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Abstract: Relation extraction, a crucial task in natural language processing (NLP) for constructing
knowledge graphs, entails extracting relational semantics between pairs of entities within a sentence.
Given the intricacy of language, a single sentence often encompasses multiple entities that mutually
influence one another. Recently, various iterations of recurrent neural networks (RNNs) have been
introduced into relation extraction tasks, where the efficacy of neural network structures directly
influences task performance. However, many neural networks necessitate manual determination of
optimal parameters and network architectures, resulting in limited generalization capabilities for
specific tasks. In this paper, we formally define the context-based relation extraction problem and
propose a solution utilizing neural architecture search (NAS) to optimize RNN. Specifically, NAS
employs an RNN controller to delineate an RNN cell, yielding an optimal structure to represent
all relationships, thereby aiding in extracting relationships between target entities. Additionally,
to enhance relation extraction performance, we leverage the XLNet pretrained model to compre-
hensively capture the semantic features of the sentence. Extensive experiments conducted on a
real-world dataset containing words with multiple relationships demonstrate that our proposed
method significantly enhances micro-F1 scores compared to state-of-the-art baselines.

Keywords: natural language processing; relation extraction; neural architecture search

1. Introduction

Relation extraction is the task of extracting semantic relation information required
by users from smaller-grained text sentences and is of essential research significance
for question answering [1], reading comprehension [2], and machine translation [3]. In
addition, the useful information extracted is an important component in the construction
of a knowledge graph.

In recent years, researchers increasingly turn to deep learning (DL) techniques [4–6]
and reinforcement learning (RL) methods [7] to improve feature extraction after one-hot
encoding. For instance, Li et al. [8] utilize attention networks to tackle the challenge of
sentence-level relation extraction. Sui et al. [9] propose a method for extracting multiple
relations between the same entity pair within a single sentence, thereby enhancing the capa-
bility to capture complex relationships in text. However, these methods mainly focus on the
extraction of relationships between entity pairs, overlooking the dependency relationships
that other entity pairs within the sentence may have on the extraction of entities. To address
this issue, Sorokin et al. [10] consider the influence of other relationship pairs within the
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sentence on entity extraction and demonstrate the effectiveness of their proposed method
in the task of single-sentence relationship extraction. To simplify the expression, this paper
defines the method as context-based relation extraction (CRE). Unlike traditional methods
that focus solely on the entities themselves, the CRE method expands the scope to the
entire sentence, allowing for a more comprehensive capture of the relationships between
the target entities. Specifically, as shown in Figure 1, there exists a sentence containing two
entity pairs (e1, e2) and (e3, e4). When extracting the relationship r1 between e1 and e2, the
influence of the relationship r2 between the entity pair (e3, e4) is also considered.

e1 e2

e3 e4

Figure 1. When extracting the relationship between e1 and e2, the relationship between e3 and e4 in
the sentence, which is related to the former relationship, is considered.

The focus of the aforementioned work has concentrated on innovations in model
architecture and enhancements in performance, often neglecting the critical importance of
internal parameter tuning, a process that typically relies on manual model design. This
manual adjustment [11] not only consumes a significant amount of time and labor resources
but is also susceptible to human factors, particularly the subjective biases and constraints of
researchers’ experiences. Taking sentence feature extraction as an example, although LSTM
networks [12–14], as an advanced variant of RNNs, have been applied, parameter tuning
still requires manual intervention. This demands considerable time investment and a deep
level of expertise. Even with careful adjustments, the structure of LSTM networks may not
reach an optimal configuration and often lacks adaptability to changes in data. Considering
the complexity of deep learning in relationship extraction network models and the breadth
of parameters involved, designing an efficient model is undoubtedly a challenging task.
To fully explore and leverage feature information, researchers must meticulously adjust
the network structure and parameters to achieve optimal performance. Therefore, the
main research challenge in executing context-based relationship extraction tasks is how
to implement automated searches for model structures and optimal configurations to
efficiently complete the extraction tasks.

In response to the aforementioned challenges, this paper proposes a mechanism for
the dynamic adjustment of the internal structure of neural networks, aiming to accurately
capture relational expressions within sentences. This study adopts an encoder capable
of precisely reflecting the semantic features of entire sentences. The proposed method is
termed neural architecture search for context-based relation extraction (NAS-CRE), which
seeks to effectively address the challenge of dynamic optimization of network structures.
This work is inspired by the current wave of interest in neural architecture search (NAS).
Within the NAS framework, we utilize an RNN controller to characterize RNN cells,
with the goal of exploring the optimal RNN structure for extracting relational features
between entity pairs within sentences. Additionally, to comprehensively extract semantic
features from sentences, this study introduces the XLNet [15,16] pretrained model, which
combines autoencoding (AE) and autoregressive (AR) language modeling. To the best of
our knowledge, this work represents the first attempt to integrate relation extraction (CRE)
with the optimal RNN structure obtained through NAS.

