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Abstract: Cigarette butt littering poses a significant environmental challenge, with billions of butts
discarded each year, fouling ecosystems with slow-to-decompose cellulose acetate filters that absorb
and release harmful compounds. In response, an innovative, sustainable approach for valorizing bal-
lot bin waste (BBW) by extracting high-quality cellulose acetate from cigarette butts was investigated.
This green approach eliminates the need for hazardous acids and toxic solvents, resulting in a yield
of 30% (w/w) and a degree of substitution (DS) of 2.0–2.5, which is comparable to pure cellulose
acetate. The following four essential processes are involved in this process: filter separation, water
washing to remove impurities, ethanol purification, and acetone precipitation of the cellulose acetate.
This approach not only mitigates environmental harm, but also supports circular economy goals by
transforming waste into valuable resources.
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1. Introduction

In the last few decades, global tobacco consumption has skyrocketed, reaching a peak
of 6.25 trillion cigarettes in 2012 [1]. Despite the decrease in cigarette consumption to
5.7 trillion reported by Tobacco Atlas [2], this number is expected to rise to ca. 9 trillion
in 2025 due to the future uptrend of the market along with population growth [3,4]. The
exponential increase in cigarette manufacturing has led to the ubiquitous accumulation of
toxic waste cigarette butts (WCBs) in the environment [5]. If properly disposed of, WCBs are
discarded in ashtrays, receptacles, and bins [6]. According to the current definitions, WCBs
are litters composed of unsmoked tobacco residue, charred tobacco on the end, a used filter
(cellulose acetate, CA), and a wrapping paper [7], and one of most important components
from an environmental point of view is the concentration of heavy metals, as suggested by
Quéméneur et al. [8]. Although a single WCB weighs 0.4 g on average, ca. 2 million tons
of WCBs are being discarded yearly in the environment. Over time, cigarette butts have
become the number one most littered item on earth [9]. Therefore, they are considered to be
one of the biggest environmental concerns due to their toxic effects on living organisms [10].
Due to its slow degradability, the cellulose acetate filter can take up to 30 years before
completely degrading. Its high adsorption capability leads to the incorporation of a high
number of hazardous substances from the external environment over time that are added
to those retained during smoking [11]. All these toxic chemicals can be leached in relatively
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short periods in the environment and enter the food chain [12–15]. According to recent
studies, WCBs can release up to 7000 chemicals, including highly ecotoxic substances
such as lead, cadmium, polycyclic aromatic hydrocarbons (PAHs), aromatic nitrosamines,
and cyanides [16,17]. In summary, the combination of high consumption rates, careless
disposal practices, environmental persistence, and toxicity makes cigarette butts the most
littered item globally [11], highlighting the urgent need for effective waste management
and recycling strategies, such as those proposed in this study.

Therefore, a large-scale system to collect cigarette butts is still missing, and currently,
collection campaigns are mainly carried out by small clean-up crews of volunteers [9].
Strong technological efforts have been made to upscale these collection campaigns with
the introduction of Artificial Intelligence (AI). However, these studies are still in the em-
bryonic phase, and they cannot immediately solve the collection problem of WCBs [18].
Moreover, the traditional disposal pathways mainly involve landfilling, which is still a
direct violation of environmental safety standards due to its potential for soil toxicity [5]
Avoiding the occurrence of cigarette butts in landfills would alleviate the dispersion of
numerous pollutants in the environment through WCB leachate [5,19]. For instance, in
the aquatic environment, the LC50 of smoked cigarettes corresponded to 1 cigarette per L
specifically for Atherinops affinis and Pimephales promelas [20]. In this regard, incineration
is another method that, at first glance, can be considered as a helpful way to generate
electricity from unwanted waste, but this practice uncontrollably releases hazardous side
products and greenhouse gases into the atmosphere [21]. Moreover, the uncontrollable
and impulsive habit of littering, i.e., the abandonment of small objects in public places,
has led to the widespread dispersion of WCBs in the environment, which poses serious
challenges in collection campaigns [22]. In Italy alone, 72 billion cigarette butts are littered
in the environment every year, and environmental policies struggle to contrast the littering
habits of citizens [23].

