
Citation: Giovagnola, J.; Cuéllar, M.P.;

Santos, D.P.M. Context-Adaptable

Deployment of FastSLAM 2.0 on

Graphic Processing Unit with

Unknown Data Association. Appl. Sci.

2024, 14, 11466. https://doi.org/

10.3390/app142311466

Academic Editor: André Sales

Mendes

Received: 23 October 2024

Revised: 22 November 2024

Accepted: 6 December 2024

Published: 9 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Context-Adaptable Deployment of FastSLAM 2.0 on Graphic
Processing Unit with Unknown Data Association
Jessica Giovagnola 1,2 , Manuel Pegalajar Cuéllar 3,* and Diego Pedro Morales Santos 2

1 Infineon Technologies AG, Am Campeon 1-15, 85579 Neubiberg, Germany; jessica.giovagnola@infineon.com
2 Department of Electronic and Computer Technology, University of Granada, Avenida de Fuente Nueva s/n,

18071 Granada, Spain; diegopm@ugr.es
3 Department of Computer Science and Artificial Intelligence, University of Granada, Calle Periodista Daniel

Saucedo Aranda s/n, 18071 Granada, Spain
* Correspondence: manupc@decsai.ugr.es

Abstract: Simultaneous Localization and Mapping (SLAM) algorithms are crucial for enabling
agents to estimate their position in unknown environments. In autonomous navigation systems,
these algorithms need to operate in real-time on devices with limited resources, emphasizing the
importance of reducing complexity and ensuring efficient performance. While SLAM solutions
aim at ensuring accurate and timely localization and mapping, one of their main limitations is
their computational complexity. In this scenario, particle filter-based approaches such as FastSLAM
2.0 can significantly benefit from parallel programming due to their modular construction. The
parallelization process involves identifying the parameters affecting the computational complexity in
order to distribute the computation among single multiprocessors as efficiently as possible. However,
the computational complexity of methodologies such as FastSLAM 2.0 can depend on multiple
parameters whose values may, in turn, depend on each specific use case scenario (ingi.e., the context),
leading to multiple possible parallelization designs. Furthermore, the features of the hardware
architecture in use can significantly influence the performance in terms of latency. Therefore, the
selection of the optimal parallelization modality still needs to be empirically determined. This may
involve redesigning the parallel algorithm depending on the context and the hardware architecture.
In this paper, we propose a CUDA-based adaptable design for FastSLAM 2.0 on GPU, in combination
with an evaluation methodology that enables the assessment of the optimal parallelization modality
based on the context and the hardware architecture without the need for the creation of separate
designs. The proposed implementation includes the parallelization of all the functional blocks of the
FastSLAM 2.0 pipeline. Additionally, we contribute a parallelized design of the data association step
through the Joint Compatibility Branch and Bound (JCBB) method. Multiple resampling algorithms
are also included to accommodate the needs of a wide variety of navigation scenarios.

Keywords: FastSLAM2.0; CUDA; GPGPU; JCBB

1. Introduction

Simultaneous Localization and Mapping (SLAM) plays a vital role in the implementa-
tion of autonomous navigation systems, as it enables an agent to estimate its current pose
without previous knowledge of its surrounding environment. In more detail, SLAM esti-
mates the robot’s position while incrementally building an environmental representation
(i.e., a map). Its rise in popularity has been strictly concurrent with the growing variety of
applications for autonomous systems, which include, but are not limited to, autonomous
cars [1], unmanned aerial vehicles, commonly known as drones [2], underwater robotics [3],
space exploration [4], and indoor navigation [5–7]. The localization and mapping process
leverages a combination of one or more sensors [8,9], which can be classified as exteroceptive,
i.e., aimed at perceiving the surrounding environment (e.g., camera, LiDAR), and proprio-
ceptive, which can sense the position, orientation, and movement of the agent in space (e.g.,

Appl. Sci. 2024, 14, 11466. https://doi.org/10.3390/app142311466 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app142311466
https://doi.org/10.3390/app142311466
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4627-9425
https://orcid.org/0000-0002-9736-1608
https://orcid.org/0000-0002-3294-8934
https://doi.org/10.3390/app142311466
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app142311466?type=check_update&version=2

Appl. Sci. 2024, 14, 11466 2 of 40

IMU, encoder, GPS). The fusion of one or more sensing modalities is made necessary by
the impossibility of leveraging GPS technology as a stand-alone sensing technique under
several use cases [10] since autonomous systems need high-level positioning accuracy and
consistent signal. However, despite the advent of high precision GNSS systems (e.g., Real-
Time Kinematics—RTK), centimeter-level positioning accuracy is guaranteed only under
specific conditions, suffering loss of signal under unfavorable atmospheric conditions or
infrastructural characteristics (e.g., indoors, presence of high buildings causing canyoning
effects) [11]. The sensor information is consequently elaborated through an algorithm
pipeline that commonly approaches the SLAM problem in a probabilistic fashion. The
current state-of-the-art SLAM methodologies can be grouped into two major categories,
namely, filter-based methods and optimization-based methods [12,13].

Filter -based methods can be considered direct derivations of Bayesian filtering [14],
as they consist of two-step iterative processes, namely, the following:

• The prediction step, where the new state is estimated according to an evolution model and
a control input;

• The correction step, where the current observations are matched against the previously
observed features.

Between the prediction and the correction step, the acquired observations must be
associated with the already existing partial environmental reconstruction. If one or more
observations are not matched with any of the pre-existing map features, new features are
initialized. Some SLAM proposals model the map features as uniquely identifiable (known
data association). In this case, the data association problem is addressed deterministically.
However, a probabilistic approach is needed whenever the map features are not uniquely
identifiable (unknown data association). In this dissertation, we address the unknown data
association case for higher generality.

The earliest SLAM proposals belong to the filter-based category and are based on the
Kalman Filter (KF) [15], such as the Extended Kalman Filter (EKF) [16] and its variations,
among which we also mention the Unscented Kalman Filter (UKF) [17] and the Information
Filter (IF) [18]. The main limitations of such approaches are related to handling nonlineari-
ties, the Gaussian modeling of uncertainty, and the increasing dimension of the state as long
as new features are observed. These problems are tackled in Particle Filter (PF)-based meth-
ods [19] such as FastSLAM 1.0 [20] and FastSLAM 2.0 [21], where a proposal distribution is
sampled through a set of weighted hypotheses, called particles.The weight of each particle
is proportional to the correspondence between the prediction it holds and the observed
state values. In filter-based methods, the map can be represented as an Occupancy Grid
or a Landmark-Based Map [22]. Occupancy Grids model the environment as an array of
cells, i.e., uniformly dimensional portions of space (squares or cubes). Each cell holds the
probability of being free or occupied. On the other hand, Landmark-Based Maps consist
of a set of points, commonly called landmarks, whose position is fixed in the space. The
robot’s pose estimation is based on the measurement of its distance from the observed
landmarks. In this case, each landmark l is identified with a 3D vector [xl , yl , l] containing
its coordinates with respect to the map origin [xl , yl] and its numerical identifier l ∈ [0, Nl).
While Occupancy Grids have higher information content, Landmark-Based Maps provide
a more compact environmental representation, reducing memory consumption [23,24].

Optimization-based methods model the map as factor graphs. They can encode
information at a geometric level (e.g., points, lines, planes) and a semantic level (instances
of objects stored in a previously defined database).

Further insights on the main state-of-the-art SLAM proposals available are given in
review works such as [12,13,25–29]. While filter-based SLAM is more employed for online
SLAM, where the latest robot pose is estimated jointly with the map, optimization-based
SLAM is mainly leveraged to solve the full SLAM problem, where the whole trajectory is
estimated [12].

This work focuses on particle filter-based algorithms, specifically FastSLAM 2.0, based
on Landmark-Based Maps. FastSLAM 2.0 leverages a Rao–Blackwellized particle filter

Appl. Sci. 2024, 14, 11466 3 of 40

where the robot’s pose and the map estimations are decoupled. In more detail, the robot
pose estimation is first predicted according to the motion model and the control inputs, then
adjusted considering the latest associated observations. On the other hand, each landmark
position is estimated using an extended Kalman Filter. Further details on FastSLAM 2.0 are
discussed in Section 2.