In summary, our contributions can be summarized as follows.

1. We define the concept of context-based relation extraction (CRE) and explore its
unique attributes in the context of relation extraction tasks.

2. We propose a new paradigm, NAS-CRE, which serves as a method to investigate the
potential effectiveness of integrating NAS and CRE. NAS-CRE utilizes an automat-
ically optimized network architecture to extract relationships involving the target
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entity, taking into account the dependencies of other entities in the context that are
related to the target entity.

3. Extensive experiments on a large real-world database (https://github.com/UKPLab/
emnlp2017-relation-extraction?utm_source=catalyzex.com (accessed on 10 August
2024)) show that our proposed method significantly and consistently outperforms
baseline models.

The rest of this paper is structured as follows. In Section 2, related work is described.
The overall description of our proposed method is presented in Section 3. The experimental
description and experimental results are presented in Section 4. The discussion is showed
in Sections 5 and 6 presents the conclusion and future outlook.

2. Related Work

Recently, relation extraction has become a research hotspot and is a key step in build-
ing knowledge graphs. In general, there are three mainstream solutions to the information
extraction problem: supervised methods [17], unsupervised methods [18], and semisu-
pervised [19] methods. Among them, supervised methods, which use a set of samples of
known classes to train the model to meet the performance requirements, perform best.

Early existing methods used feature-based and kernel-based methods to extract rela-
tionships [20,21]. With the development of neural networks, researchers have tried to use
different network structures to improve the performance of relation extraction. Zeng et al.
and He et al. [22,23] proposed extracting vocabulary and sentence-level features using a
convolutional neural network (CNN). Wang et al. and Li et al. [24,25] added attention to
better identify ambiguities in sentences. CNN is too simple, but it made a groundbreaking
breakthrough in relation extraction. Later, recurrent neural networks (RNNs) appeared
based on researchers’ perspectives. Vu et al. [26] concatenated a bidirectional RNN and
used a ranking loss function to improve accuracy. Sorokin et al. [10,27,28] used a variant
of RNN, the LSTM network, to achieve this task. As a result, RNN has become a classic
method for solving relation extraction tasks. With the development of graph convolutional
networks (GCNs), many researchers have begun to use improved graphs as feature extrac-
tion layers for information extraction. For example, Wang et al. and Sun et al. [29–31] used
incrementally generated graphs to solve the problem of information extraction. Zhang
et al. and Li et al. [32,33] added a graph convolutional network (GCN) to the syntax
parse tree, which is conducive to relation extraction. However, the above work is based
on the empirical design of the network structure, which artificially increases parameter
constraints, such as specifying the use of CNN or a variant of RNN, LSTM. These designed
networks ignore the impact of structural changes and may not be optimal. Therefore, these
models cannot search for the optimal network structure and cannot accurately capture
relationships within sentences.

Most of the above models directly use sentences to generate word vectors and require
a large amount of data for training to prevent the model from overfitting. However, these
data require human resources to label, which is not a good use of time. In this case,
pretraining on many unlabeled corpora is particularly important. As a result, different
pretrained models have begun to appear in the literature.

The pretrained model learns general semantic knowledge from a large corpus and
migrates it to downstream tasks to improve low-resource tasks [16]. Pretraining enables
the model to have generalization ability. Furthermore, a pretrained model is equivalent
to a kind of regularization, which can prevent the model from overfitting downstream
tasks [34]. After the first pretrained model appeared, embeddings from language models
(ELMo) [35] and bidirectional encoder representations from transformers (BERT) [36,37]
were proposed to generate word vectors. However, BERT [36], which uses a [MASK]
in pretraining, also has shortcomings. For example, the use of a [MASK], which is an
artificial symbol, is invalid in the actual data when fine-tuning is used and results in the
inconsistency of fine-tuning in the pretraining step. Another disadvantage of using a
[MASK] is that it is assumed that the predicted tokens are independent of each other, which
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results in unmasked tokens. For information extraction tasks that need to consider other
relations in a sentence, independent mechanisms cannot relate multiple entity pairs in a
sentence. To solve this problem, a new method to fuse AE and the AR language models,
called XLNet, learns from the bidirectional context, avoiding the drawbacks brought by the
mask method in the AE language model [38]. In our previous work [16], we demonstrated
that using XLNet for named entity recognition tasks showed good performance. Going a
step further, in this work, we use XLNet as an encoder for the information extraction task,
producing vectors capable of expressing the semantic features of sentences.

