modules, sectors, and systems to facilitate the planning process for anti-corrosive
maintenance. Each module represents a large section of the platform, the sector is a module
subdivision, and the system corresponds to specific components requiring maintenance.
The study compared the painting plans generated by each of the four APM strategies for
the platform using an inspection spreadsheet containing field-acquired corrosion data from
inspectors. The input data for each strategy were identical to maintain comparability. To
import the inspection spreadsheets, we selected the “convert inspection spreadsheet” option
and inserted the path to the spreadsheet file (Figure 5). Upon selection of the “browse”
option, APM validates the input data, and if everything is correct, it automatically infers
the corrosion’s evolution and proceeds to the next exploratory visualisation screen. This
machine learning-based analysis uses historical inspection data to forecast how corrosion
will develop over time if no maintenance interventions are performed.
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Figure 5. Home screen of APM: inspection spreadsheet input.

Figure 5 illustrates the data loading interface of the APM system, including a selection
field for inspection sheets containing information on corrosion levels and specific climatic
conditions for each location. “UN” refers to the specific unit where the study is conducted,
“Platform” indicates the platform’s name, “Inspection Year” shows the year of inspection,
and “Corrosion Limit” is the corrosion target expected to be achieved during maintenance.
Each interface element is clearly labelled to guide the user through uploading and convert-
ing the inspection data required for analysis. Before the simulation strategies are configured,
the user can view the platform’s condition, based on four indicators: corrosion, painting
area integrity, criticality, and regulatory demand (RD). The corrosion indicator presents both
the current condition and the AI-predicted future state of the platform, allowing users to
visualise how corrosion would progress if no maintenance interventions were implemented.
This comparative view helps users understand the potential deterioration trajectory and the
urgency of maintenance needs. These indicators provide the user with a general overview
(entire platform) and a detailed view (stratification by modules/systems), guiding them in
selecting the most appropriate strategy. Additionally, they can clearly understand the scale
of resources that need mobilisation to generate an effective painting plan.

Figure 6 provides an exploratory visualisation of the key asset indicators, such as
the corrosion index, irreversibility, criticality, and regulatory demands. “Current Average
Corrosion” represents the current level of corrosion on the platform, “Irrevest Index”
indicates irreversibility, “Criticality Index” shows the criticality of the components, and
“RDs Index” reflects the regulatory demands. This information presents the initial condition
of the platform before implementing the maintenance and planning. Detailed explanations
of each index and its role in the analysis allow the user to interpret the asset’s condition
clearly before configuring a maintenance strategy.
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Two teams were used for the other strategies: Team 1 and Team 2. For Team 1, 84 slots
were considered, with a daily availability of 8.5 h for 100 campaign days, totalling 71,400 h.
For Team 2, three slots were considered, with a daily availability of 7 h for 365 campaign
days, totalling 7665 h. The total PH resulting from the sum of the two teams was 79,065.
Additionally, the established target was 3% for the average remaining corrosion of the
platform. Proximity consideration is central to all strategies. When this option is selected,
APM will calculate the optimal placement of waterjet centres on the platform to generate
the most efficient painting plan according to the chosen strategy. For instance, in the
corrosion-targeted strategy, the waterjet centres were located near areas with the highest
percentage of corrosion. Regarding the regulatory demand strategy (RDS), the waterjet
centres were positioned in regions with the highest RD index.

Once the optimal waterjet centres are selected, the program will only consider systems
within their operational radius during optimisation, preventing the generation of painting
plans that include systems outside the waterjets’ operational area. It is important to note
that the waterjet centres are assigned to each team, and allocating the services ensures
that one team is not selected for tasks within another team’s operational area. The user is
responsible for defining the number of waterjet centres assigned to each team; that option
was not considered in this case (Figure 7).
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Figure 7. Simulation configuration screen.

The next stage aims to present the user with a general overview of the painting plan
generated in the simulation and compare the platform’s condition before and after the
execution of the suggested plan. This allows the user to assess whether the painting plan
meets their needs and to return to modify the simulation’s settings if necessary (Figure 8).

The resources dashboard (Figure 8) presents two visualisations: the distribution of the
total painting area by the team about the modules and the total forecasted person-hours
(ph) for each team in the respective modules. This visualisation provides an overview of the
proposed painting plan, allowing the user to understand where the most significant efforts
are concentrated and how the workforce will be distributed across the platform’s modules.
The “Simulation Indices” table summarises this information, showing each team’s total
painting area and forecasted person-hours. It also displays the hydro blasting centres
selected for each team if the proximity option is selected.

