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Abstract: Shale gas, a significant recoverable natural gas resource trapped in shale formations,
represents a significant energy reservoir. Although China has significant recoverable shale gas re-
serves, the challenge of controlling drilling costs remains a critical barrier to efficient development.
This study presents a novel stacked ensemble learning model that integrates support vector ma-
chine (SVM) and long short-term memory (LSTM) networks to improve the accuracy of shale gas
drilling cost prediction. The methodology consists of three main phases. First, we constructed a
comprehensive, multidimensional spatiotemporal dataset of shale gas drilling costs. Second, we
used Gradient Boosting Decision Tree (GBDT) modelling to rank the importance of various factors
influencing drilling costs. Finally, we developed a stacked ensemble learning model combining
SVM and LSTM architectures to achieve superior cost prediction accuracy. Experimental results
demonstrate the effectiveness of the model, with the coefficient of determination (R?) improving
from 0.25189/0.33834 (traditional SVM/LSTM models) to 0.55934. Model validation using selected
well investment data from the Changning Block shows promising performance, achieving a Mean
Absolute Percentage Error (MAPE) of 6.41%, with optimal prediction accuracy in the medium invest-
ment range (60-70 million yuan). This innovative approach provides a reliable tool for predicting
shale gas drilling costs and offers new methodological perspectives for cost reduction strategies. The
results contribute significantly to the sustainable development of shale gas resources and provide
valuable insights for industry practitioners and researchers in the fields of energy economics and
resource management.
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1. Introduction

As a cornerstone of global energy production, the oil and gas industry has historically
faced challenges in accurately predicting and optimising drilling costs [1]. As exploration
and production activities expand into more complex geological formations and extreme
environments, the need for sophisticated cost prediction and optimisation techniques
becomes increasingly important [2].

Drilling operations represent a significant proportion of the total expenditure incurred
in oil and gas exploration and production. Industry reports indicate that drilling costs
can account for up to 50% of the total cost of well development, with this percentage
often increasing in challenging environments, such as ultra-deepwater or unconventional
reservoirs [3]. The ability to accurately predict and optimise these costs is not only a matter
of financial prudence, but also a critical factor in project feasibility, risk management and
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strategic decision making [4]. With volatile oil prices and increased environmental scrutiny,
the need for cost-effective and efficient drilling operations has never been more pressing.

Traditionally, the estimation of drilling costs has relied on empirical models and expert
judgement [5]. While these methods have proven valuable, they often fail to capture the
full complexity of drilling operations, particularly in new or challenging environments.
The inherent uncertainty of subsurface conditions, coupled with the dynamic nature of the
drilling process, often results in significant discrepancies between estimated and actual
costs [6]. Such inaccuracies can lead to project overruns, sub-optimal resource allocation
and, in some cases, the abandonment of otherwise viable prospects.

The advent of big data analytics, machine learning and artificial intelligence has
ushered in a transformative era in drilling cost forecasting and optimisation [7]. These
technologies can process vast amounts of historical and real-time data, identify complex
patterns, and generate insights that were previously unattainable [8]. In the context of
shale gas development and exploitation, understanding the cost structure and making
dynamic predictions about cost changes is critical [9]. This enables the formulation of
effective development strategies and informed decision making.

The rest of the paper is organised as follows: Section 2 presents the related work
on machine learning, respectively; Section 3 analyses the data characteristics of shale gas
drilling costs and the existing related machine learning models and proposes a stacked
integrated learning scheme based on SVM + LSTM; Section 4 shows the experimental
results and analyses them, and finally summarises the work and proposes a further optimi-
sation scheme.

2. Related Work
2.1. Feature Engineering and Selection for Drilling Costs

Feature engineering and selection play a critical role in improving the accuracy and
effectiveness of drilling cost prediction models. Numerous studies have focused on devel-
oping novel methods in this area.

Sajadfar and Ma [10] introduced a hybrid cost estimation algorithm that uses a feature-
oriented data mining approach to improve the accuracy of cost estimation for engineering
projects, particularly in drilling operations. This innovative method integrates domain
expertise with data-driven analysis to effectively extract and select features relevant to cost
estimation. By combining feature-driven conceptual cost estimation with advanced data
mining techniques, the framework demonstrates improved performance and reliability
compared to traditional cost estimation methods.

Barbosa et al. [11] reviewed various machine learning methods applied to the predic-
tion and optimisation of drilling penetration rates (ROP). They found that methods such as
artificial neural networks, support vector machines and random forests were successful in
modelling complex ROP relationships with drilling parameters and formation properties.
Key advantages of these approaches include improved prediction accuracy, the ability
to handle non-linear effects, and the potential for real-time optimisation. This analysis
provides a data-driven approach to decision making for drilling operation costing. In a
separate study, Ren et al. [12] focused on optimising features for predicting drilling rates
based on real-time data. Their approach allows for dynamic selection and optimisation
of features in response to new data arrivals, improving the adaptability of the model to
changing drilling conditions. This adaptive capability leads to more accurate predictions in
the context of geological uncertainties.

Eskandarian et al. [13] used a comprehensive data mining approach to estimate the
rate of penetration and emphasised the importance of feature ranking. Their research
highlighted the need to identify and prioritise the most influential features for accurate
ROP prediction, using neural networks, rule-based models and feature ranking techniques
to improve prediction accuracy. In addition, Pan et al. [14] proposed a methodology
for predicting drilling costs based on self-adaptive differential evolution and support
vector regression. This approach automatically selects optimal features and parameters,
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thereby improving prediction accuracy and generalisation ability. Taken together, these
studies highlight the importance of advanced feature engineering and selection methods in
improving the accuracy and reliability of drilling cost predictions [15].