NAS is one of the research hotspots in automatic machine learning. By designing
cost-effective search methods, networks with strong generalization ability and user-friendly
hardware requirements can be automatically acquired, which can significantly encourage
the creativity of researchers. The significance of NAS is to solve the parameter adjustment
problem of the deep learning model and obtain the optimal network. A structure search
in deep learning is a direction that has received renewed attention in recent years. The
most famous work in the structure search task used reinforcement learning to optimize the
network structure [39], which started the increase in NAS research. The construction of
a neural architecture search includes three aspects: search space, optimization algorithm,
and model evaluation [40]. The earliest search method used in NAS was reinforcement
learning. Reinforcement learning takes the network structure of each generation as an
action, and the rewards of this action are represented by the evaluation results of this model.
The difference in the representation of different reinforcement learning algorithms in NAS
is how to design the search strategy of the agent. Zoph et al. [39] used RNN as a policy
network to serialize and collect an encoded network structure. Currently, NAS is mainly
used in the fields of image segmentation [41], graph matching [42], object detection [43],
and pose estimation [44]. All of these applications are in the field of images; to the best of
our knowledge, there are almost no uses of NAS in the field of natural language processing.

In contrast to previous endeavors, we advocate for the utilization of NAS to automati-
cally search for and optimize RNN structures and parameter configurations. This approach
obviates the need for extensive manual experimentation and adjustment, thereby facilitat-
ing the discovery of more efficient model architectures and driving advancements in the
task of relation extraction. In addition, to improve the accuracy of relation extraction, we use
the pretrained XLNet model to learn sentence representations from a bidirectional context.

3. Method

In this section, we describe the proposed NAS-RNN approach for the CRE problem.
We first give the definition and formulation of the task. Then, the overall framework of the
model is introduced. In particular, we provide details for the two major components in the
framework, NAS-RNN and XLNet, for CRE.

3.1. Task Definition and Formulation

Given a sentence s = {x1, x2..., xn} containing at least two entity pairs {eh1, et1}
{eh2, et2}, where xn represents the n-th words in sentence s, and ehm and etm represent
the m-th head entity and tail entity, respectively. CRE aims to first predict the relationship r
of {eh1, et1} and then adopts it to help predict the relationship of {eh2, et2}. For example, as
illustrated in Figure 1, first, we predict the relationship of the entity pair {e1, e2}. When pre-
dicting the relationship of {e3, e4}, we connect the relationship code generated by {e1, e2}
and the relationship code generated by {e3, e4} to form content encoding and finally extract
the relationship of {e3, e4} based on the content encoding.

3.2. Overall Framework

Figure 2 shows the overall framework of our proposed NAS-CRE. When dealing with a
sentence, we use SentencePiece, which splits the sentence into many tokens. SentencePiece
does not divide words according to spaces; instead, it divides English words into smaller
semantic units and reduces the vocabulary. Each token in the sentence s =

{
x′1, x′2, ..., x′n

}
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generates a 768-dimensional embedding vector X through the XLNet model pretrained
on 13 GB of plain text [15]. In addition, each token has an encoded position P to mark the
entity. For each word vector, we concatenate X and P.

x1 x2 xn

Os

fi O1

O2

Ok

Attention

Figure 2. The overall structure of the neural architecture searches for context-based relation extraction.
In the embedding layer, the blue part represents the splicing position encoder.

When we process the encoded position of entities in a sentence, we mark each word of
the sentence. If the word is a head entity, we mark it as 2; if the word is a tail entity, we mark
it as 3; and the rest of the words are marked as 1. To have a one-to-one correspondence
between the encoded position and tokens, we mark the encoded position on the tokens
generated by SentencePiece. Here, we give an example. Suppose we have the sentence
“Willis lives in the USA”. We want to extract the relationship of entity pair {Willis, USA}.
The tokens generated by SentencePiece are [‘ Will’,‘ is’,‘ lives’,‘ in’,‘ the’, ‘ USA’]. When
performing position marking, ‘ Will’ and ‘ is’ are marked as 2, ‘ USA’ is marked as 3, and
the rest of the words are marked as 1. Therefore, the position is marked as [2, 2, 1, 1, 1, 3].

The token embedding and the encoded position are connected and fed to the NAS-
RNN network to obtain the relationship os. For other entities in the sentence, we use the
same method to obtain the relationship, o1, o2,..., ok between entities, and then calculate
their attention score o′s, i.e.,

o′s =
k

∑
i=0

θioi (1)

θi =
exp(score(oi, os))

∑k
j=0 exp(score(oj, os))

(2)

where oi represents each relationship, and score(∗, ∗) represents the score between entities
calculated by the attention mechanism. We connect the obtained os with o′s, o = [os,o′s].
Then, to predict their relation, we feed the encoded relation o to the softmax layer, i.e.,

p(r | {e1, e2}, s) =
exp(ai · o + bi)

∑nr
i=1 exp(ai · o + bi)

(3)

where ai is a weight, and bi is a bias.

