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Featured Application: The study can serve as a basis for the formation of data-driven passenger
transport business models of various transport companies. The approach allows forecasting
passenger demand in a wide class of systems.

Abstract: This paper addresses the problem of estimating passenger demand for flights, with a
particular focus on the necessity of developing precise forecasts that incorporate intricate and inter-
dependent variables for effective resource planning within the air transport industry. The present
paper focuses on the development of a model for medium-term flight demand estimation by flight
destinations. This is based on the analysis of historical airline data on dates, departure times, and
passenger demand, as well as the consideration of the influence of macroeconomic indicators, namely
gross regional product (GRP), median per capita income, and population of departure and arrival
points. This paper reviews international experience in the development of demand forecasting
models and their use for resource planning in the industry. The developed model was evaluated
using historical data on demand for a single turnaround flight operated by an airline. The developed
model allows for the forecasting of the distribution of potential demand for airline flight destinations
in the medium term, utilizing comprehensive historical data on departure times and flight demand
by destination.

Keywords: Facebook Prophet algorithm; passenger demand forecasting; passenger flow; prediction
model; time-series forecasting

1. Introduction

The attainment of an effective management system within the air transport industry
has become increasingly challenging as a result of several factors, including the intrinsic
complexity of the systems themselves, the multitude of interrelationships between pro-
cesses, and the prevalence of external uncertainty. The development of predictive models
to assess the operational and financial performance of air transport companies is becoming
a topic of considerable interest within the research community [1]. This involves the use of
complex mathematical models that consider a multitude of factors influencing performance,
including passenger demand dynamics, fuel consumption, airfares, and the condition of the
aircraft fleet [2–4]. The development of numerical mathematical models in the air transport
industry has been employed to address a range of challenges, including forecasting passen-
ger demand for air travel and short-term flight bookings [5], predicting the distribution
of passenger traffic in airport terminals [6], estimating airport delays [7], and estimating
passenger load factors for flight service planning and inventory management decisions [8].
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Nevertheless, it is the passenger demand estimation model and its accuracy that are of
paramount importance for the rational planning of industry resources. The solution to this
problem entails the identification of the factors affecting changes in air travel demand, an
assessment of their extent of influence, and the selection of appropriate forecasting methods
and tools [9]. The factors affecting final demand may be related to the pricing policies of
airlines operating in the market under consideration, to a class of social influences, such as
the average per capita income of the population of the departure and arrival points, and the
purpose of the flights [10], and to geographical features, such as the transport accessibility
of airports [11].

Due to economic changes and their impact on air traffic in the air transport industry,
a medium-term planning horizon (approximately five years) is considered the optimal
horizon for estimating flight demand [12]. Medium-term forecasts provide key data for
making decisions on aviation infrastructure planning, in particular, airline route network
load planning [13].

The object of the current study is the problem of medium-term forecasting of pas-
senger demand for air transportation, which is caused by the complexity of modeling the
relationships between numerous factors influencing demand. This problem covers aspects
related to the development of mathematical and numerical models for assessing changes
in passenger flows on a planning horizon of up to five years. The study examines the
international experience in the development of passenger demand forecasting models in
the air transport industry and proposes the creation of an applied solution based on an
analysis of the industry’s particular characteristics and existing solutions.

This study aims to develop a model for the medium-term estimation of passenger
travel demand by flight destination. The study’s objectives are to ascertain the functional
requirements for the model through an analysis of industry-specific details, select forecast-
ing methods and tools, describe the model’s algorithm, test the model on historical data for
one flight direction, and evaluate the accuracy of the demand forecast.

2. Materials and Methods

The principal challenge inherent in medium-term demand forecasting is the necessity
to consider a multitude of intricate and interrelated variables, including country-level
economic fluctuations [14,15], changes in consumer preferences [16], airport transport
accessibility, and the competitive environment. Concurrently, demand estimation models
must be capable of integrating various data types, including historical demand data,
economic indicators, airfare data, socio-economic indicators (income and population), and
other external factors [17].