2.2. Machine Learning and Ensemble Learning for Drilling Cost Prediction

The application of machine learning and ensemble learning techniques has signifi-
cantly transformed drilling cost forecasting, providing improved accuracy and robustness
compared to traditional methods. Robi Polikar [16] proposed the use of machine learn-
ing methods for cost forecasting in the energy sector and subsequently introduced an
ensemble approach to validate its effectiveness in improving prediction accuracy. Xu
et al. [17] developed a Genetic Algorithm—Back Propagation (GA-BP) neural network-
based model specifically for ultra-deep well drilling cost prediction. This model exploits
the global optimisation capabilities of genetic algorithms in conjunction with the learning
capabilities of back-propagation neural networks and demonstrates particular effective-
ness in dealing with the inherent complexities of ultra-deep well drilling. Liu et al. [18]
introduced a stacked generalisation ensemble model to optimise and predict the rate of
penetration (ROP) in gas wells. A case study conducted in Xinjiang showed that ensemble
methods significantly improved prediction accuracy compared to individual models. The
stacked model outperformed single models such as random forest and gradient boosting,
demonstrating its superior predictive capability.

Hegde and Gray [9] investigated the potential of machine learning and data analytics
to improve drilling efficiency in the vicinity of neighbouring wells. Their methodology uses
historical data from neighbouring wells to optimise drilling parameters and reduce costs.
It was shown that transfer learning techniques can be effectively used to apply knowl-
edge from one well to improve predictions for nearby wells. Yehia et al. [19] conducted a
comparative analysis of machine learning techniques for predicting ROP in geothermal
wells, using a case study from the FORGE research site. They evaluated the performance
of algorithms, such as random forests, gradient boosting and neural networks, and found
that random forests achieved the highest accuracy in their case study. The authors high-
light the importance of representative training data and feature engineering for effective
ROP modelling.

Nautiyal and Mishra [20] explored the potential of machine learning to improve
drilling efficiency in the oil and gas industry. The study demonstrated the potential of
Al-driven approaches to optimise drilling operations and reduce associated costs. The
researchers investigated the applicability of a number of machine learning algorithms to
different aspects of drilling optimisation. Matinkia et al. [21] developed a novel model for
predicting the rate of penetration in drilling operations using convolutional neural networks
(CNN). The approach demonstrated the potential of deep learning techniques to capture
complex patterns in drilling data, thereby enabling more accurate ROP predictions. Tewari
et al. [22] proposed an intelligent drilling methodology for oil and gas wells using response
surface methodology and artificial bee colony optimisation. Their hybrid approach showed
promise in optimising drilling parameters and reducing costs. These studies illustrate the
growing prevalence of advanced machine learning and ensemble techniques in addressing
the complexities of drilling cost prediction and optimisation and represent a significant
advance in the field.

2.3. Dynamic Cost Prediction for Shale Gas Drilling and Development

The dynamic nature of shale gas drilling and development requires the use of advanced
predictive models that can adapt to changing conditions and incorporate a range of factors
that influence costs over time.

Eltrissi et al. [23] proposed a machine learning framework for optimising drilling
operations. Their approach integrates real-time sensor data, geological information, and
machine learning models to provide decision support for adjusting drilling parameters
such as weight on bit and speed. The authors demonstrate the framework’s ability to
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improve ROP and reduce drilling time and costs compared to conventional optimisation
methods. Similarly, Yang et al. [24] focused on optimising drilling parameters for target
wells using machine learning and data analytics. Their research highlights the importance
of adaptive models that can account for the unique characteristics of each well within
shale gas fields. By integrating data pre-processing, feature selection and various machine
learning algorithms, they effectively optimised drilling parameters in a dynamic context.
Elahifar and Hosseini [25] developed an automated real-time prediction system for
geological formation tops during drilling operations. Although their study did not di-
rectly address cost prediction, their machine learning solution applied to the Norwegian
Continental Shelf illustrates the potential of real-time data integration within dynamic
drilling models that can significantly influence cost estimates. Their system achieved high
accuracy in predicting formation tops, potentially leading to reduced drilling times and
associated costs. In addition, Sabah et al. [26] introduced a machine learning approach for
predicting the rate of penetration (ROP) based on petrophysical and mud logging data.
This method, which is adaptable for real-time predictions, has significant implications for
dynamic cost estimation in shale gas drilling. The researchers compared different machine
learning algorithms and found that ensemble methods were most effective in addressing
the complexities associated with ROP prediction. Together, these studies underscore the
growing importance of dynamic, adaptive models capable of real-time cost prediction and
optimisation in the rapidly evolving landscape of shale gas drilling and development.

2.4. Intelligent Drilling Systems and Automation

Recent advances in intelligent drilling systems and automation technologies represent
a significant trend in improving drilling efficiency and cost effectiveness. Li et al. [27]
provide an invaluable contribution to the field of intelligent drilling and completion tech-
nologies. They cover a wide range of topics, including real-time data acquisition, the
development of automated decision-making frameworks, and the formulation of sophis-
ticated control algorithms. Their findings illustrate how these innovations facilitate cost
reduction and improve the efficiency of drilling operations. Yang et al. [28] explore the ap-
plication of artificial intelligence (Al) to improve drilling status detection in the oil drilling
sector. Their empirical research demonstrates the ability of Al techniques to automatically
detect and respond to varying drilling conditions, thereby minimising human error and
increasing operational efficiency.

Bello et al. [29] provide a thorough review of Al methods applied to the design and
operation of drilling systems. They examine various Al techniques and their potential ap-
plications in various aspects of drilling, including well planning and real-time optimisation.
Their analysis highlights the ability of Al to optimise decision-making processes, ultimately
leading to reduced drilling costs. Gan et al. [30] propose a multi-objective optimisation
approach for operational drilling parameters in complex geological contexts. Their method
aims to improve drilling efficiency by simultaneously optimising multiple parameters, thus
demonstrating the effectiveness of advanced optimization techniques in reducing both
drilling costs and duration.

Taken together, these studies highlight the transformative potential of intelligent sys-
tems and automation technologies in drilling operations. By harnessing these advances,
the industry can achieve substantial cost savings and significant improvements in opera-
tional efficiency.

2.5. Economic Analysis and Cost Optimization in Drilling Operations

Several studies have focused on the economic aspects of drilling operations and
methods for optimising costs through various techniques. Ozdemir et al. [31] conducted a
comprehensive drilling evaluation and cost analysis of oil and gas wells drilled onshore
in Turkey. Their study provided valuable insights into the factors influencing drilling
costs in specific geological and economic contexts, emphasising the importance of region-
specific cost models. Nwanwe and Teodoriu [32] introduced a matrix for selecting and
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comparing drilling methods and technologies for a wide range of applications. Their
approach facilitates decision making by evaluating different drilling technologies based on
both technical and economic criteria, potentially leading to more cost-effective choices in
drilling operations.