One of the main limitations of SLAM approaches is their high computational complex-
ity, and particle filter-based methods are no exception. In addition, SLAM should often
run on onboard devices and guarantee real-time pose estimation. In this context, parallel
programming and devices enabling massive parallelization, such as Graphic Processing
Units (GPUs), can enable many SLAM methodologies to meet real-time constraints [30–34].
PF-based approaches can particularly benefit from acceleration via parallel programming
due to their modular structure. In fact, particles are calculated independently and, within
each particle, the landmark poses are also independently estimated. In this context, the
most commonly adopted acceleration modality in the literature is particle-wise paralleliza-
tion, as in [35–39]. Some proposals focus the acceleration efforts on specific steps of the
pipeline, such as data association [40,41], resampling [42–44], and particle weight computa-
tion [37]. As for FastSLAM 2.0, a few works provide parallelized implementations on the
edge. An accelerated implementation for FPGA is available in [45], while a parallelized
implementation of the algorithm for the OMAP4430 architecture is available at [46]. To
the best of our knowledge, the only parallelized implementation of FastSLAM 2.0 on a
GPU device is discussed in [39], where a particle-wise parallelization for monocular inertial
SLAM is proposed. The FAST Corner Detection method carries out the data association
step on the CPU.

The parallelization process requires identifying the parameters that affect the algo-
rithm’s computational complexity to distribute the computation among the single mul-
tiprocessors efficiently. In some cases, such as in FastSLAM 2.0, the complexity can be
determined by multiple parameters, which may depend on the use case scenario of interest
(i.e., the context), providing multiple possibilities in the parallelization design. In addition,
the specific characteristics of the hardware architecture in use significantly impact the per-
formance in terms of latency. However, the state-of-the-art does not include any guidelines
on addressing parallelization modality selection, but only provides single implementations
specifically designed for a single architecture. Consequently, the optimal parallelization
modality still needs to be empirically determined, involving the potential need for multiple
re-designs. Therefore, in this paper, we propose a context-adaptable design of FastSLAM
2.0 for GPU based on the CUDA programming paradigm. The proposed design enables
the implementation of different parallelization modalities depending on the context. By
context, we mean the values assumed by the set of parameters determining the algorithm’s
complexity, which, in turn, depends on the use case of interest. Combined with the flexible
design for FastSLAM 2.0, we provide an evaluation methodology that enables the assess-
ment of the optimal parallelization modality depending on the context and the hardware
architecture in use.

The design proposed in this contribution parallelizes all the functional blocks of Fast-
SLAM 2.0, including the data association step, through the Joint Compatibility Branch
and Bound (JCBB) methodology [47]. JCBB enables simultaneous handling of multiple
non-uniquely identifiable observations, leveraging a branch-and-bound approach in com-
bination with a joint compatibility test. To the best of our knowledge, this is the first
parallelization of FastSLAM 2.0 tackling unknown data association, and no other paral-
lelized version of JCBB is available.

In addition, parallelization of multiple resampling approaches is available with the
goal of accommodating the needs of the broadest possible variety of navigation scenarios.

Our methodology was validated by deploying FastSLAM 2.0 onto a General Purpose
GPU (GPGPU) interfaced with a simulation environment that included a model of an IMU
and a generic range sensor.

Appl. Sci. 2024, 14, 11466 4 of 40

The rest of this paper is organized as follows. Section 2 provides theoretical back-
ground and discusses the state-of-the-art regarding the data association and the resampling
problems. In more detail, Section 2.1 discusses the elements of the FastSLAM 2.0 method,
Section 2.2 tackles the data association problem, and the resampling problem is discussed
in Section 2.3. Section 3 describes the hardware and software setup: Section 3.1 provides
the specification of the hardware, Sections 3.2 and 3.3 summarize the main characteristics
of the CUDA programming paradigm and the PyCUDA library, and Section 3.4 addresses
the memory access management. Section 4 describes our evaluation methodology, in-
cluding the simulation environment (Section 4.1), the partitioning of the pipeline into
functional blocks (Section 4.2), the analysis of the parameter dependencies (Section 4.3),
and the time gain evaluation (Section 4.4). Section 5 tackles the main characteristics of
the functional blocks’ parallelization. Section 6 is dedicated to the experimental results
and discussions thereabout and Section 7 draws the conclusions of this contribution and
discusses future developments.

2. Simultaneous Localization and Mapping

This section tackles the theoretical aspects of FastSLAM 2.0 to provide the reader
with the necessary background to comprehend the design described in Section 5. In more
detail, Section 2.1 and its subsections describe the mathematical details of FastSLAM 2.0’s
method, Section 2.2 is dedicated to the data association problem, with special focus on the
Section Joint Compatibility Branch and Bound methodology, abd Section 2.3 tackles the
resampling problem.

SLAM provides self-pose estimation without the need for a preexisting map by fusing
information from different sensors, which can either be proprioceptiveor exteroceptive, as
described in Section 1. For the sake of our dissertation, we assume the robot is equipped
with a range sensor and an inertial sensor (IMU). Consequently, the prediction model and the
observation model are stated in the following sections according to these assumptions.

2.1. FastSLAM 2.0

FastSLAM 2.0, like the other PF-based approaches, provides the robot’s and land-
marks’ pose estimations as discrete samples (particles) of a probabilistic distribution. This
characteristic allows for overcoming limitations brought by modeling the robot’s pose as
Gaussian distributed, as in EKF-based methods [21]. However, the map features are still
modeled as Gaussian distributed. The algorithm leverages the conditional independence
of map features and the robot’s path, as expressed in the following:

p(Xt, m | zt) = P(Xt | zt)P(m | Xt, zt)

where Xt is the set of the robot poses (xi, yi, θi), i = 1, . . . , t from the beginning of the
navigation until time t, m is the set of the map features coordinates (called landmarks)
(xl j, yl j), j = 1, . . . , Nl (Nl is the number of landmarks), and zt is the set of observa-
tions (ρk, βk), k = 1, . . . , No (No is the number of observed features). As described in
Section 4.1, the robot is modeled as a rigid body navigating a planar space. Therefore,
(xi, yi) and (xl j, yl j) are the Cartesian coordinates of the robot and landmark j, expressed in
meters, and θi is the orientation of the robot, expressed in radians. As for the measurement,
for the sake of our dissertation, we assume that the robot is equipped with a generic range
sensor. Consequently, the measurements ρk and βk indicate the detections’ range (meters)
and the bearing (radians). Therefore, the joint distribution of the full path Xt and the map
m can be obtained, according to Bayes’ Theorem, with the multiplication of the probability
of the trajectory Xt given the last measurement zt by the probability of the map m given the
path Xt and the measurement zt. This consideration allows FastSLAM 2.0 to decouple the
map features from the robot poses via a factorization called Rao–Blackwellization, where
P(Xt|zt) is expressed through particles, i.e., a set of weighted hypotheses on the robot’s
trajectory. Consequently, a different map is estimated for each particle, i.e., for each separate
path estimation.

Appl. Sci. 2024, 14, 11466 5 of 40

In other words, by treating each particle as the true trajectory, we solve Np, the
mapping with known poses problems, in which all map features are uncorrelated. This
enables independent processing of all the feature measurements. In more detail, each map
feature is estimated through an EKF, which means that given Np particles and Nl map
features, we have Np × Nl different EKFs.

The algorithm pipeline can be subdivided into steps, as summarized in Figure 1. In
more detail:

• Prediction, where the robot pose is predicted based on the motion commands and a
motion model (Section 2.1.1);

• Data Association, where the observations are matched with the previously stored map
features. This step is not performed if the observations are assumed to be already
labeled (known data association). In this work, we address the unknown data association
case (Section 2.2);

• Proposal Adjustment, where the robot’s pose estimation is adjusted based on the
matched observations. This step marks the difference between FastSLAM 1.0 and
FastSLAM 2.0 and ensures better robustness in the pose estimate whenever the propri-
oceptive sensors have higher noise levels than the exteroceptive sensors (Section 2.1.3);

• Landmark Estimation, where the pose estimations of the observed landmarks are up-
dated in an EKF-like fashion according to the observations. At this step, weights are
assigned to each particle (Section 2.1.4);

• Importance resampling, where particle estimations can be maintained or deleted with a
probability proportional to their weight. The weight is calculated within the Landmark
Estimation step. Several strategies are available in the state-of-the-art, allowing for
different trade-offs between accuracy and execution time (Section 2.1.5).