In order to ensure the functionality of a demand model, it is essential to consider
fluctuations in time and seasonal trends, the flexibility and adaptability of the models
themselves, and the capacity to adjust forecasts in response to incoming data regarding
changes in the external environment. The highlighted functional requirements ensure the
development of efficient and adaptive flight demand forecasting models and should be
taken into account in the development of the model proposed in the study.

2.1. Description of a Typical Problem of Medium-Term Forecasting of Demand for Flights

The demand for air transportation exhibits a complex nonlinear nature and is charac-
terized by non-stationarity. In recent years, modern machine learning methods, particularly
time series analysis and deep learning approaches, have been actively utilized for forecast-
ing passenger demand. A common practice in the development of models for assessing and
forecasting air transportation demand is the use of classical methods such as Autoregressive
Integrated Moving Average (ARIMA), Seasonal ARIMA (SARIMA), and Deep Learning
Neural Networks (DLNN) [18].

Unlike specific machine learning methods aimed at identifying patterns in data, pre-
dictive modeling encompasses the entire process of developing mathematical models to
quantitatively assess the accuracy of predictions for future data based on historical data



Appl. Sci. 2024, 14, 11413 3 of 13

or training samples [19]. According to the development process of time series forecast-
ing methods, existing approaches are classified into three categories: classical statistical
methods, neural networks, and deep learning [20]. Hybrid models can be utilized in
several ways. One approach involves combining forecasts, where predictions are first gen-
erated using each individual forecasting model, and the results are then integrated through
weighted averages or a meta-model. Another approach involves sequential processing,
where one method (e.g., ARIMA) is used to model the fundamental components (trend
and seasonality), while another method (e.g., neural networks) analyzes the residuals. An
additional option for using hybrid models is joint learning with parallel data processing,
where different models are trained simultaneously, and their results are integrated [21].

The current focus in the field of time series forecasting is on the development of
hybrid models that combine the advantages of statistical methods, neural networks, and
deep learning. This approach enables the consideration of both internal dependencies and
external influencing factors, which is particularly important in dynamic fields such as air
transportation [22,23].

This study analyzes international experience in the development of air passenger
demand forecasting models. It examines trends in development, the forecast horizon and
modeling objectives chosen, the tools used, and the resulting forecast accuracy. Table 1
presents the findings of an analysis of the experience of the international scientific commu-
nity in the development of flight demand forecasting models.

Table 1. Summary of passengers demand forecasting studies.

Title Forecast Horizon Methods Used Modeling Results

SARIMA damp trend gray
forecasting model for the

airline industry [24]

Medium-term forecast for 8
routes from 2015Q1 to 2017Q4

Improved DTGM model:
SARIMA with a dynamic
seasonal damping factor

(SDTTM)

The MSE values for the SDTGM model are less
than the MSE values for the DTGM model. For
the 8 routes analyzed, MAPE metrics are larger

for DTGM than for SDTGM. The findings
indicate that the proposed SDTGM model is

more precise than the DTGM.

Predictive model of air
transportation management

based on intelligent
algorithms of wireless

network communication [25]

Medium-term forecast (01.01.
2016–31.12. 2019): the

SARIMA model.
Short-term forecast

(6 months): stepwise
regression.

Short-term forecast (2021):
combined model

Three forecasting models are
combined: the exponential

smoothing method, the
stationary timeseries

forecasting method, and the
gray forecasting method

For short-term forecasting: ARIMA has the
best accuracy, while the gray forecasting

method is the least efficient. It is not
necessarily the case that the combined model

is superior to the individual models.
For medium-term forecasts (2000–2020): the

linear combined model demonstrates the
greatest accuracy, while the exponential

smoothing method exhibits the least efficient
performance. The impact of the combined

model varies

Forecasting air passenger
numbers with a GVAR

model [14]

Short-term forecast: one
(h = 1) to four (h = 4)

quarters ahead

Global vector autoregressive
(GVAR) model

The accuracy of the models was assessed
using MSE, MAE, and MAPE. The GVAR

model demonstrates superior performance to
the four benchmark models in the short term

for h = 1, 2, 3.