Purba et al. [33] investigated the optimisation of geothermal drilling costs in Indonesia,
taking into account various influencing factors. Their research highlighted the unique
challenges and opportunities associated with geothermal drilling and showed that cost
optimisation strategies can vary significantly depending on the type of drilling operation.
Bani Mustafa et al. [34] focused on improving drilling performance by optimising control-
lable drilling parameters. Their results indicated that careful parameter optimisation could
result in significant cost savings and efficiency improvements in drilling operations. Taken
together, these studies highlight the importance of comprehensive economic analysis and
strategic optimisation in effectively managing drilling costs.

3. Materials and Methods
3.1. Shale Gas Cost Structure Explained

As an unconventional natural gas resource, the development and production of shale
gas is not only of great importance to the energy industry, but also has a significant impact
on economic, environmental and social development. To fully understand the cost structure
of shale gas, several factors need to be carefully considered, including exploration and
development, production and transportation costs.

First, exploration and development costs are the primary expenditure in shale gas
projects. These costs include geological exploration, drilling, reservoir evaluation, engi-
neering design and equipment procurement. Shale gas resources are typically located in
deep formations, and the exploration and development process requires significant capital
and human resources to determine the presence of natural gas and estimate recoverable
reserves [35]. In addition, the complexity of shale gas reservoirs requires the use of ad-
vanced technology and equipment for development, which further increases exploration
and development costs.

Second, production costs are a critical factor affecting the economic viability of shale
gas development. In the shale gas development process, production costs mainly include
well operating costs, hydraulic fracturing operations and capacity maintenance [36]. Com-
pared to conventional natural gas production, shale gas production requires extensive
hydraulic fracturing to release the natural gas, which significantly increases production
costs. In addition, the extended production cycle of shale gas requires continuous invest-
ment in maintaining production capacity and implementing post-production management,
further increasing production costs.

In addition, transportation costs are a significant component of the shale gas cost
structure. Shale gas development often takes place in remote areas or regions with complex
geological conditions, and the transportation, processing and storage of natural gas requires
significant resources and capital investment. In particular, the construction, operation and
maintenance costs of transport pipelines have a direct impact on the overall economics of
shale gas development [37].

Beyond the primary factors mentioned above, the cost structure of shale gas is influ-
enced by several additional elements, including technological progress and innovation,
regulatory policy, capital market conditions and geological characteristics. Technological
progress and innovation can reduce exploration and development costs while improving
production efficiency, thereby reducing overall costs. Changes in policy and regulation
have a direct impact on the cost of shale gas projects through fiscal policy, environmental
standards and exploration and production licences. Capital market conditions and the
investment environment affect the cost of financing and investment decisions for shale gas
projects. In addition, regional geological conditions influence the complexity of shale gas
exploration and development, which in turn affects the cost structure [38].
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Therefore, elucidating the cost structure of shale gas requires consideration of multiple
aspects, including exploration and development, production and transportation costs,
as well as the influence of technological, political, capital and geological factors. Under-
standing these elements is crucial for formulating appropriate development strategies,
optimising production costs and enhancing competitiveness [39].

3.2. Model and Proposed Method
1. GBDT

Gradient Boosting Decision Trees (GBDT) is a machine learning algorithm that per-
forms prediction and regression analysis by integrating multiple decision trees. GBDT
employs an iterative training process whereby multiple weak classifiers (decision trees)
are progressively enhanced, thus improving the overall predictive performance of the
model [40]. This method enables the calculation of the importance indices for each feature,
thus facilitating the identification of the factors that exert the greatest influence on the target
variable. To gain a comprehensive understanding of the fundamentals and implementation
of the GBDT algorithm, it is recommended to consult the paper by Chen and Guestrin [41]
and the study by Alonso-Espafiol et al. [42].

2. SVM

Support Vector Machine (SVM) is a versatile machine learning algorithm used for both
classification and regression tasks. It aims to find the optimal hyperplane that maximizes
the margin between classes in the feature space [43]. In this study, the SVM model is
employed for regression analysis of the factors influencing shale gas drilling costs, with the
objective of obtaining accurate and reliable predictions. For a comprehensive understanding
of the principles and applications of SVMs, it is recommended to consult the seminal work
by Vapnik [44] and the review by Smola and Scholkopf [45].

3. LSTM

Long Short-Term Memory (LSTM) is a specialised type of Recurrent Neural Network
(RNN) designed to efficiently process sequence data [46]. In the context of time series
analysis, LSTM is capable of learning patterns and trends, as well as capturing the dynamic
effects of different features on costs, thereby facilitating more accurate forecasting. To gain
a comprehensive understanding of the LSTM structure and its application in sequence
modelling, it is recommended to consult the original paper by Gers et al. [47] and the
review by Greff et al. [48].

4. Stacking Integrated Learning Models

Stacking is an advanced integrated learning technique that improves prediction per-
formance by systematically combining SVM and LSTM models [49]. This methodology
involves several sequential steps: first, the dataset is partitioned into training and test
sets; then, the SVM and LSTM base models are trained independently; these base models
then generate predictions for the test set; these predictions then serve as novel features
for the metamodel input construction; the metamodel is trained; and finally, the trained
stacking model processes new data for prediction. This integrated approach effectively
synthesises the complementary strengths of different models, thereby improving overall
prediction accuracy.

The research framework uses GBDT, SVM and LSTM models in a collaborative manner
to optimise the cost of drilling individual wells in shale gas operations. As shown in
Figure 1, the methodology demonstrates the integration of learning through the GBDT
model for a comprehensive analysis of cost influencing factors. The selected features
initially serve as inputs to the GBDT model, which is trained to elucidate and quantify their
respective influences on shale gas drilling costs. The model autonomously learns feature
relationships and corresponding weights, generating an interpretable framework for both
cost prediction and factor analysis. The output of the GBDT model provides a hierarchical
ranking of the factors influencing drilling costs, along with precise quantification of each
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feature’s contribution. This analytical framework enables researchers and decision makers
to understand the differential impact of different factors on costs, providing a scientific
basis for drilling process optimisation and cost control.
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Figure 1. Multi-model collaborative application construction idea diagram.