Particle Initialization

Particle Prediction

Data Association

Proposal Adjustment

Landmark Estimation

Particle Resampling

Motion commands

(𝑣, 𝜔)

Observations
(𝜌, 𝛽)

Figure 1. FastSLAM 2.0 pipeline.

2.1.1. Particle Prediction

In this step, an evolution model leverages the control inputs and the old estimation
to predict the new robot’s pose. For the sake of our dissertation, the control inputs are
considered unknown. Therefore, the linear [m/s] and angular velocity [m/s2] data derived
from the simulated inertial data (v, ω) are considered the control input. The prediction step
is shown in Algorithm 1.

Appl. Sci. 2024, 14, 11466 6 of 40

Algorithm 1 Particle Prediction

1: for each particle m do
2: xm

t = xm
t−1 + v cos θm

t−1δt
3: ym

t = yt−1 + v sin θm
t−1δt

4: θm
t = θt = θm

t−1 + ωδt
5: end for

The complexity of the prediction step depends on the number of particles.

2.1.2. Data Association

After acquiring the exteroceptive data, it is necessary to match the current observations
to the features already stored in the map and/or initialize new landmarks. Such a problem
can be solved with various approaches depending on the available sensor setup and
the navigated scenario. As mentioned in Section 1, in this dissertation, we tackle data
association through the JCBB method, a probabilistic approach for jointly associating
multiple non-uniquely identifiable observations. Generally, the complexity of the data
association step strongly depends on the number of observations and map features. If
data association is performed particle-wise, meaning that different particles carry different
matches for the same observations, its complexity also depends on the number of particles.

Section 2.2 tackles the data association problem in more detail.

2.1.3. Proposal Adjustment

After the data association step, if one or more observations are matched, the latest
robot pose estimation is updated based on the matched observations. The latest pose
estimate is modeled as a normal distribution N (µm, Σm) and is initialized based on the
predicted pose µm

0 = sm
t and a covariance matrix that depends the motion noise Qt and the

Jacobian of the motion model with respect to the control variables Hu.
Subsequently, for each matched observation, the adjustment of the corresponding

landmark pose estimate is carried out based on its covariance matrix Cn, the measurement
noise Rn, the Jacobians of the observation model with respect to the particle pose Ha
and the landmark pose Hp, and the difference between the observation and the expected
observation (zn,t − ẑn,t) (innovation).

The expected observation ẑn,t is obtained through the observation model in Equation (1).

dx = xm
l − xm

dy = ym
l − ym

ρ̂ =
√

dx2 + dy2

β̂ = arctan
(

dy
dx

) (1)

A graphical representation of the observation model is available in Figure 2.
The Jacobian matrix Ha is defined as follows:

Ha =

[∂ρ
∂xl

∂β
∂xl

∂ρ
∂yl

∂β
∂yl

]
=

 dx√
r

dy√
ρ̂2

− dy√
r

dx√
ρ̂2

The matrix Hp is defined as follows:

Hp =

[∂ρ
∂xr

∂ρ
∂yr

∂ρ
∂θr

∂β
∂xr

− ∂β
∂yr

∂β
∂θr

]
=

− dx√
r − dy√

ρ̂2
0

dy
ρ̂ − dx

ρ̂ −1

 (2)

The procedure for the proposal adjustment is summarized in Algorithm 2.

Appl. Sci. 2024, 14, 11466 7 of 40

𝑌

𝑋

𝜃

𝑥𝑟𝑜𝑏, 𝑦𝑟𝑜𝑏 , 𝜃𝑟𝑜𝑏

𝑥𝑙𝑎𝑛𝑑, 𝑦𝑙𝑎𝑛𝑑

𝛽

𝜌

Figure 2. Observation model—graphical representation.

Algorithm 2 Proposal Adjustment

1: for each particle m do
2: µm

0 = sm
t

3: Σm
0 = HuQt HT

u
4: for each matched observation n do
5: Zn = HaCn HT

a
6: Σm

n = [HT
p Z−1

n Hp + (Σm
n−1)

−1]−1

7: µm
n = µm

n−1 + Σm
n HT

p Z−1
n (zn,t − ẑn,t)

8: end for
9: sn

t ∼ N (µm
n , Σm

n)
10: end for

The complexity of the proposal adjustment step depends on the number of particles
and the number of matched observations.

2.1.4. Landmark Estimation

Given the new proposal distribution, each landmark position in the map is corrected
based on the new observations in an EKF-like fashion, meaning that a separate EKF is
applied to each observed landmark. New landmarks are initialized based on observations
not associated with any preexisting map feature. The initialization happens according to
the inverse observation model, which is defined as follows:

xl = xr + ρ cos(θr + β),

yl = yr + ρ cos(θr + β)

The landmark estimation step is summarized in Algorithm 3, where the Jacobian Ha
is derived as described in Section 2.1.3.

Appl. Sci. 2024, 14, 11466 8 of 40

Algorithm 3 Landmark Estimation

1: for each particle m do
2:
3: for each matched observation n do
4: ẑm

t,n = h(sm
t Xm

n) ▷ Predicted Observation
5: Y = zt,n − ẑm

t,n ▷ Innovation

6: Ha =
∂h(sm

t Xm
n)

∂Xm
n

▷ Jacobian
7: Z = HaCm

n HT
a + R

8: K = Kn + KHaZ−1 ▷ Kalman Gain
9: Xm

n = Xm
n + KY ▷ Landmark Pose

10: Cm
n = Cm

n − KHaCm
n ▷ Landmark Covariance

11: end for
12:
13: for each unmatched observation n do
14: Xm

n = h−1(zm
n , sm)

15: ρ̂ =
√
(xm

n − xm
r)

2 + (ym
n − ym

r)
2

16: Ha =
∂h

∂Xm
n

▷ Jacobian

17: Cm
n = H−1

a QH−1
a

T

18: end for
19:
20: if ∃! unmatched observation then
21: wm = 1

Np

22: else
23: Lu = HpQtHT

p + Z
24: wm = 1√

|(2πZ)|
exp

(
−0.5YT LuY

)
25: end if
26: end for

In this step, a weight is assigned to the particles. If at least one unmatched observation
exists, the particle weights are reinitialized as in line 21 in Algorithm 3. Otherwise, the
weight is assigned according to what is stated on line 24.

The complexity of this step depends on the number of particles and the number of
observations.

2.1.5. Particle Resampling

The resampling step corrects the proposal distribution by eliminating or preserving
the particles based on their importance weight. This implies that the hypotheses with a
higher likelihood have a higher chance of being kept than the least likely. The elimination
is carried out probabilistically, and plenty of algorithms are available in the literature,
guaranteeing different trade-offs in terms of accuracy and latency. Since our goal is to
provide a context-adaptable design for FastSLAM 2.0, we aim to accommodate the broadest
possible variety of scenarios. Therefore, based on a dedicated state-of-the-art review, as
discussed in Section 2.3, we provide a parallelized implementation of a rather exhaustive
pool of resampling methodologies. The user is consequently able to select the most suitable
parallelization methodology according to the needs of their use case scenario.

Generally, the complexity of the resampling step depends on the number of particles.

2.2. Data Association

This section is dedicated to a more detailed discussion about the data association
step. First, we provide a state-of-the-art overview of the probabilistic data association
techniques, focusing on the FastSLAM implementation. Then, Section Joint Compatibility
Branch and Bound tackles the Joint Compatibility Branch and Bound (JCBB) method and

Appl. Sci. 2024, 14, 11466 9 of 40

its fundamental characteristics to provide the reader with sufficient background on the
methodology to understand the following sections of this paper.