Freight traffic of civil aviation
volume forecast based on the
hybrid ARIMA-LR model [26]

Long-term forecast for
100 months

ARIMA-LR is a combination
of autoregressive integrated
moving average (ARIMA)
and linear regression (LR)

ARIMA-LR exhibits higher accuracy, as
evidenced by lower scores in comparison to

the ARIMA model. Specifically, the MAE,
MSE, and MAPE metrics demonstrate a

reduction of 1.06, 29.02, and 0.03, respectively.
In comparison to LR, the indices are reduced

by 3.92 and 0.06, respectively

A comparative analysis of the
forecasting performance of
SARIMA intervention and

Prophet models for the
number of airline passengers

at Soekarno-Hatta
International Airport [27]

Short-term forecast from
01.01.2022 to 31.03.2023

Seasonal Autoregressive
Integrated Moving Average

(SARIMA) and FB
Prophet models

The SARIMA model demonstrates the most
optimal performance with MAPE 28% and

RMSE 433473. The Prophet model
demonstrates the most optimal performance

with MAPE 37% and RMSE 497154
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The aforementioned analysis permits a comparison of existing models and methodolo-
gies for forecasting flight demand, with due consideration of the particulars of the data,
available resources, and requisite forecast accuracy. This research proposes the utilization
of the Prophet package for the purpose of modeling medium-term demand estimation
for passenger air travel. Prophet offers a number of advantages, including the ability to
account for seasonal variations in demand and the impact of holidays [28], flexibility in
handling periodic and non-standard trends, and the capacity to address missing data and
uncertainty [29]. The aforementioned advantages are especially pertinent in the context of
developing a model for assessing the demand for passenger air travel in the medium term.

2.2. Algorithm for Medium-Term Flight Demand Forecasting

A three-stage approach to constructing the demand forecast is proposed at the concep-
tual level for model development. At the first stage, it is proposed to use historical data
pertaining to airline flights over the past three years. This dataset encompasses information
such as the date and time of departure, aircraft type, passenger traffic, load percentage,
and other relevant details. The data should be subjected to analysis based on the demand
training sample collected in order to ascertain the structure of the data as well as to deter-
mine some initial forecasting parameters (trend, seasonal index, etc.) [30]. The estimation
of demand is based on the flight departure time and the number of passengers carried,
which is taken as the final demand for the flight. In the construction of a forecast, it is of
great importance to estimate demand at three levels of seasonality: annual, monthly, and
weekly. This is due to the fact that demand for air travel is influenced by different factors,
which manifest themselves in different time cycles [31].

The subsequent stage entails the examination of the influence of external elements
through the utilization of multiple regression models. In this approach, the dependent vari-
able is passenger demand, while the independent variables encompass external economic
factors. It is assumed that demand-side factors should be taken into account in relation to
the region of flight departure and arrival points. This is because the aggregate demand for
a flight is contingent upon the characteristics of the start and end nodes of the flight [32].

The final stage of modeling entails the calibration of the obtained medium-term
demand forecast, with due consideration of the overlapping functional dependencies of
demand on external factors identified at the second stage. The final demand estimation is
represented by the following dependence (see Equation (1)).

D(t) = D0 ∗ f1(t) ∗ f2(t) ∗ f3(t) ∗ fexternal(t), (1)

where D(t) is the distribution of predicted demand by hour, D0 is the forecast demand
without taking into account seasonality, fexternal(t) is the factor of influence of external
economic parameters, t is the time of flight setting, f 1(t), f 2(t), and f 3(t) are the factors of
seasonality by year, week, and day of the week, respectively (see Equations (2)–(4)).

f1(t) = 1 + km, (2)

where km is the coefficient of seasonality by month.

f2(t) =
√
((1 + w1 ∗ kw) ∗ (1 + w2 ∗ kw)), (3)

f3(t) =
√
((1 + w1 ∗ kh) ∗ (1 + w2 ∗ kh)), (4)

where w1, w2 are the weights of the RMS smoothing function, kw is the seasonality coefficient
by week, and kh is the seasonality coefficient by hour in a day.

