Optimal Routing of Gas Pipelines in Seismic Regions Using an Efficient Decision-Support Tool: A Case Study in Northern Greece
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Critical Infrastructure and Earthquake-Related Geohazards
2.2. Description of the Proposed Decision-Support Tool
2.2.1. GIS Geodatabase and Basic Criteria Definition
2.2.2. Multi-Criteria Decision Method and Weight Factors
2.2.3. GIS-Based Routing Analysis
3. Results from the Application of the Decision-Support Tool
- Scenario 1: Both primary and secondary seismic fault zones are much more important than slope inclination and potentially liquefiable areas.
- Scenario 2: Potentially liquefiable areas are much more important than the slope inclination and seismic fault zones.
- Scenario 3: Slope inclination is much more important than potentially liquefiable areas and seismic fault zones.
- Scenario 4: An intermediate scenario in which the slope inclination, potentially liquefiable areas, and seismic fault zones are equally important.
4. Discussion
5. Conclusions
- The examined area in northern Greece, between the cities of Kavala and Alexandroupolis, is prone to earthquake-related geohazards. Both standard and more complex earthquake-related geohazards coexist within a few square kilometers. Thus, the optimal routing of critical infrastructure in such areas constitutes a very demanding and challenging process.
- The assigned weight value corresponding to the criterion of slope inclination considerably affected the orientation of the proposed routings. This is evidenced by the fact that almost all of the proposed alternatives resulting from the “geotechnical” scenarios pass through the flat area south of the Kavala-Xanthi-Komotini main fault.
- Crossing a potentially liquefiable area located near the coast may be additionally unfeasible in engineering applications due to various restrictions associated with the presence of any infrastructure in coastal areas.
- Assigning high importance to seismic fault zones, which results in pipeline routings that cross the fault zones almost vertically, has led to up to 8% shorter routes compared to the other examined “geotechnical” scenarios.
- The route resulting from the holistic scenario is qualitatively compared to the existing route of the Trans Adriatic Pipeline (TAP). Both routes have similar lengths; they completely avoid potentially liquefiable areas while crossing the two considered secondary seismic fault zones. Nonetheless, the proposed routing does not cross the western part of the primary seismic fault zone as it passes through the gentle slopes in the north of the study area.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tomassi, A.; Caforio, A.; Romano, E.; Lamponi, E.; Pollini, A. The Development of a Competence Framework for Environmental Education Complying with the European Qualifications Framework and the European Green Deal. J. Environ. Educ. 2024, 55, 153–179. [Google Scholar] [CrossRef]
- Zhou, J.; Liang, G.; Deng, T.; Gong, J. Route Optimization of Pipeline in Gas-Liquid Two-Phase Flow Based on Genetic Algorithm. Int. J. Chem. Eng. 2017, 2017, 1640303. [Google Scholar] [CrossRef]
- Cruz-Chávez, M.A.; Moreno-Bernal, P.; Rivera-López, R.; Ávila-Melgar, E.Y.; Martínez-Bahena, B.; Cruz-Rosales, M.H. GIS Spatial Optimization for Corridor Alignment Using Simulated Annealing. Appl. Sci. 2020, 10, 6190. [Google Scholar] [CrossRef]