Once the user has generated the simulation, evaluated its main results, and approved
it, the tool proceeds to develop the detailed painting plan. The painting plan consists
of a table that presents all the calculations performed at the various stages of the tool’s
simulation. APM allows the painting plan to be saved as an Excel file (.xlsx) to facilitate
data manipulation, as highlighted in Figure 9. The various columns that make up the
painting plan are detailed below.
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The painting plan for scheduling maintenance on offshore platforms is divided into
three main sections: input data, pre-painting data, and results.

• Input data: These include system identifiers (ID, module, sector), painting area, pro-
ductivity, corrosion levels, environmental conditions (temperature, humidity, wind),
and regulatory demands (RDs). It comprehensively overviews the platform’s initial
condition and maintenance requirements.

• Pre-painting data: This section calculates the current and projected corroded areas,
estimates corrosion progression using machine learning, determines the required
person-hours, assesses the criticality indices, and determines maintenance priorities.
It uses the input data to generate projections and prioritise maintenance tasks.

• Results: This section details the optimised painting plan, including waterjet centres’
locations, assigned teams, areas to be painted, person-hours used, post-maintenance
corrosion status, and remaining RDs. It also shows the anticipated impact of the
proposed maintenance plan.
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Figure 9. Visualisation of the painting plan.

APM integrates these data to generate optimised maintenance plans, enabling efficient
resource management and effective prioritisation of maintenance tasks on offshore plat-
forms. After the maintenance plan has been finalised, APM can export the results directly
to a 3D CAD/CAE platform model, providing a comprehensive spatial visualisation of
the planned maintenance activities (Figure 10). This 3D visualisation capability allows
maintenance teams to understand the spatial distribution of the planned interventions
better, optimise work sequences based on physical proximity, and identify potential access
or logistical challenges. Areas selected for maintenance are highlighted in the 3D model
using a color-coded system with two views: a corrosion distribution map (left) and a paint-
ing plan (right). In the painting plan view, the blue-coloured areas highlight the specific
sections selected for maintenance intervention, allowing for targeted painting work based
on the identified corrosion patterns.

Comparison of the Results

APM is a tool that offers the user four distinct strategies for formulating a painting
plan tailored to meet business needs according to the assumptions of each strategy. In this
context, the painting plans generated by these strategies were compared: the PH limit,
corrosion integrity, regulatory demand, and criticality. The aim was to give the user a
general overview of each strategy’s performance and the platform’s final condition across
specific metrics. The figures below (Figures 11 and 12) compare the strategies according to
the remaining value, i.e., they attest, respectively, to the value of the average corrosion and
the regulatory demand index resulting after optimisation, considering each strategy.
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Figure 11. Remaining average corrosion (comparison of strategies).

The performances of the strategies regarding the remaining average corrosion are
very similar due to the restricted corrosion integrity assigned to each of them. The PH
strategy is the only one that generates a lower remaining percentage, as it is not assigned
a corrosion value, since the target to be achieved is the decision variable of this model.
Notably, the regulatory demand strategy with the “disregard target” option produces a
higher percentage of remaining corrosion because it focuses solely on reducing regulatory
demands without considering any corrosion targets. This single-objective focus explains
why this strategy, while effective at addressing regulatory requirements, may result in
suboptimal corrosion control outcomes compared with other strategies that explicitly
consider corrosion targets in their optimisation criteria.

The results showed that most strategies achieve similar remaining average corrosion
levels because they are constrained by the same corrosion integrity target, except the PH
strategy. When analysing the remaining regulatory demand index, the regulatory demand
strategy performs significantly better than other strategies, as it specifically optimises for
this objective. The other strategies show limited impact on reducing the regulatory demand
index because they do not explicitly consider this factor in their optimisation criteria;
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instead, they focus on their respective primary objectives (corrosion control, resource
utilisation, or the system’s criticality).

Appl. Sci. 2024, 14, x FOR PEER REVIEW 18 of 27 
 

higher percentage of remaining corrosion because it focuses solely on reducing regulatory 

demands without considering any corrosion targets. This single-objective focus explains 

why this strategy, while effective at addressing regulatory requirements, may result in 

suboptimal corrosion control outcomes compared with other strategies that explicitly con-

sider corrosion targets in their optimisation criteria. 