If the first or second multiplier takes negative values (see Equations (3) and (4)), then
only the second multiplier is taken with a weighting factor of one and no square root (see
Equations (5) and (6)).

f2(t) = 1 + kw, (5)
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f3(t) = 1 + kh, (6)

In the absence of sufficient historical data on flight destinations, it is proposed that
the method of analogy be employed to forecast demand. In such instances, the demand
for a flight for which there is insufficient data is assumed to be equal to the demand
for the most similar destination in terms of external economic parameters. The issue
is addressed by grouping comparable destinations and selecting the nearest destination
through the implementation of the k-means clustering algorithm [33]. The algorithmic
process for constructing a medium-term forecast of flight demand by air travel destination
is illustrated in Figure 1.
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The three-stage algorithm represents a structured approach to demand forecasting,
consisting of sequential stages, each aimed at addressing a specific task—from data prepa-
ration to obtaining forecast values for the selected forecasting horizon. The presented
algorithm forms the foundation of the developed model, where it is proposed that each of
the described blocks will be implemented within the model.
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The following section will present the mathematical models and tools that are nec-
essary for the implementation of each of the aforementioned model development steps.
Time-series models are used to construct medium-term forecasts of air travel demand
based on historical data. Such models employ a univariate time series approach, whereby
future values are predicted based on past observations. These observations are discrete
and occur at equal time intervals. In the context of constructing the demand distribution,
observations can be classified as discrete, with a unit of measurement of one hour [16,34].
This study employs the open-source forecasting package Facebook Prophet for time series
modeling and the estimation of demand trends. This package is an additive linear model
that combines several components to identify different patterns in the data, including
trends, seasonality, holidays, and other relevant features [35,36]. The model is expressed by
the following relationship (see Equation (7)):

y(t) = g(t) + s(t) + h(t) + ξ(t), (7)

where g(t) is a piecewise linear or logistic growth curve for modeling non-periodic changes
in the time series, s(t) is a function responsible for modeling periodic changes associated
with hourly, daily, weekly, and annual seasonality, h(t) is a function responsible for account-
ing for the impact of irregular holidays and user-defined events, ξ(t) is an error function
employed to account for any changes that were not accounted for by the model.

Furthermore, the model can incorporate a multiplicative function to illustrate an expo-
nential trend, whereby the seasonal effect is multiplicative to the trend. This methodology
permits the discrepancy between actual and predicted values to be distributed uniformly
across the years, thereby enhancing the precision of the forecast. The general equation then
assumes the following form [37] (see Equation (8)):

ŷ(t) = g(t) ∗ (1 + mult.term) + add.term, (8)

where g(t) is a piecewise linear or logistic growth curve for modeling non-periodic changes
in time series, mult.term is the multiplicative component (usually used to model changes that
are proportional to the current level of the time series), add.term is the additive component.

The Prophet model is used as part of machine learning and enables analysis of his-
torical airline passenger demand data in order to identify dependencies and data features
and significant statistical characteristics and to model periodic changes associated with
weekly and annual seasonality [38]. The method is an efficient means of handling data
containing seasonal impacts and is also capable of producing robust forecasts in the face
of missing data and emissions. This is a particularly important attribute when analyzing
flight demand [36,37]. It can be demonstrated that the utilization of the Prophet package
will facilitate the replication of the continuation of the univariate time series of the value of
demand for airline flights in the medium term.