- Allen, J. Integrated Pipeline GIS, Finance and Work Management. Pipeline Gas J. 2008, 235, 59–61. [Google Scholar]
- Schwarz, L.; Robl, K.; Wakolbinger, W.; Mühling, H.; Zaradkiewicz, P. GIS Based, Heuristic Approach for Pipeline Route Corridor Selection. In Engineering Geology for Society and Territory—Volume 6: Applied Geology for Major Engineering Projects; Springer: Berlin/Heidelberg, Germany, 2015; pp. 291–295. ISBN 9783319090603. [Google Scholar]
- King, T.; Phillips, R.; Johansen, C. Pipeline Routing and Burial Depth Analysis Using GIS Software. In Proceedings of the Society of Petroleum Engineers—Arctic Technology Conference, Houston, TX, USA, 7–9 February 2011; pp. 445–455. [Google Scholar]
- Yildirim, V.; Yomralioglu, T. NABUCCO Pipeline Route Selection through Turkey Comparison of a GIS-Based Approach to a Traditional Route Selection Approach. Oil Gas Eur. Mag. 2011, 37, 20–24. [Google Scholar]
- Wan, J.; Qi, G.; Zeng, Z.; Sun, S. The Application of AHP in Oil and Gas Pipeline Route Selection. In Proceedings of the 19th International Conference on Geoinformatics, Shanghai, China, 24–26 June 2011. [Google Scholar]
- Durmaz, A.İ.; Ünal, E.Ö.; Aydın, C.C. Automatic Pipeline Route Design with Multi-Criteria Evaluation Based on Least-Cost Path Analysis and Line-Based Cartographic Simplification: A Case Study of the Mus Project in Turkey. ISPRS Int. J. Geoinf. 2019, 8, 173. [Google Scholar] [CrossRef]
- Jennings, P.C. (Ed.) Engineering Features of the San Fernando Earthquake of February 9, 1971. EERL 71-02 Report, California Institute of Technology, 1971. Available online: https://authors.library.caltech.edu/records/d6sex-fw741/preview/7102.pdf (accessed on 15 October 2024).
- Earthquake Engineering Research Institute EERI Special Earthquake Report—December 1999. The Chi-Chi, Taiwan Earthquake of September 21, 1999. 1999. Available online: https://www.eeri.org/lfe/pdf/Taiwan_ChiChi_Insert_Dec99.pdf (accessed on 15 October 2024).
- Moehle, J.U.B.; Riddell, R.U.C.; Boroschek, R.U.C. 8.8 Chile Earthquake of February 27, 2010. EERI Spec. Earthq. Rep. 2010, 10, 1–20. [Google Scholar]
- Zhao, B.; Taucer, F. Performance of Infrastructure during the May 12, 2008 Wenchuan Earthquake in China. J. Earthq. Eng. 2010, 14, 578–600. [Google Scholar] [CrossRef]
- Uckan, E.; Aksel, M.; Atas, O.; Toprak, S.; Kaya, E.S. The Performance of Transmission Pipelines on February 6th, 2023 Kahramanmaras Earthquake: A Series of Case Studies. Bull. Earthq. Eng. 2024. [Google Scholar] [CrossRef]
- Schuster, R.L.; NietoThomas, A.S.; O'Rourke, T.D.; Crespo, E.; Plaza-Nieto, G. Mass Wasting Triggered by the 5 March 1987 Ecuador Earthquakes. Eng. Geol. 1996, 42, 1–23. [Google Scholar] [CrossRef]
- Yildirim, V.; Yomralioglu, T.; Nisanci, R.; Erbas, Y.S.; Bediroglu, S. Natural Gas Transmission Pipeline Route Selection Using GIS and AHP. In Proceedings of the Pipeline Technology Conference, Ostend, Belgium, 7–9 October 2013. [Google Scholar]
- Hamid-Mosaku, I.A.; Oguntade, O.F.; Ifeanyi, V.I.; Balogun, A.-L.; Jimoh, O.A. Evolving a Comprehensive Geomatics Multi-Criteria Evaluation Index Model for Optimal Pipeline Route Selection. Struct. Infrastruct. Eng. 2020, 16, 1382–1396. [Google Scholar] [CrossRef]