 

Figure 12. Remaining regulatory demand index (comparison of strategies). 

The results showed that most strategies achieve similar remaining average corrosion 

levels because they are constrained by the same corrosion integrity target, except the PH 

strategy. When analysing the remaining regulatory demand index, the regulatory de-

mand strategy performs significantly better than other strategies, as it specifically opti-

mises for this objective. The other strategies show limited impact on reducing the regula-

tory demand index because they do not explicitly consider this factor in their optimisation 

criteria; instead, they focus on their respective primary objectives (corrosion control, re-

source utilisation, or the system’s criticality). 

Figure 13 compares how different strategies address high-criticality systems through 

their maintenance plans. Out of 472 high-criticality systems identified before painting, the 

criticality strategy selects 308 systems for maintenance, demonstrating the highest cover-

age of critical systems among all strategies. This superior performance is expected, since 

it is the only strategy explicitly incorporating criticality information in its optimisation 

criteria. Notably, the regulatory demand strategy with disregarded targets shows signifi-

cantly lower coverage, including only 144 high-criticality systems, focusing solely on reg-

ulatory compliance without considering the system’s criticality. These results demon-

strate the effectiveness of the criticality strategy in prioritising maintenance for systems 

that are most critical to platform operations. 

Figure 12. Remaining regulatory demand index (comparison of strategies).

Figure 13 compares how different strategies address high-criticality systems through
their maintenance plans. Out of 472 high-criticality systems identified before painting, the
criticality strategy selects 308 systems for maintenance, demonstrating the highest coverage
of critical systems among all strategies. This superior performance is expected, since it is
the only strategy explicitly incorporating criticality information in its optimisation criteria.
Notably, the regulatory demand strategy with disregarded targets shows significantly
lower coverage, including only 144 high-criticality systems, focusing solely on regulatory
compliance without considering the system’s criticality. These results demonstrate the
effectiveness of the criticality strategy in prioritising maintenance for systems that are most
critical to platform operations.
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Therefore, each strategy should be used to achieve specific objectives. While most
strategies achieve similar levels of corrosion mitigation, they differ significantly in resource
utilisation. Notably, the target strategy is efficient, achieving the desired corrosion con-
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trol objectives while consuming considerably fewer person-hours than other approaches.
To support this analysis, a detailed comparison of the different maintenance planning
strategies implemented in the APM system is presented, focusing specifically on the PH
limit (Figure 14). This analysis is crucial for understanding how each approach utilises the
available resources and aligns with the maintenance objectives, particularly highlighting
the trade-offs between resource consumption and maintenance outcomes across differ-
ent strategies.
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The analysis of resource utilisation reveals significant trade-offs between different
maintenance strategies. The PH strategy uses nearly 100% of available person-hours and
achieves the highest corrosion reduction, but it does not optimise for regulatory demands or
system criticality. In contrast, the target strategy demonstrates high efficiency by achieving
the desired corrosion levels while consuming significantly fewer PH, though it also does
not account for regulatory demands or criticality factors. The criticality and regulatory
demand strategies utilise almost all the available person-hours while meeting the corrosion
target. Still, each prioritises different objectives—the former focuses on critical systems
while the latter addresses regulatory compliance requirements. These results demonstrate
that APM can effectively adjust the resource allocation according to the strategic priorities.
This adaptability allows maintenance managers to choose the strategy that best aligns
with their particular requirements: whether to prioritise maximum corrosion reduction
(the PH strategy), resource efficiency (the target strategy), critical system maintenance (the
criticality strategy), or regulatory compliance (the regulatory demand strategy). The choice
ultimately depends on the platform’s current priorities and constraints.

5. Discussion

The triangulation of results obtained from the different case studies in this research
allows for a more comprehensive and well-grounded view of the APM prototype’s con-
tributions to maintenance and painting planning in offshore platforms. By combining
evidence generated through different methods, data sources, and theoretical perspectives,
triangulation strengthens the credibility and robustness of the conclusions, increasing
confidence in the effectiveness of the developed tool [91]. This approach provides more
precise control over critical areas for structural integrity, demonstrating that the model
addresses the regulatory compliance needs, optimises resources, and improves strategic
planning in high-demand environments.