3.3. Sentence Representation

XLNet [15] is a pretrained model that trains the language model through many unla-
beled language texts to obtain a set of model parameters and then uses these parameters to
initialize the model. XLNet solves the abovementioned problems generated by BERT, which
naturally introduces contextual information into the AR model and maintains consistency
in the two stages of the AE model. The XLNet encoder uses the most advanced language
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model, transformer-XL, enabling XLNet to model longer dependencies. In addition, XLNet
uses an AR language model and context words to predict the next word. The context here is
limited to two directions, forward or backward. To add two-way semantic information, XL-
Net uses a permutation language model (PLM). PLM randomly generates an arrangement
of a sentence, covers a certain amount of words at the end and finally uses AR to predict the
words concealed in this arrangement. The AR method can better learn the dependencies
between tokens, while the AE method can better utilize the deep bidirectional information.

As a result, XLNet makes full use of the context information of the sentence and
considers the two-way information of the sentence to obtain an accurate representation of
the sentence semantics. As shown in Figure 3, when the tokens in the sentence are put into
XLNet, the order of the tokens in the sentence will be randomly shuffled. The next token
is predicted in order from left to right. In other words, the prediction of the last token is
based on the meaning of the preceding tokens.

1 2 3 4 5 6

3 6 1 4 2 5

3 6 1 4

3 6 1 4 2

3 6 1 4 2 5

Figure 3. The principle of the permutation language model in XLNet. The number i represents the
i-th token in a sentence. The blue text represents the knowledge predicted from the preceding context.

In this work, given a sentence s = {x1, x2...xn} and an entity pair, an XLNet model
is used to produce vectors λ that fully characterize the semantic features of the sentence.
To make the entities contain contextual semantic features, we filter the vectors of entities
from the word vectors generated by the sentences. The model fine-tunes the task-specific
basis of existing language models. After each token in sentence s =

{
x′1, x′2, ...x′n

}
is fed to

XLNet, XLNet outputs word vectors λ1 λ2...,λn, where λi represents the i-th token.

3.4. Relational Feature Representation

A neural network can be regarded as a black box that can fit any function. As long
as there is enough training data, given a specific x, the desired y can be obtained. Using
these networks, only one input can be individually processed at a time, and the previous
input and the next input are irrelevant. However, some tasks require information that can
better handle sequences; that is, the previous input is related to the following input. For
example, when we attempt to understand the meaning of a sentence, it is not sufficient to
understand each word of the sentence in an isolated manner. Instead, we need to process
the entire sequence of the connected words. In a sentence, the part-of-speech prediction of
the previous word for the current word is very influential. To solve some similar problems
and better process the information of the sequence, RNN is utilized.

RNN is one of the most commonly used models when dealing with time series
problems using deep learning. There are many application fields of RNNs. As long
as the problem of time sequence is considered, RNN can be used to solve it. The reason
why RNN has excellent performance on time series data is that RNN will use the hidden
node of the t − 1 time slice as the input of the current time slice in the t time slice. The
RNN structure is shown in Figure 4. In this figure, xt represents the input information,
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ht represents the hidden state, and A represents the RNN structure. Using RNN, the
information from the previous time slice is also used to calculate the content of the current
time slice, and the current output of the sequence is relative to the previous output. The
specific concept is that the network memorizes the previous information and applies it to
the calculation of the current output, and the nodes between the hidden layers become
connected. The input of the hidden layer includes not only the output of the input layer
but also the output of the hidden layer at the previous moment.

ht

xt

Figure 4. The structure of a recurrent neural network.

Although RNNs are widely used, they suffer from long-distance dependencies. The
reason for the long-distance dependence is that after the nodes of the neural network have
undergone many stages of computation, the features of the previous relatively long time
slice have been covered. LSTM is a variant of RNN that has the ability to learn long-term
and short-term information. The reason why LSTM can solve the long-term dependency
problem of RNNs is because LSTM introduces a gate mechanism to control the flow and
loss of features.

An RNN is a relatively mainstream network, but it is manually designed. Manually
designing RNNs is a laborious and challenging task. NAS is a fully automatic neural
structure search method that automatically learns applicable deep neural structures through
algorithms [39]. When optimizing the network, NAS can use different search strategies,
such as random search, Bayesian optimization, evolutionary algorithms, reinforcement
learning, and gradient-based algorithms. In NAS-RNN, we use the common and effective
reinforcement learning method to learn an RNN cell. NAS-RNN optimizes the network by
maximizing the expected accuracy of the network on the validation set.

Compared to manually designed RNNs, NAS-RNN offers the following advantages:

1. Automatic Search: Traditional manual design methods often require extensive trial
and error and significant human expertise. In contrast, NAS-RNN can automatically
search for the optimal RNN architecture, alleviating the burden of manual design. By
exploring various architectural spaces, it selects the structure best suited to the task,
thereby enhancing the performance of the relation extraction model.