Hence, all solutions that support a smart and sustainable way to collect and recycle
cigarette butts must be implemented. The complex compositions and low-value properties
of WCBs present a challenge to the recycling process. Several possibilities for recycling have
been identified for various technological applications. Some of them include the creation of
clay bricks through WCB incorporation [24,25], the addition of WCBs to bituminous asphalt
as a high-performing fiber modifier [26], the transformation of the butt into cellulose pulp
to feed the paper supply chain [27,28], the fabrication of porous and sound-absorbing
material [29], and the production of superhydrophobic filters to clean up sites when oil
spills occur [30,31]. Recent research progress has shown that WCBs could be upcycled into
some value-added materials with different amounts of success. Applications of treated
WCBs for hydrogen storage material, hydrochars, and high-performance supercapacitors
have been demonstrated due to their high porosity, ultrahigh surface area, pore volume,
and oxygen-rich nature [32,33]. Nanocrystalline cellulose and cellulose pulp were also
isolated from cigarette filters based on their potential high-purity cellulose content [34].
The recycling of cellulose filter into a semi-finished cellulose acetate product with a spe-
cific granule formulation is of great interest from an industrial point of view, since this
can be further processed for several applications [35], such as membranes [36–40], drug
delivery systems [41], thin films [42], chemicals [43], optical sensors [44], safety glasses and
shields [45], optical lenses [46,47], LCD polarizing panels, costume jewelry, combs, buttons,
necklaces [48], and food packaging [49].

In this context, the concept of a circular economy emerges as a transformative approach,
where waste is redefined as a resource that can be recovered and reused. Sustainable
waste management practices not only minimize environmental impacts, but also foster
economic growth by creating new opportunities for resource recovery and recycling [5]. As
highlighted by Cruz [50], the integration of sustainability principles into waste management
is essential for addressing the challenges of modern waste systems. Considering this,
the present work aimed at developing a green chemical approach [51], and the main
objectives of the green protocol include the usage of non-toxic solvents with a focus on
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sustainable waste management from an environmental and human point of view in order
to recover cellulose acetate as a semi-finished, odorless product in the form of granules
from cigarette butts.

2. Materials and Methods
2.1. Materials
2.1.1. Collection and Storage of Ballot Bin Waste (BBW)

Our university identified and set up, on an experimental basis, special areas for smok-
ers, marked by specific signs and equipped with specific containers known as ballot bins.
Eight active smoking areas were equipped with ballot bins for the separate collection of
butts and smoking products, serving six buildings on the Milano-Bicocca campus (Figure 1).
Smoking areas within the campus were placed at no less than 7 m and no more than 25 m
from the entrances of the buildings, delimited, and signaled through special vertical and
horizontal signs. Within the identified areas, special containers for the selective collection
of cigarette butts were installed with a tiny ballot bin slot of around 1 cm.
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Figure 1. On the left: map of Piazza della Scienza, part of the Milano-Bicocca University campus;
the green dot indicated the four “smoking area” (of the total eight area) where the ballot bins were
installed (on the right).

The selective collection of cigarettes butts was achieved by the above-mentioned
special containers installed in the smoking areas within the University of Milano-Bicocca
Campus. Periodic emptying (roughly one collection per week) allowed for recovering
different samples over a period of 6 months (April–September). The samples were air-dried
for 3 days under a fume hood and stored in plastic bags at −20 ◦C.

2.1.2. Reagents

All the chemicals and reagents used for the heavy metal analysis were of analytical
grade. Nitric acid (65%, Sigma-Aldrich, Darmstadt, Germany), and hydrochloric acid
(35–38%, Sigma-Aldrich) were used to digest the organic matter in the samples. The mono-
element certified standard reference materials of Cd, Co, Cu, Ni, Fe, Mn, Zn, Cr, Pb, and
As at 1000 mg/L (PerkinElmer Pure, Waltham, MA, USA) were used for calibration and
quality control.