The data association task, i.e., the matching between previously observed features
and the current observation, is still an open problem in SLAM applications. The prob-
lem can be solved deterministically when it is possible to identify the landmarks uni-
vocally. For instance, the data association method leveraged in [39] is the FAST corner
detector [48], which assigns a unique signature for each landmark by considering its sur-
rounding pixels. However, the data association problem can be solved probabilistically
whenever the landmarks are not uniquely identifiable. Since FastSLAM 2.0 is a particle
filter-based method, a different data association is carried out for each particle, leading
to potentially different association pairings. To the best of our knowledge, no parallel
FastSLAM 2.0 implementation on GPU with unknown data association is yet available
in the literature. Data association in FastSLAM approaches was addressed for the first
time in [49]. Here, maximum likelihood, mutual exclusion, per particle basis, and reuse
methods, previously used for EKF-SLAM, are leveraged. Furthermore, the works proposed
in [50,51] provide an exhaustive overview of probabilistic data association for particle filter-
and EKF-based SLAM approaches. Most of these methodologies address data association
referring to Nearest Neighbour-based and Maximum Likelihood-based estimations. The
work proposed in [52] proposes Multiple Hypothesis Tracking for data association in par-
ticle filters. However, the main limitation of such methods is that they do not guarantee
consistent association hypotheses when dealing with multiple observations simultaneously.
The Sequential Compatibility Nearest Neighbour algorithm leverages a greedy approach
to generate joint hypotheses, with the risk of outputting spurious pairings. The Joint
Compatibility Branch and Bound (JCBB) method proposed in [47] addresses the problem of
unknown data association with multiple observations by subjecting each joint hypothesis
to a compatibility test. More details about JCBB are discussed in Section Joint Compatibility
Branch and Bound, together with its adaptation to particle filter-based methods.

Joint Compatibility Branch and Bound

The Joint Compatibility Branch and Bound (JCBB) algorithm [47] was selected to carry
out the data association task in our implementation. JCBB can handle multiple observations
simultaneously and reduces the number of possible observation–landmark matches by per-
forming a chi-square compatibility test based on the joint quadratic Mahalanobis distance
between the observations and the landmarks. After the joint compatibility test is performed,
the feasible pairings are evaluated and selected according to the branch-and-bound method.
The validity of using a joint compatibility test within the data association step has been
demonstrated in [47].

To the best of our knowledge, JCBB has been implemented in the state-of-the-art in
combination with the Extended Kalman Filter (EKF) algorithm and not with the Particle
Filter (PF) algorithm, which is the basis of FastSLAM 2.0. Since the Mahalanobis distance
computation is subject to the assumptions characterizing each estimation method (EKF in
the state-of-the-art, PF in our work), it has to be derived accordingly, as shown below. The
Mahalanobis distance computed for hypothesis Hi is expressed as follows:

D2
Hi

= hT
Hi

S−1
Hi

hHi (3)

where hHi is the difference between the observations and the expected measurement and
CHi is given by the following:

SHi = HHi PHT
Hi

+ GHi RGHi
T (4)

where P is the estimation error covariance function for the robot state and the landmark
position and H is a matrix of Jacobians discussed later. G is the matrix of Jacobians of the
measurement model with respect to the observations. Given our measurement model and

Appl. Sci. 2024, 14, 11466 10 of 40

motion model described in Equation (1) and in Algorithm 1, G is an identity matrix. R is
the measurement noise covariance matrix. This implies the following:

GHi RGT
Hi

= R

The first element of Equation (4) has yet to be computed. In the implementations
available in the state-of-the-art, which are related to EKF-SLAM, the covariance matrix P
looks like Equation (5), where on the main block diagonal we can find the covariance matrix
of the robot pose estimation error Covr and the landmark pose estimation error covariance
matrices Covli , and the generic extra-diagonal elements Ai,j represent the correlation be-
tween the robot pose and the estimated landmark position (all the Ai,1, which are non-zero
in the EKF), and the landmarks among themselves (zero in any case). However, since in
the PF, the landmarks and the robot pose are not correlated conditionally to each particle, P
is a block diagonal matrix. Furthermore, since Rao–Blackwallization allows for estimating
the landmark poses conditionally to the robot pose, Covr is also null conditionally to each
particle. Therefore, P is a block diagonal matrix, which is also symmetrical by construction,
as in the following:

P =

Covr A1,2 A1,3 · · · A1,N
A2,1 Covl0 A2,3 · · · A2,N

A3,1 A3,2 Covl1
. . .

...
...

...
. AN−1,N

AN,1 AN,2 · · · AN,N−1 Covln

 (5)

On the other hand, H generically looks like the matrix below:.

H =

Hp,0 Ha,0 A1,2 A1,3 · · · A1,N
Hp,1 A2,1 Ha,0 A2,3 · · · A2,N

Hp,2 A3,1 A3,2 Ha,0
. . .

...
...

...
...

. AN−1,N
Hp,N AN,1 AN,2 · · · AN,N−1 Ha,0

where Ha,i are the Jacobians of the observation model with respect to the landmark pose
and Hp,i are the Jacobians of the observation model with respect to the robot pose.

Therefore, the multiplication of HPHT results in the following:

HPHT =

HT

a0
Cl0 Ha0 0 0 · · · 0
0 HT

a1
Cl1 Ha1 0 · · · 0

0 0 HT
a2

Cl2 Ha2 · · · 0
...

...
...

. . .
...

0 0 0 · · · HT
an−1

Cln−1 Han−1

which is a block diagonal matrix, where on the principal diagonal we have 2 × 2 symmetric
matrices. Therefore, the inversion of the matrix is, in turn, a block diagonal matrix whose
principal diagonal has the inverse of each covariance matrix. Consequently, the calculation
of the joint compatibility as in Equation (3) can be computed in the form of a sum, as in
the following:

D2 =
No

∑
l=1

hT
l (HT

al
Cl Ha1)

−1hl

2.3. Particle Resampling

This section aims to provide a state-of-the-art overview of the resampling methods
and a brief discussion of their advantages and disadvantages. In order to accommodate

Appl. Sci. 2024, 14, 11466 11 of 40

different use case scenarios (e.g., accuracy vs. latency trade-offs, characteristics of the
hardware in use), a pool of algorithms was selected and included in the parallelized design.
The user can adopt the most suitable parallelization modality according to their needs.

A state-of-the-art analysis suggests that many of the available proposals consist of
variations of a few methodologies. Consequently, such algorithms are included in our
parallelization design to provide a rather exhaustive set of options while keeping generality.
The pseudocode illustrating the selected methodologies is available in Appendix A.1 for
better manuscript readability. The resampling step occurs after the Landmark Estimation,
where each particle is assigned a weight. Resampling tends to eliminate particles with
lower weights, which have a low likelihood, and replace them with particles with higher
weights. After this rearrangement of the particle set, the weights are set to 1

Np
. Resampling

algorithms are intrinsically sequential and might cause a bottleneck in the execution time
optimization, which is why their parallelization is widely studied in the literature.

The works proposed in [53–55] provide an exhaustive overview of the available
approaches in the current scientific literature. All the algorithms rely on a similar principle:
a random number is generated from a uniform distribution between 0 and 1. This number
then generates a threshold determining whether a given particle is kept or eliminated based
on its weight. The selected algorithms can be subdivided into the following subgroups:

• Traditional methods, which, by providing an unbiased proposal, guarantee the best
performance in terms of accuracy to the price of efficiency [54]. In particular, the
stratified and systematic approaches require iterating among the vector of weights
Np times in the worst-case scenarios. Furthermore, these algorithms usually require
computing the inclusive prefix sum of the weights, which can affect the computation
time. We selected Multinomial resampling, Stratified resampling, and Systematic
resampling among the unbiased methods. Multinomial [56], shown in Algorithm A1,
is the most straightforward resampling approach and is based on similar principles
as the bootstrap method [57]. In Stratified resampling [58], shown in Algorithm A2,
particles are kept or rejected based on Np randomly generated numbers. In contrast,
in systematic resampling [59], shown in Algorithm A3, only a single random number
is generated, consequently reducing discrepancy. These algorithms require computing
the inclusive prefix sum of the particle weights, leading to an O(n) complexity. These
methods are further compared in [60].