2. Efficient Parameters and Computation: Fixed-structure models in relation extraction
tasks may possess excessive parameters, leading to high computational complexity.
NAS-RNN, however, can identify more precise and compact structures tailored to
specific task requirements. During the search process, NAS-RNN eliminates struc-
tural components that are irrelevant or perform poorly for the task, thereby reduc-
ing the presence of redundant parameters. Additionally, NAS-RNN can select and
configure appropriate structural components, enabling the model to better capture
the semantics and contextual information between relationships, thus improving
overall performance.

3. Improved Generalization Capability: By automatically searching for the optimal
structure, NAS-RNN can adaptively learn network architectures suitable for specific
tasks. This enhances its modeling capability for complex and noisy sequential data,
increasing the model’s applicability and value in real-world scenarios.

NAS-RNN employs a controller composed of RNNs to randomly sample RNN struc-
tures that need optimization with a probability p. Sub-networks are trained on the training
set, and accuracy R is calculated on the validation set. The accuracy R serves as a feedback
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signal, and NAS-RNN utilizes reinforcement learning as proposed by Zoph et al. [39].
The core idea of NAS-RNN is to learn to select RNN structures suitable for specific tasks
through continuous trial and error. The parameters of the controller are continuously ad-
justed during the training process to generate better RNN structures, aiming to maximize
performance metrics through reinforcement learning. This approach enables the automatic
search and learning of RNN structures that are suitable for specific tasks, thereby enhanc-
ing the model’s performance and generalization ability. Specifically, as shown in Figure 5,
NAS-RNN uses the policy gradient algorithm to update the controller’s parameters until
model convergence. It learns to select appropriate RNN structures through interaction with
the environment, maximizing a predefined performance metric via trial and error.

Trains a child 

network with RNN to 

get accuracy R

The controller (RNN)

Sample RNN with p

Update the controller

Figure 5. The flow chart of NAS-RNN, where the RNN in the left frame represents the optimized RNN.

To provide a detailed description of the NAS-RNN network, the following outlines
its process.

Initialize the Controller Network and Target Network. First, initialize a controller
network, which is a generative model used to produce action sequences for RNN network
structures. The parameters of the controller network are denoted as χc. At the same time,
initialize a target network, which is an RNN network to be optimized for training and
evaluation on the training dataset. The initial parameters of the target network are θ0.

Search and Training. In each iteration, use the current controller network and target
network to generate a series of action sequences c1:T . Convert each generated action
sequence c1:T into the corresponding RNN network structure and train that network on
the training dataset. Calculate the performance metric R(c1:T ; θ) corresponding to each
generated RNN network structure. Use gradient descent to update the parameters of the
target network θ using the following formulas:

Loss(Dtrain, R(c1:T ; θ)) (4)

θnew = θold − lr · ∇Loss(Dtrain, R(c1:T ; θ)) (5)

where Dtrain is the training dataset, θnew is the updated parameter, θold is the current
parameter value, lr is the learning rate, and ∇Loss(θold) is the gradient of the loss function
with respect to the target network parameters θold.

Updating the Controller Network Parameters. Let the parameters of the controller
network be denoted as χc. The objective function J(χc) can be defined as:

J(χc) = Ec1:T∼p(c1:T ;χc)[R(c1:T ; θ)] (6)

where p(c1:T ; χc) represents the probability distribution of generating the action sequence
c1:T given the controller network parameters χc. R(c1:T ; θ) denotes the expected return
after observing the action sequence c1:T .

To update the controller network parameters χc, we can utilize the gradient ascent
method, which requires calculating the gradient of the objective function J(χc) with respect
to the parameters χc and updating the parameters accordingly.
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Using the policy gradient method, we derive the gradient of the objective function
J(χc) concerning the parameters χc as follows:

∇χc J(χc) = Ec1:T∼p(c1:T ;χc)[∇χc log p(c1:T ; χc)R(c1:T ; θ)] (7)

where ∇χc denotes the gradient with respect to the parameters χc, and log p(c1:T ; χc) is the
logarithm of the probability of generating the action sequence c1:T .

Finally, we can update the controller network parameters using the gradient ascent
method, as shown in the following equation:

χt+1
c = χt

c + lr∇χc J(χt
c) (8)

where lr represents the learning rate, and χt
c denotes the parameter value of the controller

network at iteration t, which is used to control the step size of the parameter update. By
repeatedly executing the above steps, we continue until the convergence criteria are met or
a preset number of iterations is reached.