2.2. Methods
2.2.1. Sieving

The waste refinery started with a sieving treatment. A stainless-steel sieve with a
5.6 mm opening was used to filter various portions of the ballot bin waste (from 20 g to
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100 g), thus separating the cigarette butts from the ashes, unsmoked tobacco, and other
residues. To sort the waste by size, the sieve was manually shaken for 5 min. The sieve
caught cigarette butts; ashes and tobacco residues were recovered separately. The different
fractions were weighed and stored in plastic bags at 20 ◦C.

2.2.2. Water Washing

The cigarette butts were put in bidistilled water (5% w/v) and vigorously mechanically
stirred at 50 ◦C for 1 h. Then, the suspension was sieved by a stainless-steel sieve with
a 5.6 mm opening in order to separate the smoked filter (retained by the sieve) from the
tipping paper in form of a pulp. The smoked filters were washed with clean water, air-
dried in oven at 60 ◦C for 1 day, and weighed. The pulp paper was recovered by Büchner
filtration, washed with water, air-dried overnight under a fume hood, and weighed. The
same procedure was applied to unsmoked filters, manually removed from cigarettes, as
a reference.

2.2.3. Ethanol Washing

The smoked filters were put in absolute ethanol (10% w/v) and vigorously mechani-
cally stirred at room temperature for 1 h. Then, the suspension was filtered by Büchner.
The clean filters were washed with fresh ethanol (100 mL), air-dried overnight under a
fume hood, and weighed. The ethanol filtrate was rotavaporized in order to recover the
solvent. A yellow-brown, viscous, oily material was recovered in a round-bottom flask and
weighed. The same procedure was applied to unsmoked filters as a reference.

2.2.4. Cellulose Acetate Precipitation

Cellulose acetate solution was prepared by dissolving 20 wt% of a cigarette filter in
acetone (ACS reagent, ≥99.5%, Sigma-Aldrich) at a concentration of 100 g in 1 L, at room
temperature under continuous stirring (300 rpm), over a period of 24 h. The solution was
then centrifuged at 3000 rpm for 15 min in order to remove suspended and non-acetone-
soluble black particles. The supernatant was then dropwise added to 2 L of bidistilled
water with continuous stirring to re-precipitate the cellulose acetate, which was recovered
by filtration, dried in oven at 60 ◦C for 1 day, and weighed. The acetone in the filtrate could
be recovered by distillation from water and continually recycled in the process.

2.2.5. Characterizations

Attenuated total reflectance (ATR) FT-IR measurements were performed using a
NICOLET iS5 spectrometer (Thermo Scientific, Waltham, MA, USA) equipped with an iD7
ATR accessory and diamond crystal. All infrared spectra were recorded within the range
of 4000–600 cm−1 with a 4 cm−1 resolution and 32 scans. The estimation of the degree
of substitution (DS) was performed following the procedure reported by Fei et al., 2017,
specifically developed for highly acetylated samples [52].

For all the fractions, Cd, Co, Cu, Ni, Fe, Mn, Zn, Cr, Pb, and As were quantified using
an inductively coupled plasma-optical emission mass spectrophotometer (ICP-OES Optima
7000 DV PerkinElmer, Waltham, MA, USA). All samples were prepared according to the
following procedure: about 750 mg of oven-dried representative material was precisely
weighted, placed in a PTFE vessel, and digested in a Milestone Ethos TC Microwave
digestion system by adding 4 mL of aqua regia (HNO3 65% and HCl 37%) in a closed
system to reduce the risk of contamination [53]. The system was programmed to use up
to 1000 W of power to increase the detected temperature to 220 ◦C, at which time, the
temperature was maintained for 15 min. After digestion, samples were made up to a total of
10 mL and analyzed by ICP-OES. The instrument’s detection limit was 0.1 µg/g. For every
sample, three replicates were taken, and the average value and standard deviation were
calculated. The data are expressed as the average of 2 purification experiments, analyzed
3 times each.
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For GPC characterization, the pulverized material (roughly 50 mg) was put in an
8 mL dried sample bottle equipped with a magnetic stirrer with 1 mL of pyridine and
250 µL of benzoyl chloride. The solution was vortexed until it became homogeneous and
allowed to cool to room temperature. The sample was kept under magnetic stirring at room
temperature for 2 h. To precipitate the benzoylated material, a deionized water–ethanol
solution (1:3 v/v, 20 mL) was added and the mixture was vigorously shaken and vortexed
for 5 min. The solid was filtered off through a sintered funnel (grade 3), washed with
further ethanol, and purified with methanol. The benzoylated samples were solubilized
in THF and passed through a 0.45 µm GHP Acrodisc syringe filter (Waters, Milford, CT,
USA) for GPC analyses. Gel Permeation Chromatography analyses were performed on an
Agilent HP1100 series (Agilent, Santa Clara, CA, USA) equipped with a UV-Vis detector
set at 240 nm and RID (Refract Index Detection). The injection port was a Rheodyne loop
valve equipped with a 20 µL loop. The GP-column system was composed of a sequence
of an Agilent PL gel of 5 µm, 500 Å, an Agilent PL gel of 5 µm, 5000 Å, and an Agilent
PL gel of 5 µm, 104 Å. The solvent used was THF (Fluka 99.8%, Sigma-Aldrich). The PL
Polymer Standards of Polystyrene from Polymer Laboratories (Church Stretton, UK) were
used for calibration. An evaluation of the number-average molecular weight (Mn) and the
weight-average molecular weight (Mw) of the samples was performed. The peak molecular
weight Mp is defined as the molecular weight of the species with maximum absorbance.
Moreover, the ratio D = Mw/Mn, defined as the dispersity index, was also calculated. The
Mn, Mw, and Mp values reported are the averages of three analyses (p = 0.05, n = 3).