In order to analyze the influence of external factors and model their relationship with
the demand outcome, the construction of multiple regression models is proposed [39,40].
In order to ascertain the external economic factors influencing demand, GRP (gross regional
product), median per capita income, and population size were selected for analysis. Data
on the macroeconomic factors previously outlined should be collected in relation to the
departure and arrival airport regions of the analyzed route network [9,41]. The objective of
constructing a multiple regression model is to identify the coefficients of influence exerted
by macroeconomic factors on passenger demand. This is achieved by employing historical
data on demand and the dynamics of changes in the aforementioned factors. The multiple
regression equation is as follows [42] (see Equation (9)):

Yt = β0 + β1t ∗ x1t + β2t ∗ x2t + . . . + β6t ∗ x6t + ξt, (9)

where Yt is the value of the total passenger demand for year t, β0 is the intercept,
β1t, β2t, . . . , β6t are the regression coefficients determining the level of influence of indepen-
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dent variables on the value of the total passenger demand for year t, x1t, x2t, . . . , x6t are the
values of selected macroeconomic indicators corresponding to the region of the departure
and arrival points of the considered destination by time for year t: x1t, x2t correspond to
the values of the GRP indicators, x3t, x4t correspond to the values of the median per capita
income, x5t, x6t correspond to the values of the population of departure and arrival points,
ξt is the model error, and t is the time index.

Additionally, in order to facilitate the incorporation of the independent values
x1t, x2t, . . . , x6t into the multiple regression model, it is essential to employ time series
modeling of macroeconomic indicators for the independent variable X prior to the forecast
period conclusion.

It is then proposed that an average linear model be constructed, equal to the average
of the linear annual models over the historical annual periods. In order to achieve this, it
is necessary to calculate the averaged regression coefficient for each historical year (see
Equation (10)).

βj =
1
n

n

∑
i = 1

β ji, (10)

where βj is the average coefficient for the jth independent variable, β ji is the coefficient for
j-th independent variable in a year i, n is the number of years in the forecast period for
which data needs to be averaged.

The averaged model Yt has coefficients averaged over all years (see Equation (11)):

Yt = β0 + β1 ∗ x1t + β2 ∗ x2t + . . . + βn ∗ xnt + ξt, (11)

where Yt is the predicted value of demand according to the averaged model for the year
t, β0 is the intercept, β1, β2, . . . , βn are the averaged regression coefficients (the average
values of the coefficients for all periods), x1t, x2t, . . . , xnt are independent variables (the
same as in Equation (9)), ξt is a model error.

Furthermore, the model data must be normalized in accordance with the historical
data from Equation (9), relative to the averaged model. Therefore, the parameter fexternal(t)
from Equation (1) will be expressed by the following dependence (see Equation (12)):

fexternal(t) = Yt/Yt, (12)

where Yt is the predicted value of demand according to the averaged model for the year t
(see Equation (11)), Yt is the actual value of the final passenger demand for the year t (see
Equation (10)). The result is a series of data reflecting the functional dependence of flight
demand on fluctuations in macroeconomic indicators.

The third stage of development proposes the utilization of a system dynamics ap-
proach to describe the influence of external factors on demand [43]. System dynamics
models provide more reliable forecasts of short- and medium-term trends than statistical
models. Additionally, they allow for the calibration of forecast demand distributions by
incorporating external factors, thereby enhancing the forecast’s informational value in the
medium term [43]. The conceptual framework illustrated in Figure 2 depicts the interre-
lationship between the historical distribution of flight demand, forecast demand, and the
impact of macroeconomic variables on the forecast.

The diagram below introduces the following designations:
Historical_Demand_Rate is the historical passenger demand; Capacity is the capac-

ity of the aircraft operating the flight; Adjusted_Demand_Rate is the forecast demand;
Macroeconomic_Factor is the additive function of the influence of macroeconomic factors;
A_D_Population is the weighting factor of the influence of the population values of the
departure and arrival points, respectively; A_D_GRP is the weight coefficient of influence
of the gross regional product values of the departure and arrival points, respectively; and
A_D_AMI is the weight coefficient of influence of the median average per capita income
values of the departure and arrival points, respectively.
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Based on the modeling results, the forecast of demand distribution should be deter-
mined with discreteness for each hour of the forecast period from 2025 to 2029. To ensure
the accuracy of this approach, statistical data on the demand for turnaround flight direction
will be employed for validation purposes. Therefore, it is recommended that data be
collected on the distribution of historical passenger demand and flight departure times for
a single airline destination from 2019 to the first half of 2024. Subsequently, the findings on
the forecast of demand distribution up to 2029 and an evaluation of the resulting forecast
are presented.
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3. Results