Similar to the structure of LSTM units, the NAS-RNN structure also requires gating
mechanisms. The NAS-RNN takes as input it, the previous hidden state ht−1, and the cell
state ct−1. The outputs of the controller are the current hidden state ht and the cell state ct.
The equations are as follows:

ht = sigmoid(hnew
0 ⊙ h1) (9)

hnew
0 = ReLU(h0 + ct−1) (10)

h0 = tanh(w1 ∗ it + w2 ∗ ht−1) (11)

h1 = ReLU((w3 ∗ it)⊙ (w4 ∗ ht−1)) (12)

ct = (w3 ∗ it)⊙ (w4 ∗ ht−1) (13)

In these equations, w1, w2, w3, and w4 are weight parameters, while sigmoid, tanh,
and ReLU are activation functions. From Equation (13), it can be observed that the cell state
ct in the network structure is dependent on it and ht−1.

4. Experiments

The results from the experiments in this work are used to show that our proposed
model can accurately represent the relationship of multiple entities in a sentence and can
be used to apply the features of sentence representation and entity features to extract the
relationship of entities in a sentence. To verify the performance of our proposed NAS-CRE
method, we compare it with different baseline models. The experimental setup of the
dataset and results are described in this section.

4.1. Dataset and Evaluation Metrics

To facilitate comparison with baselines, we conduct experiments on the dataset gen-
erated by [10]. Since we are performing the CRE task, we need to consider datasets with
multiple relationships in a sentence, and we do not use datasets with only one relation-
ship in a sentence. Such datasets are very rare, so we use the real data collected in [10].
Although we only used one dataset, this dataset is generated from Wikipedia data, which
is a large dataset and satisfies the condition of containing multiple relations in one sentence.
We believe that this dataset can be used in the demonstration of the effectiveness of the
proposed method. The dataset, which was obtained from the English Wikipedia knowledge
base, contains more than 28 million entities and 160 million relations. In each sentence
in a full article, Ref. [10] extracted link annotations and retrieved the Wikidata entity
ID corresponding to the linked article. There is an explicit one-to-one mapping between
Wikidata entities and Wikipedia articles. This dataset has two types of annotations: entity
and relation. In total, there are 353 different relationship types in this dataset. For the form
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and specific details of the dataset, we recommend readers refer to the original paper [10].
Table 1 shows the specific statistics of the dataset.

Following previous work [10], we evaluate the proposed model using the held dataset.
We also use accuracy, micro-F1, and the macro-precision–recall curve to evaluate our model.

Table 1. Dataset statistics, where relation triple denotes the number of {entity1, relation, entity2}.

Training Validation Held

Relation triple 284,295 113,852 287,902
Relation 578,199 190,160 600,804

4.2. Experimental Setup

In this study, the development process of NAS-CRE is meticulously carried out using
the advanced integrated development environment PyCharm, ensuring efficient code
writing and debugging. We chose Python 3.7 as the programming language, which provides
a solid foundation for NAS-CRE implementation due to its powerful library support and
simple syntax features. Additionally, the model construction relies on the industry-leading
Keras deep learning framework, which is widely praised for its ease of use and flexibility.
To further enhance computational performance, our server is equipped with an NVIDIA
GeForce RTX series GPU. This high-performance graphics processing unit provides robust
support for complex neural network training and inference tasks, ensuring efficient and
precise execution of computational tasks.

4.2.1. XLNet

We used XLNet-Base to initialize the word vector with 12 hidden units, 768 hidden lay-
ers, and 12 heads. The dropout of XLNet was 0.1 by default. We also set summary_last_drop
to 0.1. We used the trained XLNet model to encode sentences, resulting in word vectors
that fit the semantic information of sentences. The learning rate was set to 0.0001.

4.2.2. Fine-Tuning

We used the TensorFlow framework uniformly to implement the proposed method
and baselines. The model used the Adam [45] optimizer to calculate the gradient of the loss
function and update the parameters. To save time, we set the number of RNN layers to 3.
The hidden unit of NAS-RNN was 256. The remaining hyperparameters are listed in
Table 2. We calculated the true positive and false positive of each relationship separately.
Our model was trained on a Tesla V100 GPU for approximately 1 h.

Table 2. Hyperparameter statistics.

Hyperparameter Value

Dropout_rate 0.5
Batch_size 128
Max_sentence_len 36
Learning_rate 0.001
RNN_units 256
Decay 0.0001
Position_embedding 3
Windows_size 3

4.3. Comparison Models

To verify the effectiveness of our proposed model, we used the CRE method in [10] as
the baseline. We set the parameters according to the original text when reproducing the
baseline to ensure a fair comparison. The baseline models are as follows:
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LSTM-baseline [10] does not consider the impact of other entities of the sentence on
the target entity. Instead, GloVe is used as an encoder, and LSTM is adopted to obtain the
characteristics of the sentence.

ContextSum [10] considers the impact of other entities in the sentence on the target en-
tity. Relationships between entities are represented using weighted sums. It is implemented
using GloVe and LSTM.

ContextWeighted [10] considers the impact of other entities of the sentence on the
target entity. Other relations in the sentence are spliced with attention scores during target
entity extraction.