For 1H-NMR characterization, 10 mg of cellulose acetate was dissolved in 750 µL
of d6-Acetone (Sigma-Aldrich, 99%) and placed in a 5 mm NMR tube. 1H-NMR spectra
were collected on a Bruker-500 spectrometer (Bruker, Billerica, MA, USA) operating at
500.13 MHz with the following acquisition parameters: 90◦ pulse width of 10 ms, spectral
width of 12 ppm, and relaxation delay of 2 s. The total number of scans was 64 (four
dummy scans) and the acquisition time was 2.60 s. All 1H-NMR chemical shifts reported
in this work are relative to the residual peak of the solvent. The estimation of the degree
of substitution (DS) was performed following the procedure described in the literature by
Zhang [54].

3. Results and Discussion

Since the problem of littering related to cigarette butts affects any type of environment,
both urbanized and non-urbanized, the University of Milan-Bicocca has, thus, decided to
implement a smoking-free policy by approving the regulation for the application of the
smoking ban, which came into force in January 2020. The design and implementation
of models for the collection of cigarette butts have been conducted in private areas for
public use owned by the University of Milano-Bicocca. As reported by Yousefi et al. [55],
the most important attempt at proper cigarette butt collection is the smoker’s behavior
modification in order to reduce littering. The installations were in line with the smoke-free
policy adopted by the University of Milano-Bicocca. The ban on smoking was implemented
in all internal areas and in the external amenities of university buildings, except for the
external areas reserved for smokers (smoking areas), which were located at a reasonable
distance from the entrances and suitably equipped. The first stage of the experimentation
was based on the collection of cigarette butts using a receptive system such as ballot bins,
with the double aim of recovering the highest number of butts and ensuring the health of
those attending Milano-Bicocca University. In fact, the goals of this policy are the following:
first, the protection and safety of all, thus reducing exposure to second-hand smoke; and
second, the growth of a culture of health within the institution. Moreover, following the
principle of circular economy, combining the possibility of recovering cigarette butts with
an anti-littering policy associated with recycling could represent a win-win situation for
the university, for all those who attend it, and for the environment that surrounds the
university itself.