- Yildirim, V.; Yomralioglu, T.; Nisanci, R.; Çolak, H.E.; Bediroğlu, Ş.; Saralioglu, E. A Spatial Multicriteria Decision-Making Method for Natural Gas Transmission Pipeline Routing. Struct. Infrastruct. Eng. 2017, 13, 567–580. [Google Scholar] [CrossRef]
- Makrakis, N.; Psarropoulos, P.N.; Chatzidakis, D.; Tsompanakis, Y. Route Optimization of Offshore Lifelines Taking Into Account Potential Earthquake-Related Geohazards. Front. Built. Environ. 2020, 6, 112. [Google Scholar] [CrossRef]
- Makrakis, N.; Psarropoulos, P.N.; Chatzidakis, D.; Tsompanakis, Y. Optimal Route Selection of Offshore Pipelines Subjected to Submarine Landslide. Open Civ. Eng. J. 2022, 16, e187414952209160. [Google Scholar] [CrossRef]
- Makrakis, N.; Psarropoulos, P.N.; Tsompanakis, Y. GIS-Based Optimal Route Selection of Submarine Cables Considering Potential Seismic Fault Zones. Appl. Sci. 2023, 13, 2995. [Google Scholar] [CrossRef]
- Makrakis, N.; Psarropoulos, P.N.; Tsompanakis, Y. GIS-Based Multi-Criteria Decision Methodology for the Optimal Routing of Large-Scale Lifelines against Earthquake-Related Geohazards. In Proceedings of the Pipeline Technology Conference 2024, Beriln, Germany, 25 August 2024. [Google Scholar]
- Makrakis, N.; Psarropoulos, P.N.; Sextos, A.; Tsompanakis, Y. Do Soft Soil Layers Reduce the Seismic Kinematic Distress of Onshore High-Pressure Gas Pipelines? Bull. Earthq. Eng. 2024, 22, 159–189. [Google Scholar] [CrossRef]
- Choudhury, D.; Chaudhuri, C.H. A Critical Review on Performance of Buried Pipeline Subjected to Pipe Bursting and Earthquake Induced Permanent Ground Deformation. Soil Dyn. Earthq. Eng. 2023, 173, 108152. [Google Scholar] [CrossRef]
- American Society of Civil Engineers (ASCE). Committee on Gas and Liquid Fuel Lifelines. Guidelines for the Seismic Design of Oil and Gas Pipeline Systems; American Society of Civil Engineers: New York, NY, USA, 1984; ISBN 978-0-87262-428-3. [Google Scholar]
- American Lifelines Alliance. Guidelines for the Design of Buried Steel Pipe; American Society of Civil Engineers: Reston, VA, USA, 2001. [Google Scholar]
- EN 1998-4:2006; Eurocode 8: Design of Structures for Earthquake Resistance—Part 4: Silos, Tanks and Pipelines. European Commitee for Standardization (CEN): Brussels, Belgium, 2006.
- Cruden, D.M.; Varnes, D.J. Landslide Types and Processes. In Landslides: Investigation and Mitigation, Transportation Research Board, Special Report No. 247; Turner, A.K., Shuster, R.L., Eds.; 1996; pp. 36–75. Available online: https://onlinepubs.trb.org/Onlinepubs/sr/sr247/sr247-003.pdf (accessed on 15 October 2024).
- Alvarado-Franco, J.P.; Castro, D.; Estrada, N.; Caicedo, B.; Sánchez-Silva, M.; Camacho, L.A.; Muñoz, F. Quantitative-Mechanistic Model for Assessing Landslide Probability and Pipeline Failure Probability Due to Landslides. Eng. Geol. 2017, 222, 212–224. [Google Scholar] [CrossRef]
- Vasseghi, A.; Haghshenas, E.; Soroushian, A.; Rakhshandeh, M. Failure Analysis of a Natural Gas Pipeline Subjected to Landslide. Eng. Fail. Anal. 2021, 119, 105009. [Google Scholar] [CrossRef]
- Li, H.-J.; Zhu, H.-H.; Zhang, C.-X.; Zhang, W. Modelling and Analysing Failure Modes of Buried Pipelines Perpendicularly Crossing Landslide Boundaries. Soil Dyn. Earthq. Eng. 2022, 162, 107447. [Google Scholar] [CrossRef]