One of the triangulation strategies applied was methodological triangulation, which
compared the results obtained through different approaches, such as evaluating the per-
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formance of the machine learning model for predicting corrosion progression, using the
regulatory demand index and the criticality index in real-world contexts, and analysing
the painting plans generated by APM, considering different optimisation strategies. The
convergence of positive results obtained from these different methodologies reinforces
the validity and usefulness of APM in supporting maintenance and painting planning for
offshore platforms [82].

These findings are consistent with previous studies on predictive maintenance and
asset management [92], highlighting the importance of optimised, multifactorial planning
for operational sustainability in hostile environments [71]. Incorporating machine learning
and multi-criteria optimisation in APM goes beyond traditional approaches, aligning with
Reliability-Centred Maintenance (RCM) theories that emphasise the control of critical
variables such as corrosion in strategic assets [6].

Another strategy employed was data triangulation, which compared information col-
lected from various sources, such as inspection histories, regulatory demand spreadsheets,
criticality assessments of the systems, and feedback from APM users. The consistency
of the insights generated from these multiple data sources increases the reliability of the
conclusions regarding the prototype’s effectiveness [93]. For example, the triangulation
of the case study results demonstrates that integrating corrosion progression prediction
models, the regulatory demand index, and the criticality index in APM allows for opti-
mised painting plans, considering multiple relevant criteria for offshore assets’ integrity
management. Figure 15 compares the different maintenance strategies for the painted areas.
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The comparison of maintenance strategies reveals compelling patterns in resource
allocation and area coverage for offshore installation maintenance. The criticality strategy
emerges as the most comprehensive, prioritising the most vulnerable and vital zones for
structural integrity, demonstrating its effectiveness in addressing critical systems despite
high resource demands. Closely following that is the PH strategy, showing strong optimi-
sation of the available labour resources while achieving significant reductions in corrosion
without specifically addressing the regulatory demands or the system’s criticality. In con-
trast, the target strategy presents an intriguing efficiency profile, achieving the necessary
maintenance objectives with notably lower resource consumption. This suggests a highly
optimised approach that meets the designated corrosion control targets without exhausting
the available resources. The regulatory demand strategy reflects a focused approach to the
requirements of compliance, though this coverage reduces to 10,146 m2 when disregarding
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specific targets. These variations in the painted area reflect how different priorities and
approaches in maintenance management can lead to diverse resource allocation strategies,
each adapted to particular preservation and operational efficiency objectives.

Theoretical triangulation was also applied, interpreting the case study results through
different conceptual perspectives, such as RCM, asset management, MCDM, and DSR theo-
ries. APM’s ability to adhere to the principles and assumptions of these diverse theories,
along with its integration of AI models to improve the accuracy and efficiency of corro-
sion prediction [7], reinforces its conceptual foundation and relevance in the application
domain. Furthermore, the triangulation of positive feedback from APM users (collected
through interviews, focus groups, and surveys) with the objective results of the case studies
strengthens the practical utility and applicability of the prototype, indicating its potential
to deliver real value to offshore maintenance and painting teams [94]. This triangulation of
subjective perceptions with empirical evidence enhances the external validity and trans-
ferability of the research findings, underscoring the contribution of AI to informed and
efficient decision-making in offshore maintenance environments.

The choice of the DSR methodology for the creation of APM confirms its relevance in
complex and dynamic scenarios such as offshore platforms, where flexibility and adapt-
ability are essential. Studies in DSR [24] highlight that this approach allows continuous
iteration and real-time adjustments, reinforcing the value of APM as an adaptive and
continuously improving system for maintenance planning. The compatibility of APM
with theories such as RCM and MCDM provides a robust, multi-dimensional conceptual
framework, emphasising its potential for application in other industrial sectors [51].

Finally, researcher triangulation was also employed, involving different team members
in analysing and interpreting the case study results, seeking for a consensus and diver-
gences in their perceptions. The agreement among multiple investigators’ assessments
of APM’s effectiveness increases the objectivity and impartiality of the conclusions. By
integrating evidence from different sources, methods, and theoretical perspectives, trian-
gulation strengthens the validity and relevance of the findings, demonstrating that the
developed prototype is an effective and innovative tool to support maintenance and paint-
ing planning on offshore platforms. It overcomes the limitations of traditional methods
and creates tangible value for organisations in the sector.