Appl. Sci. 2024, 14, 10955 6 of 14

3.1. Collection and Purification Overview

Only a few studies on cellulose acetate valorization have reported the direct use of
waste cigarette butts collected in ballot bins as a raw material. In this work, we set up an
integrated process, starting with the materials gathered from the smoking areas. Figure 2
reports the purification procedure for the treatment of the ballot bin waste to obtain cellulose
acetate. The different steps are highlighted in oval blue, while the different materials along
the mass balance are highlighted in rectangular white. The mass balance data reported were
the average of five experiments with a 95% confidence interval. Representative pictures are
also depicted in the scheme.
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3.2. Sieving

In order to start the waste refinery, a sieving treatment was performed. A sieve with a
5.6 mm opening was able to separate the cigarette butts from the ashes, unsmoked tobacco,
and other residues. This simple separation was made possible because the tiny ballot bin
slot (around 1 cm) allowed for a high selectivity of the collected waste. The sieving was
able to fractionate 100 g of ballot bin waste into the following two fractions: 68 ± 9 g of
cigarette butts and 30 ± 8 g of other residues (Figure 2). The total recovery yield was higher
than 98%. Among the many harmful and toxic compounds found in tobacco smoke and
cigarette butts, metals seem to play an important role, in terms of direct toxicity either for
smokers or in terms of environmental impact [56,57].

As reported in Table 1, row 1, the ballot bin waste had a significant content of
heavy metals, mainly Fe and Mn. As, Cd, and Co were never detected (detection limit
0.1 µg/g) [56]. The contamination of the ballot bin waste by the steel of the structure could
not be excluded, but this was not further investigated. With a simple sieving step, we
were able to remove the ashes, unsmoked tobacco, and other residues from the cigarette
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butts. The heavy metal content after sieving was measured on the two collected fractions,
namely the cigarette butts and ashes. Considering the mass balance in Figure 2 and the
heavy metal content in Table 1, rows 2 and 3, the sieving was able to remove, respectively,
36% of Cu, 15% of Cr, 15% of Fe, 41% of Mn, 17% of Ni, 0% of Pb, and 44% of Zn. For the
comparison of the absolute heavy metal concentrations in the ashes, good agreement was
found with the work of Dahlawi et al. [53]. It is interesting to note that the lowest removal
efficiency was related to heavy metals with a high smoke transfer rate (Pb in particular, but
also Ni and Cr) [58]. Those heavy metals had a tendency to transfer in the smoke phase
during the burning phase, and low concentrations in ashes were, therefore, detected. Mn,
on the other hand, was characterized by a low transfer rate and remained in the ashes
(removal efficiency of 41% by sieving). These data indicate the importance of setting up
an integrated management strategy for cigarette butt collection based on the use of ballot
bins to minimize water contact with the waste, either in terms of the minimization of the
leaching of heavy metals in the environment or in terms of recovery and upgrading. Water
contact could mobilize heavy metals between fractions, but also promote the cellulose
acetate degradation of cigarette filters during the aging of the material [59].

Table 1. Heavy metal content expressed in µg/g (* or mg/L) in the different fractions recovered
during the purification process. Data are expressed as an average ± interval of confidence (n = 3,
p = 0.05).

As Cd Co Cu Cr Fe Mn Ni Pb Zn

Ballot bin waste nd nd nd 5.0 ± 3.4 0.4 ± 0.3 351.0 ± 328.5 39.0 ± 26.6 2.7 ± 1.5 0.6 ± 0.4 7.9 ± 5.6
Cigarette butts nd nd nd 5.0 ± 3.4 0.3 ± 0.2 383.6 ± 284.4 2.4 ± 1.4 2.3 ± 1.5 1.3 ± 1.4 10.9 ± 2.2

Ashes nd nd nd 6.0 ± 1.0 0.2 ± 0.1 170.5 ± 14.7 53.6 ± 9.7 1.5 ± 0.6 nd 11.5 ± 0.7
Smoked filters nd nd nd 0.6 ± 0.5 0.2 ± 0.1 49.4 ± 39.0 nd 1.7 ± 1.4 0.8 ± 0.6 5.6 ± 3.9

Washing waters * nd nd nd 2.5 ± 0.4 nd 49.25 ± 27.5 8.6 ± 5.6 1.56 ± 0.9 1.6 ± 1.1 nd
Clean filters nd nd nd 0.7 ± 0.5 0.3 ± 0.2 39.6 ± 9.9 nd 2.0 ± 1.4 1.8 ± 0.2 5.9 ± 2.2

Cellulose acetate nd nd nd 1.3 ± 0.4 0.3 ± 0.2 9.1 ± 0.9 nd 2.0 ± 0.3 0.3 ± 0.2 2.0 ± 0.3