In addition, a two-dimensional integrated learning model is implemented to improve
the accuracy and reliability of dynamic cost prediction in shale gas drilling. The stacking
methodology synthesises the predictive outputs of the LSTM and SVM models, effectively
exploiting their complementary advantages. The LSTM model is particularly adept at time
series analysis, performing sophisticated feature extraction to capture temporal dynamics
and cyclical patterns. Conversely, SVM models, on the other hand, are good at spatial data
analysis and can effectively establish decision boundaries for classification or regression of
multivariate data sets, especially when the sample size is limited. The choice of SVR as a
metamodel in the SVM model not only inherits the principle of structural risk minimisation
of the SVM, but also constructs a robust nonlinear regression estimator through the e-
insensitive loss function in a small sample learning scenario.

The results of both cost prediction models are comprehensively evaluated to assess
predicted costs from multiple analytical perspectives. This evaluation facilitates the selec-
tion of optimal algorithms and parameter configurations, ultimately improving prediction
accuracy and providing robust decision support.

3.3. Optimisation Programme and Valuation Indicators

1.  Grid search represents a systematic approach to hyperparameter optimisation in
machine learning models. The method functions by exhaustively testing predefined
combinations of hyperparameters, including those related to learning rate, regular-
isation strength, and tree depth, through the utilisation of cross-validation for the
assessment of model performance. Although grid search is an effective method for
identifying optimal hyperparameter combinations and improving model performance
through parallel computing, its efficiency is significantly reduced when dealing with
large search spaces [50].

2. K-fold cross-validation represents a robust methodology for the assessment of machine
learning models, whereby the dataset is partitioned into K equal subsets (commonly 5
or 10), with one subset designated as the validation set and the remaining K-1 subsets
serving as the training set. This process is repeated K times, with each part serving as
the validation set in turn, and the results are averaged to obtain the final performance
evaluation. This approach effectively utilises all available data and helps to optimise
model hyperparameters while avoiding the limitations of single train-test splits [51].

3. Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are two commonly
used error assessment metrics to quantify the deviation between the predicted and
actual values of a model [52]. MAE is the average of the sum of the absolute values
of the differences between all predicted values and the true values, which measures
the average deviation of the predicted values from the true values. The smaller the
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value of MAE, the smaller the deviation of the model’s predicted results from the
true values, indicating better prediction performance. RMSE is the square root of the
average of the squares of the prediction errors. It not only focuses on the deviation
between the predicted value and the true value, but also amplifies the effect of larger
deviations, so RMSE is more sensitive to larger errors.

n

1 N A
MAE = HZi:l‘yU —g¥ (1)

RMSE = ¢ Y 0 - g0)? @)

where y(!) and §() are the true and predicted values of the sample, respectively, and n
is the total number of samples.

4. Decision coefficient. The evaluation measures the strength of the model by calculating
the coefficient of determination, where the value is in the range of (0, 1) and, the closer
its value is to 1, the better the model is fitted [52].

_ r 3)
ri (v - y“))z

where y() is the true value, y(l) is the average value of the true value, §( is the

predicted value, and §U) is the average value of the predicted value.

4. Experiments and Results
4.1. Data Sources

This study analyses data from 564 shale gas development wells and 31 shale gas
appraisal wells in the Sichuan Basin during the period 2015-2022. The data sources of
the study mainly include two dimensions: first, production and operation data such as
engineering data, construction parameters and cost data within the southwest oil and
gas field enterprises; and second, time series data, such as macroeconomic indicators and
other time series data from research institutions, government statistical offices and industry
consulting firms, as well as spatial dimensions, such as geological conditions, covering
more than 36 indicator items in total.

In the process of data preparation, it is very important to select appropriate eigenvalues
because the choice of eigenvalues directly affects the subsequent analysis and modelling
results. According to the research content of this project, we selected 36 variables for the
study, as shown in Table 1.

Table 1. Variable for shale gas drilling costs.

Index Variable Name Index Variable Name Index Variable Name Index Variable Name
Fracturing pum Per capita consumption
1 Well number 10 ressi fe P 19 Annual GDP 28 expenditure of urban
P residents
Consumer Price Per capita consumption
2 Well type 11 Fluid intensity 20 29 expenditure of rural
Index (CPI) -
residents
3 Comn‘gssmnmg 12 Total sand addition 2 Total imports 30 Total retail sales of
time and exports consumer goods
. Number of public
4 Well depth 13 Number of 22 Average daily 31 buses and trolley buses
platform wells temperature . .
in the municipal area
Horizontal 'S.hale .yards Number of Number of taxis in the
5 . 14 verified single well 23 . 32 ..
section length bridges municipal area

EUR
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Table 1. Cont.