The applicability of the APM system in various offshore environmental contexts rep-
resents a consideration for its global implementation. Although the case studies focus
on specific platforms, the system shows potential for adaptation to different marine envi-
ronmental conditions, ranging from the Arctic to tropical zones, each with its particular
maintenance and corrosion challenges. Arctic environments introduce variables such as
freeze–thaw cycles and sea ice formation [95], while tropical zones present challenges
related to high humidity and intense UV radiation exposure [71]. Temperate environments,
in turn, require consideration of significant seasonal variations [96]. The system’s adapt-
ability is implemented through environmental adjustment modules, correction factors for
the corrosion rates, and modifications of the optimisation algorithm according to each
location’s specific conditions. Nonetheless, when changing the context, the algorithm
must be retrained with new environment-specific data, which does not affect the system’s
structure but incorporates additional variables to ensure the accuracy of predictions and
the effectiveness of the generated maintenance plans. This flexibility enhances the global
utility of the system as an offshore maintenance management tool, enabling its effective im-
plementation across diverse marine environmental conditions and improving the accuracy
of predictions and the effectiveness of the generated maintenance plans.

6. Conclusions

This study has effectively addressed the main research question through the systematic
application of DSR. The iterative DSR process, which ranged from problem identification
to evaluation and communication of the artefact, enabled a comprehensive approach to the
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specific challenges of offshore maintenance, resulting in a robust system adaptable to the
sector’s needs.

The research fulfilled SO1 through the development of the APM prototype. This tool
integrates 3D models with advanced computational tools and incorporates multiple func-
tional modules that address various aspects of maintenance planning. SO2 was achieved
through the triangulation of the case study results, enabling an evaluation of the impact of
different optimisation strategies on the generation of painting plans and providing valuable
insights into the effectiveness of each approach.

Integrating artificial intelligence techniques, specifically machine learning models
for corrosion progression prediction, has proven crucial in enhancing the accuracy and
efficiency of maintenance planning. This data-driven approach optimises resources and
contributes significantly to environmental sustainability by minimising waste and extend-
ing the lifespan of offshore structures. APM’s ability to process and analyse large volumes
of historical data enables more informed and proactive decision-making, fundamentally
transforming maintenance management in offshore environments.

The APM prototype represents a significant advancement in the digitalisation of main-
tenance project management, offering a human-centred approach that balances technical,
regulatory, and environmental demands. Integrating AI in the decision-making process
allows for more accurate predictions of asset degradation, facilitating timely preventive
interventions; dynamic optimisation of maintenance plans in response to changing condi-
tions; the analysis of complex scenarios by considering multiple variables simultaneously;
and continuous improvements in maintenance strategies through machine learning.

The methodology and framework developed in this study offer significant contribu-
tions that can be generalised and replicated in developing other integrity management
systems. In particular, integrating 3D models for visualisation and planning presents an
innovative paradigm that could be extended to various types of critical infrastructure. The
modular structure of APM provides an adaptable framework for other asset management
contexts, demonstrating how AI can customise solutions for different industrial sectors.

The validation process through case studies and focus groups, as well as visualisation
of the results and strategy comparison techniques, offer robust methodologies that can be
replicated in developing and evaluating other decision-support systems in maintenance.

However, this study presents some limitations. The system’s applicability has primar-
ily been tested in the context of offshore platforms, and its effectiveness in other industrial
settings has yet to be evaluated. Furthermore, reliance on high-quality historical data
for training machine learning models may limit its implementation in scenarios with
insufficient or unreliable data.

For future work, exploring several areas that would expand the proposed system’s
functionality and applicability is recommended. One key improvement would be the
integration of Internet of Things (IoT) technologies to enable continuous real-time data
collection, which would enhance the predictive capabilities and allow for a more immediate
response upon detecting anomalies. Incorporating IoT sensors at critical points of the
infrastructure would allow constant monitoring of the environmental and structural factors,
optimising the precision of the maintenance models.

Another relevant direction for future research is adapting the system to onshore
installations, where the operational requirements and environmental conditions differ
significantly from those of offshore platforms. This would require adjustments in the
optimisation algorithms and prioritisation criteria, tailoring them to the specificities of
onshore environments. Additionally, implementing specific simulations for different types
of onshore installations would help validate and adjust the model in these contexts.

Finally, integrating advanced machine learning techniques would enable the system to
continuously adapt and improve using collected data, optimising maintenance schedules
more precisely and efficiently. These enhancements would extend the system’s applicability
and increase its effectiveness and robustness across various industrial environments.
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