NAS-CRE is our proposed method and uses the XLNet pretraining model as an
encoder. In addition, the RNN structure is automatically optimized to better consider the
relationships of other entities in the sentence.

4.4. Results and Analysis

Table 3 shows the performance of different models on the hold-out dataset. Among
them, the first set of data is the result achieved in our experimental environment based
on the previous paper. LSTM-baseline, ContextSum, and ContextWeight are all encoded
using GloVe to generate vectors. The second set of results is the method we proposed,
using GloVe and XLNet as encoders. Specifically, the NAS-CRE model encoded with GloVe
achieved a Micro-F1 score of 88.40 and an accuracy of 90.08%, while the NAS-CRE model
encoded with XLNet achieved even better results, with a Micro-F1 score of 90.87 and an
accuracy of 91.25%. From this table, we obtain the following observations.

1. The performance of our proposed method was consistently and significantly improved
over all baselines. Specifically, when NAS-CRE was encoded with XLNet, the macro-
F1 was approximately 7% better than that of ContextWeight. This demonstrates
the robustness and adaptability of the proposed model, which uses NAS-RNN to
automatically adjust the RNN structure.

2. The LSTM-baseline model had poor performance in the relation extraction task. Due
to the lack of sentence content information, the impact of other entities in the sentence
on the target entity was not considered. In contrast, the model that considers sentence
content information was better, indicating that CRE had a significantly better effect
when extracting sentence-level relations.

3. NAS-CRE performed better when encoded with XLNet than with GloVe, demonstrat-
ing the effectiveness of XLNet in fully understanding sentence semantics.

Table 3. Micro-F1 of different models on the held dataset.

Model Encoder Micro-F1 Accuracy

LSTM-baseline GloVe 62.78 62.07
ContextSum GloVe 76.51 76.70
ContextWeight GloVe 82.36 85.25

NAS-CRE GloVe 88.40 90.08
NAS-CRE XLNet 90.87 91.25

To visualize the performance of various models, Figure 6 shows the results of the
macro-precision–recall curve. It can be understood from the definition of precision and
recall that the higher the precision and recall, the more efficient the model. In other words,
the closer the drawn curve is to the upper right, the better the effect. As shown in Figure 6,
we find that the models considering the content information of the sentence, such as our
method, which is abbreviated as NAS-CRE and integrates NAS into the CRE task, are
significantly better than LSTM baselines, indicating that the relationship between other
entities in the sentence can be inferred from the relationship between entities. For the other
two baseline methods, the effect of ContextWeight is better than that of ContextSum, and it
can be noted that using the attention score to connect the relations between entities is better
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than simply using concatenation. In addition, we can see that NAS-CRE consistently and
significantly outperforms all baselines by a recall of at least between 0.07 and 0.2.
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Figure 6. Aggregated macro precision–recall curves for different models.

4.5. Ablation Study

NAS-RNN and XLNet are two key components of our proposed model. To demon-
strate the role these two components play in the overall model, we also conducted ablation
experiments. XLNet is a generalized AR pretraining method based on the advantages and
disadvantages of BERT. To verify the superiority of XLNet alone, we replaced XLnet with
BERT and compared the micro-F1 value for information extraction. As shown in Table 4,
NAS-CRE is the complete model we proposed, and ‘w/o’ is the abbreviation of ‘without’,
which means to remove one or some modules. For example, ‘w/o XLNet’ means that XLNet
was not used to generate word vectors. Instead, GloVe was utilized as the encoder. The
abbreviation ‘w/o NAS’ represents the use of the XLNet pretrained model as the encoder
and LSTM as the feature extractor, ‘w/o NAS & XLNet’ represents a model where GloVe
and LSTM are used to complete information extraction, and ‘BERT+NAS-RNN’ represents
the replacement of XLNet in our proposed method with the pretrained BERT model.

Table 4. The micro-F1 of the models after removing some components.

Models Micro-F1 Accuracy

NAS-CRE 90.87 91.25

W/o XLNet 88.40 90.08
W/o NAS 86.32 87.27
W/o NAS & XLNet 82.36 85.25
BERT+NAS-RNN 89.46 90.52

As seen from Table 4, the difference between ‘w/o XLNet’ and the complete perfor-
mance is not large, indicating that XLNet’s role in the entire model is an attractive but
inessential addition. However, the model without NAS performs much worse than the
full model, indicating that after NAS automatically adjusts the structure of the RNN, the
RNN can fully capture the features of the sentence. After removing both NAS and XLNet,
the model is the same as the method proposed in the previous paper [10], and the effect
is very poor. Furthermore, we can clearly observe in Figure 6 that NAS-CRE outperforms
all baselines in almost 80% of the recalls. We find that when BERT is used instead of
XLNet in our proposed model, the performance is only slightly worse than that of our
proposed model but much better than that of the nonpretrained model. This shows that
the pretraining model can fully express the meaning of the sentence in terms of sentence
representation. In summary, in the whole framework, NAS-CRE and NAS have the most
significant impact on performance, and XLNet also affects the model, but it is slightly
inferior to NAS.
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5. Discussion