- Savigny, K.W.; Porter, M.J.; Leir, M. Geohazard Risk Management for the Onshore Pipeline Industry. Oil Gas Rev. 2005, 2, 1–3. [Google Scholar]
- Sweeney, M.; Gasca, A.H.; Garcia—Lopez, M.; Palmer, A.C. Pipelines and Landslides in Rugged Terrain: A Database, Historic Risks and Pipeline Vulnerability. In Proceedings of the International Conference On: Terrain and Geohazard Challenges Facing Onshore Oil and Gas Pipelines; Sweeney, M., Ed.; Thomas Telford Limited: London, UK, 2005; pp. 641–660. [Google Scholar]
- Esford, F.; Porter, M.; Savigny, K.W.; Muhlbauer, W.K.; Dunlop, C. A Risk Assessment Model for Pipelines Exposed to Geohazards. In Proceedings of the Biennial International Pipeline Conference, IPC, Calgary, AB, Canada, 4–8 October 2004. [Google Scholar]
- European Gas Pipeline Incident Data Group (EGIG). Gas Pipeline Incidents: 9th Report of the European Gas Pipeline Incident Data Group (Period 1970–2013). Doc. Number EGIG 14.R.0403; European Gas Pipeline Incident Data Group (EGIG): Groningen, The Netherlands, 2015. [Google Scholar]
- Castiglia, M.; Fierro, T.; Santucci De Magistris, F. Pipeline Performances under Earthquake-Induced Soil Liquefaction: State of the Art on Real Observations, Model Tests, and Numerical Simulations. Shock. Vib. 2020, 2020, 8874200. [Google Scholar] [CrossRef]
- Newmark, N.M.; Hall, W.J. Pipeline Design to Resist Large Fault Displacement. In Proceedings of the US National Conference on Earthquake Engineering, Berkeley, CA, USA, 18–20 June 1975; pp. 416–425. [Google Scholar]
- Wang, L.R.; Yeh, Y.-H. A Refined Seismic Analysis and Design of Buried Pipeline for Fault Movement. Earthq. Eng. Struct. Dyn. 1985, 13, 75–96. [Google Scholar] [CrossRef]
- Talebi, F.; Kiyono, J. Introduction of the Axial Force Terms to Governing Equation for Buried Pipeline Subjected to Strike-Slip Fault Movements. Soil Dyn. Earthq. Eng. 2020, 133, 106125. [Google Scholar] [CrossRef]
- Talebi, F.; Kiyono, J. Comparison of 3D Solid and Beam–Spring FE Modeling Approaches in the Evaluation of Buried Pipeline Behavior at a Strike-Slip Fault Crossing. Energies 2021, 14, 4539. [Google Scholar] [CrossRef]
- Dey, S.; Chakraborty, S.; Tesfamariam, S. Structural Performance of Buried Pipeline Undergoing Strike-Slip Fault Rupture in 3D Using a Non-Linear Sand Model. Soil Dyn. Earthq. Eng. 2020, 135, 106180. [Google Scholar] [CrossRef]
- Trifonov, O.V. Numerical Stress-Strain Analysis of Buried Steel Pipelines Crossing Active Strike-Slip Faults with an Emphasis on Fault Modeling Aspects. J. Pipeline Syst. Eng. Pract. 2015, 6, 04014008. [Google Scholar] [CrossRef]
- Rojhani, M.; Moradi, M.; Galandarzadeh, A.; Takada, S. Centrifuge Modeling of Buried Continuous Pipelines Subjected to Reverse Faulting. Can. Geotech. J. 2012, 49, 659–670. [Google Scholar] [CrossRef]
- Jalali, H.H.; Rofooei, F.R.; Khajeh, A.A.N. Performance of Buried Gas Distribution Pipelines Subjected to Reverse Fault Movement. J. Earthq. Eng. 2018, 22, 1068–1091. [Google Scholar] [CrossRef]
- Cooke, M.L. Fracture Localization along Faults with Spatially Varying Friction. J. Geophys. Res. Solid Earth 1997, 102, 22425–22434. [Google Scholar] [CrossRef]
- Mandl, G. Faulting in Brittle Rocks—An Introduction to the Mechanics of Tectonic Faults, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Gudmundsson, A.; Simmenes, T.H.; Larsen, B.; Philipp, S.L. Effects of Internal Structure and Local Stresses on Fracture Propagation, Deflection, and Arrest in Fault Zones. J. Struct. Geol. 2010, 32, 1643–1655. [Google Scholar] [CrossRef]