Index Variable Name Index Variable Name Index Variable Name Index Variable Name
Number of people
6 Actual fracturing 15 Degree of policy o4 Area of real 33 employed in the
length support roads in cities transport storage and
postal sector
Number of Geological Total :ﬁag.e;()f
7 fracturing 16 coosica 25 on-the’jo 34 Number of post offices
- conditions workers in the
sections .
municipal area
Sand addition Degree of scientific Number of
8 - . 17 and technological 26 employed 35 Cargo turnover
intensity ;
expenditures persons
Fracturin Corporate Average number Investment in drilling
9 dis alcacuem egnt 18 Commodity Price 27 of employed 36 and completion of
P Index (CGPI) workers wells
4.2. Data Processing
After the construction of the spatio-temporal big data set was completed, the data
integrity was first systematically tested. The test results showed that part of the dataset was
missing in 2021-2022, for which a data processing scheme was developed. The complete
analytical dataset was then constructed through a series of data pre-processing steps,
including data de-weighting, missing value filling, outlier identification and processing,
data structure optimisation, interpolation calculation and standardisation processing.
4.3. Pearson Test
In this study, a multidimensional correlation analysis of drilling engineering param-
eters and their influencing factors was carried out using Pearson correlation analysis
statistics, a number of correlations with different levels of significance were found, reflect-
ing the existence of a significant correlation between the factors, and the results are shown
in Table 2.
Table 2. Pearson test results for different shale gas drilling costs features.
Index Variable Name Pearson Correlation p-Value (Max)
1 Actual fracturing length 0.091781 0.042279
2 Annual GDP 0.119031 0.008352
3 Area of real roads in cities —0.097925 0.030209
4 Average daily temperature 0.094083 0.037349
5 Average number of employed workers 0.102400 0.023397
6 Cargo turnover 0.095721 0.034148
7 Consumer Price Index (CPI) 0.095045 0.035440
8 Corporate Commodity Price Index (CGPI) —0.104520 0.020664
9 Degree of policy support —0.125078 0.005562
10 Degree of scientific and technological expenditures 0.418286 0.000001
11 Fluid intensity —0.110961 0.013989
12 Fracturing displacement —0.091786 0.042268
13 Fracturing pump pressure 0.122340 0.006700
14 Geological conditions 0.159277 0.000401
15 Horizontal section length —0.095850 0.033905
16 Number of bridges 0.238878 0.000001
17 Number of employed persons —0.146708 0.001126
18 Number of fracturing sections 0.106456 0.018414
19 Number of fracturing sections 0.106456 0.018414
20 Number of people employed in the transport storage and 0101383 0024816

postal sector
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Table 2. Cont.
Index Variable Name Pearson Correlation p-Value (Max)
21 Number of platform wells —0.094622 0.036268
22 Number of public buses and trolley buses in the municipal area —0.551319 0.000000
23 Number of taxis in the municipal area 0.130173 0.003896
24 Per capita consumption expenditure of rural residents 0.605843 0.000001
25 Per capita consumption expenditure of urban residents —0.169663 0.000161
26 Sand addition intensity —0.108594 0.016181
27 Shale yards verified single well EUR —0.092772 0.040095
28 Total imports and exports 0.102400 0.023397
29 Total retail sales of consumer goods 0.134243 0.002906
30 Total sand addition —0.159130 0.000406
31 Total wages of on-the-job workers in the municipal area 0.278988 0.000001
32 Well depth 0.092305 0.041111

Through a detailed analysis of the p-values, these variables were classified into three
levels according to their level of significance:

1.  Analysis of factors with very high significance

The study showed that there was a significant correlation between technical engineer-
ing parameters and economic indicators. The level of technological expenditure showed a
significant positive correlation (r = 0.418, p ~ 0.000001) with the total wages of workers,
indicating a significant link between drilling technology inputs and labour costs. The
level of infrastructure support also showed synergistic effects, with the positive correlation
between the number of bridges and the actual road area (r = 0.239, p ~ 0.000001) reflecting
the systematic nature of drilling project support facilities. These associations reveal the
complexity of the cost components of drilling projects.

2. Analysis of highly significant factors

Fracturing technical parameters show significant technical correlations. Fracturing
pump pressure and total sand addition show a positive correlation (r = 0.122, p = 0.007),
reflecting the intrinsic link between fracturing process parameters, while the negative
correlation between total sand addition and platform wells (r = —0.159, p = 0.0004) reveals
the influence of scale effect on material utilisation efficiency. Meanwhile, the correlation
(r=10.159, p = 0.0004) between geological conditions and the company’s commodity price
index suggests that geological factors have a significant impact on drilling costs.

3. Analysis of factors influencing moderate significance

A weak but significant correlation was found between drilling parameters and external
factors. The positive correlation between the actual fracturing length and the number of
bridges (r = 0.092, p = 0.042) and the negative correlation between the horizontal section
length and the number of platform wells (r = —0.096, p = 0.034) reflect the need for compre-
hensive consideration of external conditions in engineering design. Particularly noteworthy
is the correlation between the degree of political support and fluid intensity (r = —0.111,
p = 0.014) and shale gas single well EUR (r = —0.093, p = 0.040), suggesting that the political
environment has a moderating effect on the selection of technical drilling parameters and
final production capacity.

As shown in Figure 2, the results of the statistical analysis based on Pearson correlation
analysis allow us to scientifically verify the rationality of the selected indicators. The analy-
sis shows that multi-level correlation analysis reveals the complex interactions between
technical parameters, economic indicators, geological conditions and political environment
in drilling technology. There is an obvious correlation between the technical parameters of
the drilling project, geological conditions and the level of infrastructure support, and these
have an important impact on the implementation of the drilling project, which should be
taken into account in the cost forecast, and the policy environment plays an important role
in regulating the choice of drilling project technology and improving economic efficiency.
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4.4. Descriptive Analysis of Data

In this study, descriptive statistical analysis of shale gas related data is shown in
Table 3, which is the frequency distribution table of the time of production, from which it is
known that the valid number of samples for the data is 490.

Table 3. Frequency distribution of commissioning times.

Frequency Percentage Effective Percentage = Cumulative Percentage

2015 20 41 41 41

2016 24 49 49 9.0

2017 16 3.3 3.3 122

2018 38 7.8 7.8 20.0

2019 100 20.4 20.4 404

2020 157 32.0 32.0 72.4

2021 74 15.1 15.1 87.6

2022 61 12.4 124 100.0

Total 490 100.0 100.0

Figure 3 show that the shale gas drilling activity shows significant uneven distribution
characteristics between the different years. Among them, the drilling activity in 2020 is the
most active, accounting for 32.0% of the total, closely followed by 2019 and 2021, accounting
for 20.4% and 15.1%, respectively. In stark contrast, drilling activity was relatively subdued
between 2015 and 2017, creating a distinctly concave area on the radar chart, with 2017
being particularly inactive, accounting for just 3.3% of the total.

Comparing the two key metrics of drilling frequency (blue curve) and percentage
distribution (green curve), it can be seen that both show very similar distribution patterns.
The cumulative percentage shows a gradual upward trend over time, a feature that strongly
confirms the apparent cyclical nature of shale gas production activities.
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Figure 3. Frequency and percentage analysis of shale gas drilling.