The NAS-CRE model stands out in the field of relation extraction primarily due
to its integration of cutting-edge NAS technology, which automates the fine-tuning of
RNN structures to precisely match the specific requirements of the task. This significantly
enhances the model’s performance in complex relation extraction tasks. Additionally, the
NAS-CRE model employs the advanced XLNet pre-trained model as its encoder, which
demonstrates exceptional ability in decoding the deep semantic features of sentences. The
self-attention mechanism of XLNet enables the model to capture long-range dependencies
in text, which is crucial for accurately identifying complex relationships between entities.
Compared to baseline models that focus only on the target entities, the NAS-CRE model
comprehensively considers the potential influence of other entities in the sentence on the
target entity. This makes the model not only more efficient but also more accurate when
extracting cross-entity relationships.

When evaluating the time complexity of models, the time complexity of NAS-RNN
is particularly crucial. Therefore, the following section will focus on comparing the time
complexity of NAS-RNN with that of traditional RNN.

5.1. Time Complexity of RNN

The time complexity of an RNN mainly depends on the length of the input sequence
T and the size of the hidden layer H. Suppose we have an input sequence of length T and
the hidden layer size is H, the time complexity of the RNN can be broken down into the
following parts:

Single-step computation complexity: At each time step t, the RNN needs to compute
the hidden state ht and possibly the output. The main computational cost comes from the
matrix multiplication. Assuming the hidden layer size is H, and the input dimension is I,
the computation complexity at each time step is O(H · (I + H)), where H is the size of the
hidden layer, and I is the input dimension.

Effect of sequence length: Since RNN processes the sequence step by step, the time
complexity for an input sequence of length T is computed T times.

Therefore, the total time complexity of the RNN is:

O(T · H · (I + H)) (14)

where T is the length of the input sequence, H is the size of the hidden layer, and I is the
dimension of the input data.

5.2. Time Complexity of NAS-RNN

The time complexity of NAS-RNN consists of two main parts: architecture search and
training of the optimal architecture.

5.2.1. Time Complexity of Architecture Search

A core feature of NAS-RNN is the automated architecture search. The architecture
search aims to find the optimal network architecture using search strategies such as rein-
forcement learning.

Assuming that we perform N architecture evaluations, where each evaluation requires
training a candidate architecture, the time complexity for training is the same as for a
standard RNN, i.e., O(T · H · (I + H)), where: T is the sequence length, H is the size of the
hidden layer, and I is the input dimension.

Thus, the time complexity of the architecture search is:

O(N · T · H · (I + H)) (15)

where N is the number of architecture evaluations. Since the architecture search usually
requires exploring a large number of candidate architectures, N is often a very large number.
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5.2.2. Time Complexity of Training the Optimal Architecture

Once the optimal architecture has been found through NAS, we can train it like a
regular RNN. The training time complexity is the same as for traditional RNNs. Assuming
the input sequence length is T, the hidden layer size is H, the input dimension is I, and the
time complexity for training the optimal architecture is:

O(T · H · (I + H)) (16)

Thus, the total time complexity of NAS-RNN is approximately:

O(N · T · H · (I + H)) + O(T · H · (I + H)) ≈ O(N · T · H · (I + H)) (17)

For NAS-RNN, the time complexity of the architecture search is O(N · T · H · (I + H)),
where N is the number of architecture evaluations. As a result, the total time complexity
of NAS-RNN is usually larger than that of traditional RNNs. However, the advantage of
NAS-RNN is that it can optimize the network architecture to achieve a more efficient and
task-specific model compared to traditional RNNs.

6. Conclusions

In this paper, we propose a new framework for solving the CRE task that uses an
RNN that automatically adjusts the network structure and parameters and considers the
effect of other entities in the sentence on the target entity. Moreover, we adopt the XLNet
pretrained model as an encoder to fully acquire semantic features between sentences. Ex-
periments on the dataset generated from Wikipedia show that NAS-CRE fully captures the
semantic features in sentences, maximizes the advantages of RNN, and achieves significant
improvements over all baselines.

In future work, we will explore the following ideas:

• The effectiveness of NAS-CRE on the CRE task has been demonstrated. In the future,
we will further explore the integration between NAS and other natural language tasks,
such as document-level relation extraction and event extraction.

• In the CRE task, we use attention scores to integrate the relationships between enti-
ties in sentences. We will explore further using other methods to connect different
relationships between sentences.

• We noticed that the training process of NAS-RNN is slightly long. We will further
explore the internal mechanism of NAS, change the search strategy, and shorten the
training time of NAS-RNN.
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