- Peacock, D.C.P.; Nixon, C.W.; Rotevatn, A.; Sanderson, D.J.; Zuluaga, L.F. Interacting Faults. J. Struct. Geol. 2017, 97, 1–22. [Google Scholar] [CrossRef]
- Baize, S.; Nurminen, F.; Sarmiento, A.; Dawson, T.; Takao, M.; Scotti, O.; Azuma, T.; Boncio, P.; Champenois, J.; Cinti, F.R.; et al. A Worldwide and Unified Database of Surface Ruptures (SURE) for Fault Displacement Hazard Analyses. Seismol. Res. Lett. 2019, 91, 499–520. [Google Scholar] [CrossRef]
- Lin, A.; Chiba, T. Coseismic Conjugate Faulting Structures Produced by the 2016 Mw 7.1 Kumamoto Earthquake, Japan. J. Struct. Geol. 2017, 99, 20–30. [Google Scholar] [CrossRef]
- Ross, Z.E.; Idini, B.; Jia, Z.; Stephenson, O.L.; Zhong, M.; Wang, X.; Zhan, Z.; Simons, M.; Fielding, E.J.; Yun, S.H.; et al. Hierarchical Interlocked Orthogonal Faulting in the 2019 Ridgecrest Earthquake Sequence. Science (1979) 2019, 366, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Chatzidakis, D.; Tsompanakis, Y.; Psarropoulos, P.N. Kinematic Distress of Pipelines Subjected to Secondary Seismic Fault Rupture. Soil Dyn. Earthq. Eng. 2022, 152, 107065. [Google Scholar] [CrossRef]
- Chatzidakis, D.; Makrakis, N.; Psarropoulos, P.N.; Tsompanakis, Y. Near-Surface Secondary Ruptures Caused by Oblique Main Faults and Distress of Intersecting Pipelines. Soil Dyn. Earthq. Eng. 2024, 179, 108554. [Google Scholar] [CrossRef]
- ESRI (Environmental Systems Resource Institute). ArcGIS Desktop: Release 10.4; ESRI: Redlands, CA, USA, 2016. [Google Scholar]
- Effat, H.A.; Hassan, O.A. Designing and Evaluation of Three Alternatives Highway Routes Using the Analytical Hierarchy Process and the Least-Cost Path Analysis, Application in Sinai Peninsula, Egypt. Egypt. J. Remote Sens. Space Sci. 2013, 16, 141–151. [Google Scholar] [CrossRef]
- Saaty, T.L. A Scaling Method for Priorities in Hierarchical Structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Bhushan, N.; Rai, K. Strategic Decision Making: Applying the Analytic Hierarchy Process, 1st ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004; ISBN 9781852337568. [Google Scholar]
- Dijkstra, E.W. A Note on Two Problems in Connexion with Graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef]
- European Space Agency. Copernicus Global Digital Elevation Model. Distributed by OpenTopography. Available online: https://portal.opentopography.org/raster?opentopoID=OTSDEM.032021.4326.3&minX=16.611328124999982&minY=35.25907654252575&maxX=28.916015624999982&maxY=42.24071874922669 (accessed on 17 June 2024).
- Tavasci, L.; Vecchi, E.; Gandolfi, S. Performance of Atlas GNSS Global Correction Service for High-Accuracy Positioning. J. Surv. Eng. 2021, 147. [Google Scholar] [CrossRef]
- Runfola, D.; Anderson, A.; Baier, H.; Crittenden, M.; Dowker, E.; Fuhrig, S.; Goodman, S.; Grimsley, G.; Layko, R.; Melville, G.; et al. GeoBoundaries: A Global Database of Political Administrative Boundaries. PLoS ONE 2020, 15, e0231866. [Google Scholar] [CrossRef] [PubMed]
- Information Management Systems Institute “Athena” Research Center GEODATA.Gov.Gr. Available online: http://geodata.gov.gr/dataset/ (accessed on 25 January 2024).