3.3. Water Washing

Water washing has been recognized as an effective method for the cleaning of cigarette
butts [35,47] without the addition of any other chemicals, thus minimizing treatment costs
and mainly preserving the chemical properties of the cellulose acetate. Alkaline and acidic
conditions have been recognized to help in the purification of cigarette butts [56], efficiently
removing heavy metal contaminants and/or organic compounds. Nevertheless, these
conditions are likely to promote deacetylation and/or depolymerization reactions on the
cellulose acetate polymer [60]. Since the goal of this research was to recover pure cellulose
acetate with pristine chemical characteristics, we avoided the use of such conditions. The
water washing was also able to remove, besides heavy metals and other inorganics, water-
soluble organic compounds (such as glues, plasticizers, and smoke residues) and defibrillate
the tipping paper under heating and vigorous stirring.

It was possible to recover a fraction called smoked filters with an average weight of
43 ± 4 g (starting from 100 g of BBW), along with 21 ± 3 g of pulp paper (Figure 2). The total
recovery yield was around 90%; the lost parts were likely the water-soluble components
reported above. Simple water washing, as reported in Table 1, row 4, was able to remove
91% of Cu, 59% of Cr, 92% of Fe, 100% of Mn, 55% of Ni, 62% of Pb, and 68% of Zn. These
findings are consistent with other research reported the literature that was conducted using
the same conditions [56,61]. In fact, as reported by Merman [56], Cu, Fe, and Mn (removal
efficiency higher than 90% in this work) have the highest concentrations of metals leached
from smoked cigarette material measured after a specified period of soaking. The effect
of water washing in the purification of cellulose acetate was also explored by Benavente
et al. [35]. Factors like pH and ionic strength could affect the amount of metal released [57]
and a clear effect of conditions (NaCl vs. sodium acetate vs. sulfuric acid) was observed
in terms of metal extraction, with the best results with H2SO4 0.02%. According to the
authors, the acidic solution seemed to be the most efficient for the extraction of Al, Fe,
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Cu, and Zn. Our results indicated that, even in neutral conditions (without the addition
of any chemicals), a high removal efficiency was obtained; this was explained by the
higher temperature of the water, as used by De Fenzo et al. [47]. Even though the scope
of the present research is not to detect the amount of metals leached by WCBs in aquatic
environments, in this article, we measured the heavy metal concentrations in the washing
water and the data are reported in row 5 in Table 1, which are consistent with literature
reports [56].

3.4. Ethanol Washing

Ethanol washing has also been recognized as an effective and environmentally friendly
method for the cleaning of cigarette butts, mainly from organic contamination. As a green
and bio-based solvent, ethanol is able to remove organic compounds such as plasticizers
and smoke residues (e.g., nicotine and PAHs) [35,39,46,62]. This is why, once the filters were
characterized for their heavy metal concentrations, they were subjected to another washing
step with ethanol. The final product is called a clean filter, and it was recovered from 43 g
of smoked filters in 35 ± 5 g of white/yellowing cellulose acetate fiber filters, while after
solvent evaporation, 7 ± 2 g of oily, yellow organic material was removed (Figure 2). In this
way, ethanol was completely recycled during the purification process. Preliminary FT-IR
investigations (Figure 3) indicated that this material seems to be mainly composed of alkyl
esters, ethanol soluble cellulose acetate, or most probably, plasticizers and other chemicals
used in tow [47]. Other organic compounds, such as nicotine and the residue of combustion,
could also be present, but the material was not further investigated. Based on the solubility
properties of ethanol, it is not surprising that heavy metal concentrations were minimally
affected (Table 1, row 6). In a previous study, it was found that the extraction of heavy
metals is more favored in a slightly acidic ethanol solution (0.02% w/v H2SO4) than in a
neutral one [35]. However, the use of ethanoic acidic solution can modify cellulose acetate
(trans-esterification) and, thus, affect the quality as well as the yield of the final product.
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3.5. Acetone Precipitation of Cellulose Acetate and Characterizations