• Alternative methods, which address the efficiency issues, potentially at the cost of
accuracy. These approaches do not require the computation of the inclusive prefix
sum and limit the number of iterations among the particle set, requiring tuning a
hyperparameter to achieve a satisfactory accuracy vs efficiency trade-off. Rejection
resampling, Metropolis resampling, and Coalesced Metropolis (C1 and C2) resampling
are selected among these methods. Rejection resampling [61] (Algorithm A4) is
an unbiased algorithm and requires the computation of an upper bound for the
particle weights. The particle selection is performed within a while loop, making the
execution duration of each thread nondeterministic. Furthermore, the upper bound
must be very tight to allow the algorithm to perform well. However, the calculation of
wmax = max{w0 . . . wn} would introduce a collective operation.
On the other hand, Metropolis resampling [61] (Algorithm A5) requires the generation
of numerous random numbers, but the tuning of a hyperparameter B binds the
thread execution time. However, if B is set to an excessively low value, the sample is
biased, harming convergence. According to [53], the improved methods Metropolis
C1 (Algorithm A6) and Metropolis C2 (Algorithm A7), introduced in [62], achieve
better time performance in shared memory architectures and for a very high number
of particles by spanning among a chunk of the particle set instead of the whole set
under the assumption that accessing adjacent or close elements in an array is beneficial
for time efficiency. In this case, a further hyperparameter has to be tuned to determine
the number of intervals.

Appl. Sci. 2024, 14, 11466 12 of 40

In [53], the resampling performance was assessed over 100 executions with over
216 particles.

3. Hardware and Software Setup

This section describes the hardware and software setup leveraged for the deployment
of the proposed design and the validation of the evaluation methodology described in
Section 4. The proposed parallelization of FastSLAM 2.0 is based on the CUDA program-
ming paradigm and uses PyCUDA [63] for Python interfacing. The performance was tested
on a high-end laptop equipped with an Intel Core i7-10750H CPU [63] and an NVIDIA
GeForce GTX 1650 Ti [63].

3.1. Hardware Setup

The hardware used to deploy and validate our design was a high-end laptop hosting
an Intel Core i7-10750H CPU and an NVIDIA GeForce GTX 1650 Ti. The specifications of
the CPU architecture are summarized in Table 1.

Table 1. Specifications of Intel Core i7-10750H CPU.

Processor Intel Core i7-10750H

Base Clock Speed 2.60 GHz

Max Turbo Frequency Up to 5.00 GHz

Number of Cores 6

Number of Threads 12

Lithography 14 nm

Cache 12 MB Intel Smart Cache

Memory Type Support DDR4-2933

Max Memory Size 64 GB

Integrated Graphics Intel UHD Graphics

TDP 45 W

Socket FCLGA1200

The NVIDIA GeForce GTX 1650 Ti is based on the Turing architecture and features
1024 CUDA cores optimized for parallel processing tasks. Designed primarily for gaming
laptops and compact desktops, this graphics processing unit (GPU) integrates several
features that enhance its suitability for algorithm acceleration in computational research.
The main specifications of the NVIDIA GeForce GTX 1650 Ti are gathered in Table 2.

Table 2. Specifications of NVIDIA GeForce GTX 1650 Ti.

Architecture Turing Architecture (Turing TU117 GPU)

Single Multiprocessors 16

CUDA Cores 1024

Base Clock 1350 MHz

Boost Clock 1485 MHz

Memory GDDR6 Memory with Varying Capacities (typically 4GB)

Memory Interface 128-bit

Memory Bandwidth Varies, typically around 192 GB/s

TDP Around 55–80 W

Appl. Sci. 2024, 14, 11466 13 of 40

Table 2. Cont.

Max Blocks per Grid 231 − 1

Max Threads per Block 1024

Max Shared Memory per Block 48 KB (49,152 bytes)

3.2. Cuda Programming Paradigm

High-performance computing has gained rising interest in the past few years, and
modern Graphic Processing Units (GPUs) are at the center of this trend due to the possibility
of heavily parallelizing computation in large-scale applications.

In this context, NVIDIA developed CUDA [64], a programming model and software
environment that allows programmers to write scalable codes, also called kernels, in a
C-like programming language [65]. In more detail, a kernel is a small program that runs
on the GPU rather than the CPU. It is a fundamental concept in parallel computing and
is used to execute a portion of a program on the GPU. In CUDA, a kernel is executed by
multiple threads on the GPU. Threads are the basic execution units that execute the same
kernel code but with different data. A group of threads cooperatively executing the same
kernel is called a block. Blocks are usually mapped to the single multiprocessors (SMs) and
are divided into subsets of 32 threads called warps.Warps are launched randomly within
the same block. The execution context within each warp is maintained on-chip. While the
number of threads per warp is constant among all GPU architectures (i.e., 32), the number
of threads per block and the number of blocks in the grid depend on each specific device.

The threads belonging to the same block can cooperate by sharing data through shared
memory. The shared memory is a small, fast memory space that is shared among threads
within a block. It is divided into 32 banks, each of which can be accessed simultaneously
by a warp. In contrast, global device memory is a larger, slower memory space shared
among all GPU threads. While global device memory provides a larger storage capacity, it
is slower than shared memory due to its higher latency.

When being launched, each block is assigned to a single multiprocessor (SM), a pro-
cessing unit on the GPU that executes a block of threads. Each multiprocessor has its own
memory, registers, and execution units. The threads in a block are executed concurrently
on the multiprocessor, allowing for efficient parallel processing of data. However, to ensure
correct execution, it is necessary to synchronize the threads. This is achieved through
the use of barriers, which force threads to wait until all threads in the same block have
reached a certain point before proceeding to the next instruction. A set of blocks executed
on the GPU is called a grid. The blocks in a grid run independently, which means that
block synchronization is not contemplated within the CUDA programming paradigm. This
is achieved through the use of multiple multiprocessors on the GPU, each of which can
execute a block of threads concurrently.

When a CUDA kernel is launched, the following steps occur: the host (CPU) launches
a kernel, specifying the number of blocks and threads per block; the GPU schedules the
blocks and assigns them to available multiprocessors; each block is executed on a single
multiprocessor, where the threads in the block are executed concurrently; the threads in a
block cooperate with each other, sharing data and synchronizing their execution; and the
blocks in a grid are executed independently.

3.3. PyCUDA

PyCUDA [63] is an open-source toolkit that supports Runtime Code Generation for
GPUs. It allows the programmer to adopt a scripting-based approach when programming
GPUs. Every feature of CUDA runtime is accessible through PyCUDA, while memory allo-
cation and resource management are handled automatically as in a high-level programming
language. However, it is possible to deallocate memory in applications with tight memory
usage manually. PyCUDA allows for the creation of GPU binaries by providing CUDA
source code. This architecture enables the adoption of an edit–run–repeat working style,

Appl. Sci. 2024, 14, 11466 14 of 40

which is quite comfortable for exploratory prototyping and full-scale code, too, thanks to
the use of the GPU. Therefore, the Python code running on the CPU executes control and
communication tasks that require high abstraction. In contrast, the C-like code running on
the GPU solves low-level and throughput-oriented problems.

In our implementation, PyCUDA enables the launching of the CUDA kernels and the
memory transfer from host to device.

3.4. Memory Access Management

Our parallelization of FastSLAM 2.0 is designed to run on a heterogeneous architec-
ture, where the CPU and the GPU, which can be defined as host and device, respectively,
are equipped with two separate memories and execute commands asynchronously. The
parallelized FastSLAM 2.0 is interfaced with a simulator, described in Section 4.1, that runs
on the CPU and feeds the algorithm with synthetic sensor data. The CPU can also allocate
memory on the GPU to store variables and launch kernels. All the FastSLAM 2.0 pipeline
operations leverage either the GPU global memory or the on-chip memory (shared memory
and local thread memory). The final results are eventually copied to the host device (CPU).
A schema of the memory management is provided in Figure 3.

Simulator

CPU memory

Measurements

Input Data

Localization
and Mapping

Estimates

GPU

Global Memory

Blocks

Threads

SM

(FastSLAM 2.0 Kernels)

CPU GPU

Figure 3. Hardware–software architecture schema.

The proposed implementation of FastSLAM 2.0 optimizes memory access to accelerate
processing time. This is achieved by limiting access to the global device memory whenever
possible in favor of shared memory when cooperative data manipulation is needed, as well
as local thread memory.