- Styron, R.; Pagani, M. The GEM Global Active Faults Database. Earthq. Spectra 2020, 36, 160–180. [Google Scholar] [CrossRef]
- Zhu, J.; Baise, L.G.; Thompson, E.M. An Updated Geospatial Liquefaction Model for Global Application. Bull. Seismol. Soc. Am. 2017, 107, 1365–1385. [Google Scholar] [CrossRef]
- United States Geological Survey (USGS) USGS Earthquake Hazards Program. Available online: https://earthquake.usgs.gov/earthquakes/search/ (accessed on 10 November 2024).
- Humanitarian OpenStreetMap Team (HOT) Greece Roads (OpenStreetMap Export). Available online: https://data.humdata.org/dataset/hotosm_grc_roads (accessed on 27 June 2024).
- European Environmental Agency (EEA) Datahub Natura 2000 Data—The European Network of Protected Sites. Available online: https://www.eea.europa.eu/en/datahub/datahubitem-view/6fc8ad2d-195d-40f4-bdec-576e7d1268e4 (accessed on 20 June 2024).
- Trans Adriatic Pipeline. Routing Report. Report CAL00-PMT-000-A-TRP-0001; Trans Adriatic Pipeline: Baar, Switzerland, 2013. [Google Scholar]
- Delimani, P.; Xidakis, G. Geomorphologic Changes in the Coastline of Vistonis Lake, Thrace, N. Greece. Bull. Geol. Soc. Greece 2018, 36, 988–997. [Google Scholar] [CrossRef]
- Mountrakis, D.; Tranos, M.; Papazachos, C.; Thomaidou, E.; Karagianni, E.; Vamvakaris, D. Neotectonic and Seismological Data Concerning Major Active Faults, and the Stress Regimes of Northern Greece. Geol. Soc. Lond. Spec. Publ. 2006, 260, 649–670. [Google Scholar] [CrossRef]
- Mountrakis, D.; Tranos, M. The Kavala-Xanthi-Komotini Fault (KXKF): A Complicated Active Fault Zone in Eastern Macedonia-Thrace (Northern Greece). In Proceedings of the 5th International Symposium on Eastern Mediterranean Geology, Thessaloniki, Greece, 14–20 April 2004; Chatzipetros, A., Pavlides, S., Eds.; pp. 857–860. [Google Scholar]
- Marinos, V.; Stoumpos, G.; Papazachos, C. Landslide Hazard and Risk Assessment for a Natural Gas Pipeline Project: The Case of the Trans Adriatic Pipeline, Albania Section. Geosciences 2019, 9, 61. [Google Scholar] [CrossRef]
- Sweeney, M. International Conference on Terrain and Geohazard Challenges Facing Onshore Oil and Gas Pipelines: Evaluation, Routing, Design, Construction, Operation; Sweeney, M., Ed.; Thomas Telford Ltd.: London, UK, 2005; ISBN 978-0727732781. [Google Scholar]
- Ha, D.; Abdoun, T.H.; O’Rourke, M.J.; Symans, M.D.; O’Rourke, T.D.; Palmer, M.C.; Stewart, H.E. Earthquake Faulting Effects on Buried Pipelines—Case History and Centrifuge Study. J. Earthq. Eng. 2010, 14, 646–669. [Google Scholar] [CrossRef]
- Gantes, C.J.; Melissianos, V.E. Evaluation of Seismic Protection Methods for Buried Fuel Pipelines Subjected to Fault Rupture. Front. Built. Environ. 2016, 2, 34. [Google Scholar] [CrossRef]