The final stage in cellulose acetate purification was based on the dissolution/precipitation
strategy. It should be mentioned that cellulose acetate (CA) is soluble in different organic
solvents depending on the number of hydroxyl moieties substituted by acetyl groups,
i.e., the degree of substitution (DS). Generally, when the DS is larger than two (like in
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the case of WCBs), common solvents such as tetrahydrofuran, acetone, or dioxane can
be used [63]. On the contrary, when DS < 2, CA can be dissolved in fewer solvents, for
example, acetic acid [43]. In the present study, CA was dissolved in acetone, since it is a
greener, cheaper, and more commercially available solvent compared to the others listed
above. The insoluble material (removed by centrifugation) was a dark brown heterogeneous
material composed mostly of burned filter parts and other residues, and it was not further
investigated. The cellulose acetate was then precipitated by putting the clear solution in
water as an antisolvent. Finally, 30 ± 4 g of cellulose acetate was recovered by filtration and
drying as a white, fluffy material from 35 g of clean filter (Figure 2). The final product, CA,
was characterized by the means of different analytical tools. The precipitation from acetone
strongly reduced the metal concentrations (Table 1, row 7), probably due to a double
mechanism, as follows: either during the water precipitation or by removing insoluble
parts where heavy metals were chelated. The levels of heavy metals in the final cellulose
acetate were generally quite low. The cellulose acetate recovered (from five experiments)
was also deeply chemically characterized by 1H-NMR, GPC, FT-IR, and UV and compared
to the cellulose acetate present in an unsmoked filter (Figure 4).
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The FT-IR spectrum (Figure 4, panel A) confirms that the recovered material was
cellulose acetate. This was evidenced by the appearance of peaks related to acetate groups,
i.e., those at 1740 cm−1 and 1220 cm−1, referring to the C=O stretching and C-O stretch-
ing in acetyl esters, and those at 1369 and 1420 cm−1, peaks arising from the symmetric
bending vibration of C-H in the methyl groups, respectively [64,65]. The signals located
at ca. 2950 and 1030 cm−1, resulting from the C-H stretching vibrations of sp3 hybridized
C atoms and the C-O stretching of alcoholic and etheric bonds, respectively, are related
to the structure of the cellulosic backbone [61]. Finally, the presence of the broad band
at 3000–3600 cm−1 refers to O-H stretching and, therefore, enlightens us that there is a
partial substitution of -OH with acetyl acetate groups. The 1H-NMR spectrum (Figure 4,
panel B) further confirms the structure of the cellulose acetate through the appearance of
strong signals within the chemical shift range of 1.8–2.2 ppm assigned to methyl hydrogens
in acetate groups. Moreover, the presence of many superimposed peaks in the chemical
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shift range of 3.5–5.5 ppm, which refers to the protons belonging to the anhydride glucose
units (AGUs) of the cellulose chain, was detected [52]. The peak at ca. 2.8 ppm is due to
water traces, as reported by Xu et al. [63]. The data regarding the degree of substitution
determined by the FT-IR analysis, the molecular weights, and the dispersity index (D)
achieved by the GPC analysis are reported in Table 2. The data from the unsmoked filter
(used as a reference), in terms of the DS, molecular weights, and dispersity index, con-
firmed that the purification procedure retained the chemical properties of pristine cellulose
acetate. The DS and GPC outputs were measured after each step of the purification process,
highlighting no significant modifications. The data from the five experiments on ballot bin
waste purification confirmed that the collection procedure (ballot bin configuration, time of
collection, and storage) retained the chemical properties of cellulose acetate. In fact, the DS
and molecular weight values were always comparable with the reference. Furthermore, the
UV-Vis spectra (Figure 4, panel D) of the recovered cellulose acetate displayed evidence
that the optical properties were also retained, as the samples showed absorption only in
the UV region (<300 nm of wavelength, i.e., in the UVC zone) and high transmission in the
visible region [44].

Table 2. Degree of substitution (DS) calculated by FT-IR along with molecular weight outputs from
GPC of unsmoked samples and ballot bin waste. The Mn, Mw, and Mp values reported are the
average of three analyses (p = 0.05, n = 3). D is the dispersity index determined by GPC analysis.
--- analysis not performed.