Shared memory in a GPU is fast, on-chip memory accessible by all threads within
the same thread block. It enables efficient data sharing among threads and significantly
improves the performance of parallel algorithms by allowing data reuse and reducing
redundant calculations.

While shared memory is much faster than global memory, offering latency and band-
width comparable to registers, it is limited in size and can vary depending on each GPU
architecture. The GPU architecture where we validate our approach is equipped with
48 kilobytes of shared memory per block. All threads within the same block can read from
and write on shared memory. Shared memory is divided into banks. The bank size and the
number of banks depend on each specific GPU architecture. If multiple threads belonging
to the same warp access the same bank simultaneously, bank conflicts may arise, degrading
performance. The memory bank conflict is commonly avoided through common CUDA
programming good practices such as padding and accurate offset selection to ensure that all
the threads in the same block contemporarily access different banks. Furthermore, conflicts
can arise when thread divergence occurs. Therefore, it is utterly important to correctly
execute thread synchronization to ensure that the read and write operations on the shared
memory are coherently performed.

Appl. Sci. 2024, 14, 11466 15 of 40

4. Evaluation Methodology

This section discusses the evaluation methodology we propose to adapt and optimize
the deployment of FastSLAM 2.0 onto the hardware architecture in use. Firstly, we analyze
the algorithm’s dependencies. Then, we divide the algorithm pipeline into functional
blocks with the same dependencies. Subsequently, each parameter is thresholded to limit
the processing time. The parallelized design of each functional block contemplates one or
more parallelization modalities, depending on which parameters affect its complexity (i.e.,
number of particles Np, number of existing landmarks Nl , number of observations No, and
number of matched observations Nc), as further described in Section 5.

Dependency analysis and parameter thresholding are widely employed in the par-
allelization process of different types of SLAM algorithms. In [66,67], such a methodol-
ogy is leveraged to study the performance of graph-based SLAM on embedded systems;
in [68], it was used to evaluate an efficient implementation of EKF-SLAM, and in [39], it
was used for FastSLAM 2.0.

Our design takes a comprehensive approach by exploring multiple parallelization
methodologies to achieve the best performance across different contexts. We leverage a de-
pendency analysis to define multiple possible grid configurations, which are later deployed
on the hardware architecture of interest. The evaluation is carried out by comparing each
parallelization modality to the sequential implementation according to the performance
indexes described in Section 4.4. The performance analysis under different test cases (i.e.,
contexts) is carried out in the form of a sensitivity analysis, which means that the variation
of the index of interest is observed as an effect of the variation of a single parameter, while
the others are kept constant.

In the state-of-the-art, the parallelization modality is not always disclosed, making
it rather impractical to perform our validation methodology on such proposals with the
available information. However, whenever such information is available, the parallelization
usually happens particle-wise (i.e., the number of concurrent operations is equal to Np).
Due to the adaptability of our design, we can test multiple modalities, including, among
others, particle-wise parallelization. Furthermore, we wish to remark that, unlike the
state-of-the-art proposals, it is not within our scope to prove the optimality of a single
implementation under the widest variety of scenarios but to provide a flexible design that
can be easily adapted to reach optimality under various conditions and with the support of
various hardware architectures.

4.1. Simulation Environment

The simulation environment we leverage to benchmark our design models the robot
as a rigid body—i.e., it is characterized by its Cartesian coordinates and its orientation
(xr, yr, θr) and it moves in a bi-dimensional space characterized by landmarks. The land-
marks are modeled as points in space and are defined by their Cartesian coordinates and
a label (xl , yl , label). The robot is considered equipped with a generic range sensor and
an inertial sensor. The sensors are characterized by a measurement noise modeled as
zero-mean Gaussian white noise.

As for the inertial sensors, linear and rotational speed (v, ω) are generated with
the following:

vmeas = vtrue +N (0, σ2
v)

ωmeas = ωtrue +N (0, σ2
ω)

and the range and bearing signals (ρ, β) coming from the range sensors are computed as

ρ̂ =
√
(xl − xr)2 + (yl − yr)2 +N (0, σ2

ρ)

β̂ = arctan
(yl − yr

xl − xr

)
− θr +N (0, σ2

ω)

The simulation environment runs on CPU and is schematized in Figure 4.

Appl. Sci. 2024, 14, 11466 16 of 40

Command

Generation

Map

Generation

Motion

Model

Sensors

Models

Motion
commands Landmarks

Ground Truth Position

Measurements

Fast SLAM 2.0

Simulator

Pose estimation

Map Estimation

Figure 4. Simulation environment schema.

4.2. Functional Block Partitioning

As mentioned in Section 4, we analyze the algorithm based on the instruction and
operation order, as in [39]. We then divide the pipeline into functional blocks as summarized
in Figure 5. The first functional block, dedicated to the Particle Initialization step, initializes
the particle poses with random numbers and the landmarks as null values. The output
of the Particle Initialization block constitutes the input of the Particle Prediction functional
block, together with the inertial sensor signals from the simulator. This functional block is
supposed to run only at the first iteration of the algorithm. The predicted poses and the
unlabeled observations retrieved from the simulator are the input of the Data Association
functional block. The associated observations outputted by the Data Association block and
the pose prediction are fed to the Proposal Adjustment block, which outputs the updated
robot pose estimate. The output of this functional block and the associated observations are
then fed to the Landmarks Update and Weights Computation block. The corrected landmark
estimates, the corrected particle pose, and the newly assigned weights feed the Resampling
functional block, which is responsible for copying the selected particles to the new particle
set and re-initializing the particle weights. The output of the Resampling blocks, together
with the new signals coming from the inertial sensors, will constitute the input for the
Particle Prediction and Data Association functional blocks for the next iteration.

All the functional blocks are composed of a single kernel except for the Data Association
functional block, which is subdivided into multiple kernels. Further implementation details
are discussed in Section 5.

Appl. Sci. 2024, 14, 11466 17 of 40

Particle
Initialization

Initialized Particles

Data

Association

Motion commands

(𝑣, 𝜔)

Particle Pose

Particle

Prediction

Observations
(𝜌, 𝛽)

Proposal

UpdateAssociated
Observations

Updated

Particle Pose

Landmarks Update
& Weight

Computation

Particle

Resampling

Updated Landmarks

& Weights

Landmarks

Particle Pose

Figure 5. Functional blocks partitioning schema.

4.3. Algorithm Dependencies and Definition of Test Cases

After the algorithm has been analyzed and divided into functional blocks, we can
identify their dependencies. By dependencies, we mean the variables that affect the compu-
tational complexity of each block. The functional blocks discussed in Section 4.2 coincide
with the steps described in Section 2.1. Their dependencies are summarized in Table 3.

Table 3. Algorithm dependencies.

Step Np Nl No

Particle Initialization ✓ ✗ ✗

Particle Prediction ✓ ✗ ✗

Data Association ✓ ✓ ✓

Proposal Adjustment ✓ ✗ ✓

Landmark Estimation ✓ ✗ ✓

Resampling ✓ ✗ ✗

Based on the dependency analysis, we can finally determine the parallelization possibilities
for each functional block. In particular, the parallelization modalities are reported below:

• Particle Initialization: The parallelization is performed based on the particles.
• Particle Prediction: The parallelization is performed based on the particles.
• Data Association: The parallelization is performed based on the particles, on the previ-

ously observed landmarks, and jointly on the particles and the landmarks. Although
the complexity of the data association step also depends on the number of observa-

Appl. Sci. 2024, 14, 11466 18 of 40

tions, the necessity of performing feasible joint hypotheses (i.e., each observation is
associated with at most one landmark) forces the developer to tackle them sequentially.

• Proposal Adjustment: The parallelization is performed based on the particles, on the
matched observations, and jointly on the particles and the matched observations.

• Landmark Estimation and Weight Update: The parallelization is performed based on the
particles, on the total observations, and jointly on the particles and the observations.

• Importance Resampling: The parallelization is performed based on the particles.