- Huang, Z.; Cheng, Y.; Zhang, D.; Yan, D.; Shen, Y. Seismic Fragility and Resilience Assessment of Shallowly Buried Large-Section Underground Civil Defense Structure in Soft Soils: Framework and Application. Tunn. Undergr. Space Technol. 2024, 146, 105640. [Google Scholar] [CrossRef]
Criteria | Weight Factors (%) | Sub-Criteria | Weight Factors (%) | |||||
---|---|---|---|---|---|---|---|---|
Scenarios | Sub-Scenarios | |||||||
1 | 2 | 3 | 4 | 1 | 2 | 3 | ||
Slope Inclination (°) | 9.1 | 9.1 | 81.8 | 33.3 | 0°–10° | 2.8 | ||
10°–20° | 24.3 | |||||||
20°–30° | 24.3 | |||||||
30°–40° | 24.3 | |||||||
40°–50° | 24.3 | |||||||
Potentially Liquefiable Areas | 9.1 | 81.8 | 9.1 | 33.3 | - | - | ||
Seismic Fault Zones | 81.8 | 9.1 | 9.1 | 33.4 | Main Fault | 81.8 | 9.1 | 9.1 |
1st Secondary Fault | 9.1 | 81.8 | 9.1 | |||||
2nd Secondary Fault | 9.1 | 9.1 | 81.8 |
Slope Inclination | Potentially Liq. Areas | Seismic Fault Zones | Road Network | Natura 2000 Areas | Urban Areas | |
---|---|---|---|---|---|---|
Slope Inclination | 1 | 2 | 2 | 3 | 3 | 3 |
Potentially Liq. Areas | 1/2 | 1 | 2 | 4 | 4 | 3 |
Seismic Fault Zones | 1/2 | 1/2 | 1 | 2 | 3 | 3 |
Road Network | 1/3 | 1/4 | 1/2 | 1 | 1/3 | 1/4 |
Natura 2000 Areas | 1/3 | 1/4 | 1/3 | 3 | 1 | 1/2 |
Urban Areas | 1/3 | 1/3 | 1/3 | 4 | 2 | 1 |
Criteria | Weight Factors (%) | Sub-Criteria | Rating Score (%) | ||
---|---|---|---|---|---|
Sub-Scenarios | |||||
1 | 2 | 3 | |||
Slope Inclination (°) | 30.0 | 0°–10° | 3.3 | ||
10°–20° | 11.8 | ||||
20°–30° | 17.9 | ||||
30°–40° | 28.9 | ||||
40°–50° | 38.1 | ||||
Potentially Liquefiable Areas | 25.6 | - | |||
Seismic Fault Zones | 17.8 | - | - | ||
Road Network | 5.9 | - | - | ||
Natura 2000 Areas | 8.7 | - | - | ||
Urban Areas | 12.0 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makrakis, N.; Psarropoulos, P.N.; Tsompanakis, Y. Optimal Routing of Gas Pipelines in Seismic Regions Using an Efficient Decision-Support Tool: A Case Study in Northern Greece. Appl. Sci. 2024, 14, 10970. https://doi.org/10.3390/app142310970
Makrakis N, Psarropoulos PN, Tsompanakis Y. Optimal Routing of Gas Pipelines in Seismic Regions Using an Efficient Decision-Support Tool: A Case Study in Northern Greece. Applied Sciences. 2024; 14(23):10970. https://doi.org/10.3390/app142310970
Chicago/Turabian StyleMakrakis, Nikolaos, Prodromos N. Psarropoulos, and Yiannis Tsompanakis. 2024. "Optimal Routing of Gas Pipelines in Seismic Regions Using an Efficient Decision-Support Tool: A Case Study in Northern Greece" Applied Sciences 14, no. 23: 10970. https://doi.org/10.3390/app142310970
APA StyleMakrakis, N., Psarropoulos, P. N., & Tsompanakis, Y. (2024). Optimal Routing of Gas Pipelines in Seismic Regions Using an Efficient Decision-Support Tool: A Case Study in Northern Greece. Applied Sciences, 14(23), 10970. https://doi.org/10.3390/app142310970