Table 4 shows the results of descriptive statistical analysis of macroeconomic indicators:
CGPI enterprise commodity price index, annual GDP (billion yuan), consumer price index
CPL, total imports and exports (billion yuan) and average daily temperature (°C).

Table 4. Descriptive statistics of macroeconomic indicators.

CGPI Corporate Annual GDP Consumer Price Total Import and Average Daily
Goods Price Index (Billion Yuan) Index CPI Export (Billion Yuan)  Temperature (°C)
Effective number 490 490 490 490 490
of cases
Minimum value 92.7 871.36 100.1 24.88 0.5
Maximum value 110.1 1614.47 102.6 49.38 31
Mean value 101.13 1364.12 101.82 37.69 18.48
Standard 4.00 190.01 0.88 6.89 8.18
Deviation

Table 5 shows the mean, median, variance, minimum and maximum values of each
drilling parameter and drilling and completion investment obtained through descriptive
statistical analysis.

Before implementing machine learning algorithms, data partitioning for model train-
ing and testing is essential. The data set is systematically divided into two distinct com-
ponents: the training set and the test set. The training set is used to calibrate the model
by adjusting its parameters according to the specified machine learning algorithm, with
the goal of optimising the fit between model predictions and actual outcomes within the
training data [53].

The test set remains completely independent of the training process and is used solely
to evaluate the final performance of the model at the end of training. This approach provides
robust insights into the model’s ability to generalise when applied to previously unseen,
independent data. In this research, a 70:30 ratio was used to partition the data into training
and test sets. This partitioning method proves particularly effective for model training and
validation when applied to large datasets characterised by relatively uniform distributions.
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Table 5. Descriptive statistics of drilling engineering parameters.
Variant Mean Median Variance Minimum — Maximum
Value Value
Well depth (metres) 4875.57 4900 222,555.88 3330 6325
Horizontal section length (metres) 1662.14 1500 127,824.33 850 3100
Actual fracturing length (metres) 1579.62 1470 147,103.84 236 3166
Number of fracturing sections (sections) 25.00 24 37.73 4 51
Strength of sand addition (Mg/m) 2.30 2.32 0.36 0.81 4.70
Fracturing displacement (m3/min) 0.427 0.447 0.005 0.241 1.618
Fracturing pump pressure (MPa) 75.81 75.72 73.53 50.5 96.68
Intensity of fluid used (m?/m) 29.16 28.77 14.37 16.09 44.58
Total sand addition (Mg) 3688.65 3369.04 2,431,753.95 319.48 11,813.79
Number of platform wells (ports) 4.82 5 2.12 1 8
Verification of single well EUR by shale yard (10° m3) 1.14 1.12 0.15 0.19 242
Investment in drilling and completing wells (10° yuan) 64.3429 62.9134 10,597.0741 37.4399 120.3020

4.5. Drilling Cost Indicator Construction

With today’s rapid advances in big data and artificial intelligence technologies, large-
scale data processing and mining is playing an increasingly important role in the analysis of
drilling cost drivers and the development of optimisation strategies. Traditional cost analy-
sis methods often show limitations in considering indirect factors and fail to fully exploit
the potential of big data analysis, thereby limiting the effectiveness of cost optimization
initiatives. As a result, this research is based on a comprehensive big data analytics frame-
work that examines multiple factors that influence shale gas drilling costs. The primary
objective is to develop a holistic cost analysis methodology that is capable of thoroughly
incorporating various influencing factors, which is of significant value in optimising shale
gas drilling costs.

As shown in Table 6, this study incorporates indicators across 13 different dimensions
to provide a comprehensive analysis of the factors influencing shale gas drilling costs.
In addition, through an extensive literature review and consideration of data accessibil-
ity, 36 specific variables were systematically selected for investigation during the data
preparation phase.

Table 6. Drilling cost indicator construction system.

Classification

Variant Classification Variant

Basic information

fracturing sections, sand addition intensity,

Number of bridges, real urban
road area

Well number, type of well and time of
commissioning
Well depth, horizontal section length,
actual fracturing length, number of

Road conditions

Corporate Goods Price Index (CGPI),

Macroeconomic annual GDP, Consumer Price Index

fracturing displacement, fracturing pump
pressure, fluid intensity used, total sand

addition, number of platform wells, shale
yard verification of individual wells EUR

Engineering parameters

(CPI), total imports and exports

Policies

Geological conditions

Science and Technology
Innovation

Investment costs

Temperature

Level of policy support

Per capita water resources

Degree of expenditure on science
and technology

Investment in drilling and completion
of wells

Daily average temperature values

Labour Force

Consumption Level

Accessibility

Logistics

Weather conditions

Total wage bill of workers in
employment in the municipal area,
number of employed persons
Per capita consumption expenditure
of urban residents, per capita
consumption expenditure of rural
residents and total retail sales of
consumer goods
Public Tram Passenger Volume in
Municipal Districts and Number of
Taxis in Municipal Districts
Transport, storage and postal
employment, number of post offices
and cargo turnover
Daily average temperature value
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4.6. Feature Importance Calculation Based on GBDT Algorithm

This study aims to use the GBDT model to quantify and elucidate the factors influenc-
ing shale gas drilling costs and their respective degrees of influence through the analysis
of pre-processed data. The model inputs consist of pre-processed data covering a wide
range of variables affecting shale gas drilling costs, including engineering parameters,
construction processes, settlement data, macroeconomic indicators, meteorological and nat-
ural disaster information, geological conditions, transport logistics, living conditions and
regulatory policies. The integration of these comprehensive features into the GBDT model
facilitates the training process in order to explain and quantify their respective impacts on
shale gas drilling costs. The model autonomously identifies the intricate relationships and
weights between the features, generating an interpretable framework for both drilling cost
prediction and factor analysis [51]. The output of the GBDT model provides a hierarchical
ranking of the factors influencing drilling costs, accompanied by a precise quantification
of the specific contribution of each feature. The GBDT model training process generated
importance indices for the features included in each shale gas cost prediction model. The
six most important influencing factors identified through this analysis are presented in
Table 7.

Table 7. Analysis of Factors Affecting Shale Gas Costs.