Such parallelization modalities are then mapped onto the grid combination options
available in the GPU programming paradigm:

• Sequential—one block, one thread (1B1T)
• One dimension, thread-based—one block, N threads (1BNT)
• One dimension, block-bases—M blocks, one thread (MB1T)
• Two dimensions—M blocks, N threads (MBNT).

The sensitivity analysis is carried out by varying one of the dependencies and keeping
all the others constant. We perform such evaluation for all the dependencies in each step,
except for the number of observations in the Data Association functional block. This is
because JCBB builds the association hypotheses incrementally, which implies a sequential
execution on the observations. Consequently, it is impossible to assess the benefit of
parallelization based on this parameter.

Each dependency is assigned a threshold, as shown in Table 4. These thresholds are
generally defined with the sole scope of binding the execution time. However, further
limitations may arise depending on the memory availability of each specific device and the
memory requirements of each kernel. For the sake of the completeness of our sensitivity
analysis, we apply the aforementioned thresholds when possible. However, in an actual
use case scenario, it is necessary to find an optimal combination between the memory
availability of the hardware device, the desired precision of the estimation (proportional to
the number of particles), and the map’s scale.

Table 4. Dependency thresholds.

Dependency Threshold

Np 4096

Nl 4096

No 1024

4.4. Performance Assessment

The sensitivity analysis described in the previous sections for the performance assess-
ment is based on two parameters: the Elapsed Time and Time Gain. The Elapsed Time is
computed for each functional block B, for each context C (i.e., combination of parameters
based on which the sensitivity analysis is performed), and for each grid combination G as
the average of N = 500 repeated executions, as follows:

Elapsed Time(B, C, G) =
N

∑
n=1

t(B, C, G, n)
N

and the Time Gain is defined as the ratio between the sequential grid combination (1B1T)
and the most advantageous grid combination, as

Time Gain(B, C, Gbest) =
ElapsedTime(B, C, G1B1T)

ElapsedTime(B, C, Gbest)

The Elapsed Time quantity is expressed in milliseconds ([ms]), while the Time Gain
is scalar.

Appl. Sci. 2024, 14, 11466 19 of 40

5. Deployment

This section discusses the design details of each parallelized functional block. Figure 6
shows how the memory transfer and the interaction between CPU and GPU are managed
across the entire pipeline. The dashed rectangles correspond to data, while the colored
rectangles contain instructions (CUDA kernels and their launchers).

Memory Allocation

States Initialization

CPU GPU

Allocated Particle Memory

Random States

Transfer H to D

Particle Prediction Launcher

Particle Initialization Kernel
Launch

Proprioceptive Data Proprioceptive Data

Particle Initialization Launcher

Particle Prediction Kernel

Exteroceptive Data Exteroceptive Data

Data Association Launchers Data Association Kernels

Proposal Adjustment Launcher Proposal Adjustment Kernel

Landmark Estimation Launcher Landmark Estimation Kernel

Resampling Launcher Resampling Kernel

Pose Estimate

Map Estimate

Pose Estimate

Map estimate

Transfer D to H

Simulator

Transfer H to D

Launch

Transfer H to D

Launch

Launch

Launch

Launch

Figure 6. Detailed heterogeneous architecture pipeline.

In more detail, the CPU allocates memory on the GPU and initializes a vector of ran-
dom states leveraged in the random number generation operations. Then, each functional
block is implemented in the form of one or two kernels that start their execution on the
GPU once a dedicated launcher is executed. The interaction within the kernels is akin to
what is described in Figure 5. Once all the operations are terminated, the pose estimates
and the map estimates are copied back to the host memory to be fed as input to the Particle
Prediction Launcher at the next iteration.

The pseudocode relevant to the parallelization of the functional blocks in the following
sections is available in Appendices A.2–A.6. This section is aimed at discussing the design
peculiarities of our approach; for the methodological and mathematical foundations of
FastSLAM 2.0, please refer to Section 2.

5.1. Particle Initialization

The Particle Initialization is parallelized based on the number of particles. Therefore, a
monodimensional parallelization is performed. Algorithm A8 iterates over each particle
with a stride corresponding to blockDim · gridDim. However, regarding the mapping of
this monodimensional parallelization onto grid composition possibilities, it is possible to
launch the kernel with the following:

• Sequential configuration (1B1T): one block and one thread.

Appl. Sci. 2024, 14, 11466 20 of 40

• Thread-based configuration (1BNT): one block and min(Np, 1024) threads.
• Block-based configuration (MB1T): Np blocks and one thread.

• Two-dimension configuration (MBNT): Upper Bound (Np
1024) blocks and 1024 threads.

In this case, the memory limitation is determined by the amount of global memory
available in the GPU.

5.2. Particle Prediction

The Particle Prediction is parallelized based on the number of particles. Therefore,
we perform a monodimensional parallelization. Algorithm A9 iterates over each particle
with a stride corresponding to blockDim · gridDim. However, regarding the mapping of
this monodimensional parallelization onto grid composition possibilities, it is possible to
launch the kernel with the following:

• Sequential configuration (1B1T): one block and one thread
• Thread-based configuration (1BNT): one block and min(Np, 1024) threads.
• Block-based configuration (MB1T): Np blocks and one thread

• Two-dimension configuration (MBNT): Upper Bound (Np
1024) blocks and 1024 threads.

As in the Particle Prediction step, the memory limitation is determined by the amount
of global memory available in the GPU.

5.3. Data Association

The Data Association step is subdivided into three kernels, as summarized in Figure 7.
The pseudocode for the data association step is available in Appendix A.4 for better
manuscript readability. Though a single-kernel implementation is possible, the high amount
of needed shared memory would heavily limit the map’s scale and the precision of the
estimation (proportional to the number of particles). Therefore, with the goal of achieving
a trade-off between the increase in performance given by the usage of the faster on-chip
memory and the limitation given by its small size, we privilege the shared memory usage
for those variables that are read and written more than once. In particular, the variables
related to the individual compatibility assessment would need to be stored in the shared
memory together with the expected observations ẑm

n . However, the high dimensionality
of the first variables (highlighted in Algorithm A10) and the reduced number of times
they need to be accessed made a multiple-kernel implementation preferable, limiting the
shared memory usage for the expected observations. Therefore, the JCBB operations are
divided as follows. A first kernel, available in Algorithm A10, is in charge of computing
the quantity Ha · Cm

n · HT
a derived in Section Joint Compatibility Branch and Bound for

each possible observation–landmark pair and performing an individual compatibility
test. The resulting matrix is, therefore, stored in the global memory and constitutes the
exploration tree where branch-and-bound is carried out. Each element in the cost matrix
MDi,j represents the Mahalanobis distance between observation i and map feature j. If the
individual compatibility test is not passed, MDi,j is set to infinity.

Therefore, all the feasible hypotheses are explored while all the non-feasible matches
are excluded. An intermediate kernel called Problem Preparation, shown in Algorithm A9,
arranges some auxiliary parameters to optimize tree exploration by excluding unmatchable
observations (i.e., where none of the MDī,j for all j passed the individual compatibility test)
and initializes new labels for the newly observed landmarks. In this case, the rows of the
cost matrix corresponding to non-matchable observations are not explored.

Eventually, the Branch and Bound kernel explores the feasible combinations and assesses
the most promising hypotheses, as shown in Algorithm A12. Every time a new observation
is considered, a joint compatibility test is performed for each feasible partial hypothesis
(i.e., the most promising partial hypothesis outputted by the previous iteration in addition
to the Mahalanobis distance between the new observation and each not-yet-matched map
feature). If the compatibility test is passed, the lower bound for the partial hypothesis
is computed. Otherwise, the cost is set to infinity. As a last step, the minimum cost for

Appl. Sci. 2024, 14, 11466 21 of 40

the partial hypothesis is computed through parallel reduction and the most promising
combination is selected.

Mahalanobis Distance

Individual Compatibility Test

Problem Preparation

Branch & Bound

Joint Compatibility Test

Figure 7. Data association pipeline.