The modeling results present the distribution of demand for the airline’s turnaround
flight direction for each hour of the forecast period from 2025 to 2029. Consequently, two
flight directions were considered, with demand determined independently: from A to B
and in the reverse direction from B to A. The inputs to the model comprised historical
passenger demand data for the A–B and B–A routes, together with historical time slot
data, including dates and times of departure for all flights to and from each destination
over the specified historical period. The data for developing the forecasting model were
obtained from the airline’s booking system and collected independently for each route
under consideration from 2019 to the first half of 2024. Historical data on the final demand
for a flight were equated to the number of tickets sold for each flight on the selected route,
with demand calculated as the absolute number of passengers who completed the flight. In
order to consider the influence of macroeconomic variables on the distribution of forecast
demand, data on GRP, median per capita income, and population for departure and arrival
points between 2014 and 2024 were collected. The data were sourced from publications by
the Federal State Statistics Service, where each macroeconomic indicator was represented
as an annual aggregate value over the 2014–2024 period.

During the model development process, data preprocessing was carried out, including
the stages of data collection and cleaning, unification of data formats, extraction of seasonal
components at specific levels of seasonality, and determination of rules to account for the
geographical specifics of flight routes. Initially, historical passenger demand data for routes
A–B and B–A were combined into a single dataset, where each instance described the
demand for a specific time slot, including the flight date and time. Outliers and anomalies
in the historical data were then removed, specifically excluding records of flights with non-
representative passenger demand values (significant deviations from the median demand
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for a specific period). Missing values for time intervals were filled using linear interpolation
or simulation based on the original time intervals. Economic indicators (regional GDP,
income, and population) were normalized and synchronized with the historical demand
data over time.

When forming training and testing datasets, data from 2014 to 2023 were used for
training the model, while data from 2024 were reserved for testing. To account for the
specifics of the routes, data for A–B and B–A were processed independently to eliminate
mutual influence and ensure accurate demand modeling for each direction.

The results of the forecast demand estimation for the direction of flights from point A
to point B from 2025 to 2029 are presented in the graph (see Figure 3).
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from 2025 to 2029 are illustrated in the accompanying graph (see Figure 4).
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Table 2 shows the results of the RMSE, MAE, and MAPE forecast accuracy evaluation
metrics for two directions: A–B and B–A. The RMSE and MAE metrics represent the
mean model prediction error in units of the variable of interest, whereas the MAPE metric
expresses the mean absolute error in percentage terms. The metrics were employed to
assess the predictive capacity of the developed model by contrasting the actual demand
metrics for 2023 with the model’s predicted values for that year, based on training on
historical data from 2019 to 2022.

Table 2. Results of passengers demand forecasting.

Metrics Results Direction A–B Direction B–A

RMSE 24.839 27.955
MAE 20.379 25.179

MAPE 35.705 31.435

4. Discussion

The evaluation results indicate that the RMSE and MAE metrics are within an accept-
able range. However, to enhance the quality of the modeling results, it is necessary to
achieve lower scores, which represents a potential avenue for further research. A MAPE
exceeding 30% for both directions indicates a substantial degree of percentage deviation,
which may not be deemed acceptable for tasks that necessitate a high degree of accuracy.

RMSE measures the root mean square deviation between actual and predicted values,
indicating the absolute average error in units of passenger demand. In this case, the RMSE
for route A–B is 24.839, and for B–A it is 27.955. Values below 25–30 may be acceptable
for models with large datasets, but in this case, the high RMSE suggests the potential for
significant forecasting errors in individual time slots. MAE measures the mean absolute
error, reflecting how much the model deviates from actual values on average. The MAE
for A–B is 20.379 and for B–A is 25.179, indicating the typical deviation of the model from
the actual data. Unlike RMSE, MAE is less sensitive to outliers. A low MAE value may
indicate stable forecasting performance, but its increase for the B–A route may point to
higher variability in passenger demand or lower model quality for this direction. MAPE
expresses the mean absolute percentage error as a percentage of actual values, making it
convenient for interpretation. For the obtained forecast, values of 35.705% for A–B and
31.435% for B–A show that, on average, the model deviates by more than 30% from actual
demand. MAPE above 30% is considered high for forecasting tasks with strict accuracy
requirements, but in the context of forecasting passenger demand for air travel, this could
be attributed to anomalies in the data, insufficient consideration of external factors, or
limitations of the model itself.