Rank

Factor

Importance Index Impact Level Detailed Description

7+

Number of Fracturing

Sections

Well Depth

Number of Platform

Wells

Actual Fracturing

Length

Fracturing Pump

Pressure

Sand Intensity 0.0402 Medium Impact

Increasing the number of fracturing
sections can enhance shale gas production
but leads to higher costs in drilling,
fracturing, and equipment.
Greater well depth results in higher
exploration and development costs,
requiring longer drilling time, larger
drilling equipment, and more investment.
Increasing platform wells improves
extraction efficiency and reduces
0.1281 High Impact production costs by centralizing multiple
wells in one location, saving on drilling
and production equipment.
Longer fracturing lengths can increase
shale gas production but require more
fracturing materials and fluids, resulting
in higher construction costs.
Higher pump pressure can increase well
0.0589 Medium Impact production but results in increased energy
consumption and equipment costs.
Higher sand intensity can improve
fracturing results and increase production
but increases the amount and cost of sand
and fracturing fluid used.

Other listed factors have relatively low
impact on shale gas costs. While they may

0.3462 High Impact

0.1806 High Impact

0.0644 Medium Impact

Other Factors <0.0400 Low Impact have some influence in specific situations,

their impact needs to be considered from
a comprehensive perspective.

Notes: Impact Level Classification: High Impact: Importance Index > 0.1000; Medium Impact: Importance Index
0.0400-0.1000; Low Impact: Importance Index < 0.0400.

4.7. Results

Stacking model parameter optimisation aims to determine the optimal configuration
of base models (SVM and LSTM)), the appropriate number of base models and the most
effective combination method. Several combinations and ratios are systematically tested
and evaluated using the validation set. Subsequently, the most appropriate meta-model is
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selected for the final prediction based on the outputs of the base models. The grid search
methodology is used to evaluate different parameter combinations, with selection based on
quantitative performance metrics. To ensure model efficiency and parameter optimisation,
the data is systematically partitioned into training, validation and test sets, followed by
evaluation of the model’s predictive ability on the test set. This methodological approach
effectively addresses potential overfitting issues and provides a more robust assessment of
the model’s ability to generalise.

To evaluate the effectiveness of the SVM_LSTM stacked model, a comparative analysis
is performed against the individual SVM and LSTM models. To visually demonstrate the
advantages of the SVM_LSTM methodology, the predicted values from the test data are
compared across all three methods, as shown in Figure 4. The analysis shows that, while
both the traditional SVM and LSTM models demonstrate satisfactory drilling cost prediction
capabilities after training and generally meet the required prediction requirements, the
SVM_LSTM stacked model exhibits improved prediction accuracy.

12,000 A —— Realdata
LSTM Predicted Values
—— SVM Predicted Values

11,000 1 —— LSTM_SVM_Stacking Predicted Values

10,000
9,000 -
8,000 -

7,000

6,000 - @

5,000 -

Drilling Costs(Ten thousand Yuan)

4,000 -

0 20 40 60 80 100 120 140
Test Set Sample Size

Figure 4. Comparison of predicted values of models test data.

4.8. Analysis of Results
4.8.1. Comparison of Prediction Accuracy

As shown in Figure 5, these are the results of the predictive evaluation metrics for the
SVM model, the LSTM model and the LSTM_SVM_Stacking model. The Stacking model
has the lowest RMSE (697.37), which is about 22% lower than the single model. The LSTM
(854.53) is slightly better than the SVM (908.64), but the difference is not significant. The
Stacking model significantly outperforms the single model in terms of overall prediction
accuracy. The Stacking model has the lowest MAE (438.50), which is about 20.62% lower
than the single model. The MAEs of SVM (573.75) and LSTM (552.38) are very close to
each other. The trend of improvement in MAE is consistent with the RMSE, indicating
consistency of results. The R? value of the Stacking model (0.559) is significantly higher
than that of the single model. The LSTM (0.338) is slightly better than the SVM (0.252).
The R? of the Stacking model almost doubled, indicating a significant improvement in the
explanatory power of the model.

SVM and LSTM have similar performance, suggesting that they may capture different
features in the data. LSTM slightly outperforms SVM, possibly due to the ability to better
handle temporal features in the data. The Stacking model significantly outperforms a single
model, demonstrating the effectiveness of integrated learning. Performance improvement
may come from combining the advantages of different models.
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Figure 5. Comparison of RMSE\MAE\R? Values for Three Models.

4.8.2. Discussion

Figure 6 illustrates the results of the evaluation of the three models. The probability
density plot modelled to predict shale gas cost regressions is shown, providing detailed
information on the model predictions.

1. Characteristic Analysis of the Prediction Distribution

When the LSTM_SVM_Stacking model is compared with the SVM model and the
LSTM model, its probability density points show obvious centralised distribution char-
acteristics, with a large number of prediction points clustered around the standard line;
moreover, the degree of dispersion of the predicted values is small, indicating that the
prediction results of the model have a high degree of stability, coupled with the symmetry
of the distribution pattern of the predicted values, which means that the prediction errors
of the model are more balanced in the positive and negative directions. This concentrated
distribution indicates that the shale gas cost prediction model has achieved excellent results
in this task and is able to accurately capture the correlation between the true value and the
predicted value.

2. Analysis of prediction accuracy:

Further examination of the predicted probability density plots shows that there is
a close correlation between the predicted and true values. The LSTM_SVM_Stacking
model’s close fit of the predicted points to the standard line compared to the SVM model
and the LSTM model reflects the model’s high prediction accuracy. In addition, the
LSTM_SVM_Stacking model has fewer outliers and outliers, indicating that the model
maintains stable prediction performance for different input scenarios with good confidence.
This close relationship indicates that the model has high prediction accuracy and reliability
for the problem under study.

To ensure the model’s ability to predict shale gas costs for unknown samples, shale gas
drilling cost prediction curves were generated on the test set, as shown in Figures 3 and 4.
As can be seen in Figure 7, the SVM model, the LSTM model and the LSTM_SVM_Stacking
model were used to predict the drilling costs on the test set, and the predicted curves of
the LSTM_SVM_Stacking model are basically the same as the actual value curves, which
indicates that this study achieves better shale gas drilling cost modelling. In the subsequent
shale gas drilling cost prediction, the drilling cost can be simulated with the model of this
study on the previously unexamined data, so as to reduce the economic losses caused by
the shale gas exploration process.
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Figure 6. Three models drilling cost prediction effects. (a) SVM Model, (b) LSTM Model,
(c) LSTM_SVM_Stacking Model.