Treatment DS Mp (103)
g/mol

Mn (103)
g/mol

Mw (103)
g/mol

D

Unsmoked filter

--- 2.10 ± 0.1 343 ± 15 423 ± 19 1750 ± 180 4.1
H2O washing 2.12 ± 0.1 353 ± 20 474 ± 21 1822 ± 190 3.8

Ethanol washing 2.11 ± 0.1 346 ± 22 454 ± 26 1721 ± 175 3.8
Acetone 2.10 ± 0.1 343 ± 16 487 ± 18 1684 ± 185 3.5

Ballot bin waste

--- 2.07 ± 0.2 --- --- --- ---
H2O washing 2.10 ± 0.3 --- --- --- ---

Ethanol washing 2.11 ± 0.2 --- --- --- ---
Acetone 2.07 ± 0.3 369 ± 25 427 ± 22 1594 ± 225 3.7

It is worth mentioning that the extraction process proposed herein meets the environ-
mental goals of green chemistry using green solvents in a simple process (Figure 5).
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Figure 5. Schematic diagram for the purification process of 1 kg of ballot bin waste along with mass
flow data experimentally determined, input (BBWs), and output materials.

In addition, in 2023 and 2024, Zuccante et al. [66,67] explored transforming the whole
cigarette and various fractions of this process, such as ashes, paper, and filters, into an
oxygen reduction reaction electro-catalyst, further enhancing the concept of the circular
economy and reducing waste production. Additionally, the ethanol extractives showed
potential as a tool against insecticide-resistant mosquito vectors [68,69]. The ability to
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recycle solvents like ethanol and acetone minimizes the process’s environmental impact,
with wastewater (62 L/kg) treatment being competitive in terms of water consumption
compared to producing (only processing water for cellulose acetylation was considered)
(76 L/kg) virgin cellulose acetate [70]. Finally, the effective monitoring and enforcement
of these standards are essential to promote adherence, accountability, and sustainable
waste management.

4. Conclusions

In light of the achieved results, it should be underlined that the extraction of CA
from cigarette butts presented herein is an effective method for obtaining a high-quality
semi-finished CA with the same physical and chemical properties as an unsmoked cigarette
filter. This is an interesting achievement, especially from the circular economy point of
view, since the ballot bin waste was converted into a high-quality product whose chemical
characteristics could permit the recycling of a semi-finished cellulose acetate product of
great interest from an industrial point of view, since it can be further processed for several
applications. In addition, the implemented collection strategy could avoid and/or reduce
littering and the enormous environmental problems related to the potential release of
microplastic fibers and toxic substances such as heavy metal, nicotine, carcinogenic tar,
and polycyclic aromatic hydrocarbons. With this comprehensive approach, cigarette waste
can be transformed from an environmental burden into an opportunity for sustainable
resource recovery.

Supporting research and development is another cornerstone, as funding and collab-
oration with academic institutions drive innovations in recycling technologies, making
the recovery of valuable materials like cellulose acetate (CA) more efficient. Notably, the
extraction of CA from cigarette butts has proven to be an effective method for obtaining
a high-quality semi-finished CA that retains the same physical and chemical properties
as unsmoked cigarette filters. This achievement is particularly significant from a circular
economy perspective, as it transforms waste from ballot bins into a high-quality product
suitable for various industrial applications. Integrating circular economy principles into
these policies shifts the focus from waste disposal to resource recovery, benefiting both
ecosystems and the economy. The implemented collection strategy not only addresses
the challenge of littering, but also mitigates the environmental hazards associated with
the potential release of microplastic fibers and toxic substances, including heavy metals,
nicotine, carcinogenic tar, and polycyclic aromatic hydrocarbons. Moreover, the proposed
extraction process aligns with the environmental goals of green chemistry by utilizing green
solvents in a straightforward method. The achievement of the objectives in terms of the
yield of the purified acetate (about 30%), the quality of the semi-finished product with a DS
of 2.0-2.5 comparable to virgin acetate, the removal of hazardous substances (70 g ethanol
extracts), and the excellent removal of heavy metals, 91% copper (Cu), 59% chromium (Cr),
and 92% iron (Fe), demonstrates the effectiveness of the CA purification process.
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