When compared to accuracy metrics from other forecasting methods, it is worth noting
that hybrid approaches often outperform classical methods by accounting for both linear
and nonlinear components. Research indicates that such models achieve MAPE levels of
10–15%, which is significantly better than the current results [22,44]. Thus, when compared
to alternative methods, it was found that the presented model provides a baseline sufficient
level of forecasting but falls short in performance compared to modern methods (hybrid
approaches, neural network models, and transformers) that can significantly improve
forecasting accuracy. For tasks requiring higher precision and shorter forecasting horizons,
it is recommended to use alternative approaches to achieve a MAPE below 20% and
improve RMSE/MAE.

At this juncture in the model development process, the upper-level calibration of
the forecast results is being conducted, with due consideration given to the impact of the
dynamics of macroeconomic indicators until the conclusion of the forecast period. In order
to enhance the precision of the model, prospective avenues for advancement include the
incorporation of the influence of competitor airline flight demand and alternative trans-
portation modalities (public road and rail) to destinations analogous to the airline’s route
network. The incorporation of supplementary attributes would facilitate the estimation of
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the prospective demand for flights, accounting for the probability that passengers may opt
to fly with competing companies or alternative modes of transportation [45]. In order to
account for the functional dependence of the demand estimate, it is necessary to collect
the minimum dataset required for competitor flights and alternative modes of transport.
This should include the minimum ticket price, the total passenger demand for competitor
flights, and the journey time in hours for the alternative mode of transport.

5. Conclusions

The study yielded a predictive model for estimating airline flight demand based on
the analysis of historical data to identify the seasonality of demand. The proposed model
provides a medium-term forecast using machine learning and multiple linear regression
methods, accounting for the impact of changes in macroeconomic factors on the final
distribution of passenger demand by flight destination. The developed model was validated
using historical data on demand and flight departure times from 2019 to the first half of
2024 for a revolving airline route comprising two flight destinations with independently
determined demand: from A to B and from B to A. The values of the metrics for assessing
the accuracy of the model results for the demand forecast for the two turnaround flight
directions were 24.839 and 27.955, 20.379 and 25.179, 35.705, and 31.435 for RMSE, MAE,
and MAPE, respectively.

The key advantages of the model include the consideration of macroeconomic factors,
high flexibility for various forecasting horizons with appropriate preprocessing of data for
the selected horizon, and demonstrated accuracy compared to baseline methods. In the
future, the model can be compared with neural networks and other modern approaches to
confirm its competitiveness.

One of the key limitations of the developed model is its dependency on the quality and
completeness of the input data. For instance, gaps or errors in historical data on demand
and flight schedules can negatively impact forecast accuracy. Another limitation is the
model’s restricted ability to account for changes in the competitive environment and the
potential shift in passenger demand for air travel toward alternative transportation modes.
Currently, the model does not include detailed data on competitor actions, such as price
reductions, route changes, or increased flight frequencies. Additionally, the model may be
less effective in forecasting demand for new routes or in regions with insufficient historical
information, as these cases lack adequate data for training.

The potential for enhancement of the presented model lies in the advancement of fore-
cast precision and the incorporation of a function elucidating the impact of the competitive
environment (demand for flights by competitor airlines and alternative modes of transport)
on the final distribution of passenger demand. The presented model can be used as a
decision-making tool for production resource planning in an airline. The integration of the
model with internal decision support systems enables the development of a comprehensive
system for the estimation and optimization of passenger revenue under a variety of flight
schedule planning scenarios.
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