In addition, this study adopts a stacked integrated learning model of SVM and LSTM,
and combines these two models to predictively model the shale gas drilling cost dataset
using SVM’s sensitivity to spatial data and LSTM'’s sensitivity to temporal features. By
exploiting the respective advantages of SVM and LSTM, this study was able to provide
a more comprehensive analysis of the various factors in the dataset, resulting in more
accurate predictions. The combined model achieved satisfactory prediction results. The
Mean Absolute Error (MAE) is 438.50 and the Root Mean Square Error (RMSE) is 697.37,
indicating that the model in this study is able to effectively and accurately predict shale
gas drilling costs. This indicates that the model used in this study is able to utilise both
spatial and temporal information, thus capturing the essential characteristics of drilling
costs and improving the accuracy and reliability of the prediction. In order to present the
prediction results in a more intuitive manner, this study conducted a visualisation analysis
to clearly demonstrate the relationship between the predicted values and the actual values
through graphs and charts, thus revealing a certain degree of fit patterns captured by
the model. This further validates the validity and reliability of the shale gas drilling cost
prediction model used in this study. The results of this study provide a reliable and effective
methodology for predicting shale gas drilling costs, providing targeted guidance for policy
makers and practitioners. This will help researchers and policy makers understand the
impact of different factors on costs and provide a scientific basis for optimising the drilling
process and controlling costs. The results of this study are a valuable contribution to the
field of cost optimisation in the shale gas industry, in line with the goal of sustainable
development. In the future, this study will continue to improve the model and refine the
dataset by introducing more factors and techniques to increase the accuracy and usefulness
of the predictions.
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Figure 7. Three models fitting effects. (a) SVM Model, (b) LSTM Model, (¢) LSTM_SVM_Stacking
Model.

4.9. Economic Analysis of Investment in Selected Drilling Wells in the Changning Block

The Changning Block is located at the southern edge of Sichuan Province, with an
east-west length of about 90 km and a north-south width of about 49 km, in the hinterland
of Yibin City, as shown in Figure 8. Tectonically, the Changning block belongs to the
Sichuan—-Guizhou combination at the western edge of the Yangzi plate and is under the
joint control of the tectonic development of the southwest Loushan fold belt outside the
basin and the southern Sichuan low fold belt inside the basin. The Changning area has
undergone many periods of tectonic movements of varying intensities, among which
the orogenic movements since the Yanshan period have resulted in the development of
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a series of fold deformations and fractures in the area. The Changning backslope is a
large-scale fold deformation structure under the complex tectonic background and. due to
the different tectonic stresses, different parts of the backslope also show obvious differences.
The two wings of the backslope show obvious asymmetric features, with the south and
west wings being gentler and the north and east wings being steeper. Under extrusion
stress, the Changning backslope develops a series of backslope-related fractures, which
are mainly small-scale reverse faults. Compared with the stable area in the basin, the
Wufeng-Longmaxi formation in this area is relatively shallow in depth, with a high degree
of fracture and fold development, and the local favourable tectonic development sites in
the context of tectonic activities are the main targets for shale gas exploration.

GAQLCOUNTY
(=

JUNLIAN'COUN

COUNTY.
xR

Figure 8. Location of the Changning Block.

The rapid urbanisation in recent years has led to an increasing demand for natural
gas supply. In order to meet the natural gas production targets and capacity building
requirements in Sichuan Province, the expeditious construction and implementation of the
Changning H3 Test Mine Gas Collection and Transmission Project has become imperative.
This project has significant implications for enhancing clean energy supply, optimising
economic benefits for enterprises and facilitating socio-economic development. It also
contributes to the transformation of the regional energy structure and atmospheric environ-
mental quality through the increased utilisation of clean energy resources.

Based on comprehensive geological assessments, including reservoir conditions, tec-
tonic fracture characteristics, drilling result analysis and surface topographic evaluation of
the Longmaxi Formation shale in the Ning 201 and Ning 209 well areas, 20 shale gas wells
(e.g., Ning 209H70-3) have been successfully completed in the Changning Block. These
wells serve as analysis and verification objects for shale gas exploration and development.

The analysis results shown in Figure 9 indicate that the prediction model has satisfac-
tory overall performance, achieving a Mean Absolute Percentage Error (MAPE) of 6.41%.
The model shows optimal accuracy in predicting medium investment ranges (6070 million
yuan), with a correlation coefficient of 0.73, indicating robust tracking of actual value
trends. However, several limitations were identified: (1) reduced ability to predict extreme
values, especially in the lower range; (2) reduced amplitude of predicted value fluctua-
tions compared to actual values; (3) delayed response to abrupt changes; and (4) reduced
prediction accuracy in extreme scenarios, suggesting a tendency to underestimate risk.
Nevertheless, the model retains reliable utility within median ranges, where predictive risk
remains minimal.
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Figure 9. Comparison of actual and predicted investment in selected drilling wells in the Changn-

ing block.

5. Conclusions

In this study, by constructing a comprehensive shale gas drilling cost database covering
spatio-temporal dimensions, we identified the key cost influencing factors by applying
the Gradient Boosted Decision Tree (GBDT) model, and innovatively proposed a stacked
integrated learning framework based on SVM and LSTM. The model significantly improves
the accuracy of cost prediction, and the coefficient of determination (R?) is improved from
0.25189 (SVM) and 0.33834 (LSTM) of the traditional single model to 0.55934. The research
results not only enrich the research methodology in the field of energy economics and
provide a new technical way for the cost management of shale gas drilling, but also provide
an operable technical support for the cost management practice of the oil and gas industry.
The follow-up research will further expand the data dimension and optimise the model
structure to improve the adaptability and reliability of the prediction model under different
regional conditions, so as to promote the economic and sustainable development of shale

gas resources.
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