The complexity of the data association step depends on the number of particles, the
number of previously observed landmarks, and the number of observations, but, as men-
tioned in Section 4.3, the parallelization is performed on the particles and the landmarks.
The choice is motivated by the consideration that JCBB builds the association hypothesis
incrementally, implying that the observations must be iterated sequentially. Furthermore,
in an average scenario, the number of observations is much lower than the number of
landmarks already present in the map. This implies that the most significant benefit is
given by performing particle-wise and landmark-wise parallelization. Therefore, monodi-
mensional and bi-dimensional parallelizations are performed. An external for loop iterates
over the particles and an inner loop iterates over the landmarks. Consequently, the different
parallelization modalities are achieved according to the following grid configurations:

• Sequential configuration (1B1T): one block and one thread.
• Thread-based configuration (1BNT): one block and min(No, 1024) threads. Parallel on

the landmarks and sequential on the particles and the observations.
• Block-based configuration (MB1T): Np blocks and one thread. Parallel on the particles

and sequential on the landmarks and observations.
• Two-dimension configuration (MBNT): Np blocks and min(No, 1024) threads. Parallel

on the particles and the landmarks and sequential on the observations.

The three kernels store their intermediate outputs in the global memory. Due to the
high dimensionality of these outputs, the main limitation in terms of memory availability
is the size of the device’s global memory.

5.4. Proposal Adjustment

The Proposal Adjustment functional block depends on the number of particles and
matched observations. Therefore, monodimensional and bi-dimensional parallelizations
are possible. This is achieved by assigning particles to blocks and observations to threads.
The choice is motivated by the necessity of collaborative data management within the same
particle. Therefore, an external loop iterates over the particles, and an internal loop over the
observations. Consequently, the different parallelization modalities are achieved according
to the following grid configurations:

Appl. Sci. 2024, 14, 11466 22 of 40

• Sequential configuration (1B1T): one block and one thread.
• Thread-based configuration (1BNT): one block and min(No, 1024) threads—parallel

on the observations and sequential on the particles.
• Block-based configuration (MB1T): Np blocks and one thread—parallel on the parti-

cles and sequential on the observations.
• Two-dimension configuration (MBNT): Np blocks and min(No, 1024) threads—parallel

on the particles and the observations.

Algorithm 4 summarizes the proposal adjustment step. Each line corresponds to a
block that is further expanded in Algorithms A13–A17 in Appendix A.5.

Algorithm 4 Proposal Adjustment

1: for m = blockId to Np, step = gridDim do
2: Initialization Σ0, µ0
3: Preparation for adjustment
4: Σn computation
5: µ correction computation
6: Correction application
7: end for

Each block carries out a separate operation on the shared memory, which is why
threads are synchronized at the end of each block. In particular, the shared memory vari-
ables, highlighted with comments in the relative algorithms, are related to the cumulative
computation of the correction applied to the robot’s pose estimate based on the matched
observations. In Algorithm A16, the innovation is computed for a second time to accommo-
date the cases in which No > 1024 because each block would tackle multiple observations
sequentially, and the innovation values would be overwritten in the local memory threads.

The cumulative prefix sums in Algorithms A16 and A17 are carried out through
stride-like parallel reduction to avoid bank conflicts as in [69].

This functional block significantly uses the shared memory. Therefore, the main
limitation in memory availability resides in the shared memory per block.

5.5. Landmark Estimation

The Landmark Estimation functional block depends on the number of particles and
matched observations. Therefore, monodimensional and bi-dimensional parallelizations
are feasible. In more detail, the particles are assigned to blocks, and threads are assigned
to the observations. The choice is motivated by the fact that the reinitialization of the
weights depends on all the matched observations within each particle. Therefore, the
external for loop iterates over the particles and an inner loop iterates over the observations.
Consequently, multiple parallelization modalities are achievable with the following grid
configurations:

• Sequential configuration (1B1T): one block and one thread.
• Thread-based configuration (1BNT): one block and min(No, 1024) threads—parallel

on the observations and sequential on the particles.
• Block-based configuration (MB1T): Np blocks and one thread—parallel on the parti-

cles, sequential on the observations.
• Two-dimension configuration (MBNT): Np blocks and min(No, 1024) threads—parallel

on the particles and the observations.

The landmark estimation is carried out on a single kernel. However, as in the previous
case, the algorithm is split into different sections for better readability. A summary of the
landmark estimation step is available in Algorithm 5. Please refer to Appendix A.6 for
more details.

The main limitation in memory availability is the GPU’s global memory, as the kernel
uses a limited amount of shared memory.

Appl. Sci. 2024, 14, 11466 23 of 40

Algorithm 5 Landmark Estimation

1: for m = blockId to Np, step = gridDim do
2: for n = threadId to No, step = blockDim do
3: Retrieve observation zn
4: if new landmark then
5: Landmark Initialization
6: else
7: Landmark Update
8: end if
9: end for

10: Weight Update
11: end for

5.6. Particle Resampling

The Particle Resampling is parallelized based on the number of particles. Therefore,
a monodimensional parallelization is performed. Algorithm 6 shows a general template
for the resampling step. Each tested resampling variation contains a different selection
strategy, as reported in Line 4. The particle weights are preliminarily copied onto the shared
memory to optimize memory access. Our implementation iterates over each particle with a
stride corresponding to blockDim · gridDim. Therefore, it is possible to launch the kernel
with the following:

• Sequential configuration (1B1T): one block and one thread.
• Thread-based configuration (1BNT): one block and min(Np, 1024) threads.
• Block-based configuration (MB1T): Np blocks and one thread.

• Two-dimension configuration (MBNT): Upper Bound (Np
1024) blocks and 1024 threads.

Algorithm 6 Importance Resampling

1: Retrieve W ▷ vector of weights, Shared Memory
2: W = ∑N

j=0 wj, j = 0, . . . , Np ▷ traditional methods only, Shared Memory
3: for m = gridId to Np, step = blockDim · gridDim do
4: Choose selectedIdx
5: Retrieve (xselectedIdx

r , yselectedIdx
r , θselectedIdx

r) ▷ to Thread
6: Transfer (xselectedIdx

r , yselectedIdx
r , θselectedIdx

r) ▷ to Global Memory
7: Retrieve map features for selectedIdx-th particle ▷ to Thread
8: Transfer map features for selectedIdx-th particle ▷ to Global Memory
9: end for

The cumulative prefix sum is computed with parallel reduction as in Section 5.4 for the
traditional methods. As for rejection resampling, wmax is computed as max{w0, dotswN},
meaning that one collective operation is introduced. This is because we do not assume
that the particle weights are normalized, which makes the estimation of an upper bound
hard to formulate. On the other hand, a work-efficient parallel reduction based on [69,70]
is implemented for the maximum computation. Unlike the inclusive prefix sum, which
requires iterating over the particles twice, such an implementation requires iterating only
once, increasing the efficiency of our implementation of rejection resampling in comparison
with traditional methods.

In the case of resampling, the memory limitation is determined by the amount of
shared memory available in the GPU.

6. Results

In this section, the experimental results are presented and discussed. In particular,
we show the results of the sensitivity analyses described in Section 4 and draw some
conclusions on the performance of the flexible design under different use case scenarios.

Appl. Sci. 2024, 14, 11466 24 of 40

Sections 6.1–6.6 tackle the results of the individual functional blocks, while Section 6.7
discusses our results on a more general level.

6.1. Initialization

The comparison of the parallelization modalities discussed in Section 5.1 is shown
in Figure 8. The plot shows that for a low number of particles (i.e., <1024), block-based
parallelization (MB1T) is to be preferred. In contrast, the best performance for higher
numbers of particles is given by limiting the number of blocks and maximizing their
occupancy (MBNT). On the other hand, the MB1T configuration is the most inconvenient
parallelization modality for a higher number of particles due to the overhead involved when
launching a high amount of blocks. The MBNT configuration shows constant processing
time for all the tested use cases where the number of particles exceeds 1024.

The most efficient parallel implementation guarantees an acceleration of a factor of 60
for 1024 particles and around 250 for 4096 particles.

0 1000 2000 3000 4000
particles

2.0

1.5

1.0

0.5

0.0

0.5

el
ap

se
d

tim
e

[lo
g1

0(
m

s)
]

1B1T
1BNT
MB1T
MBNT

Figure 8. Particle Initialization—elapsed time.

6.2. Prediction

The comparison of the experimental results for the parallelization modalities discussed
in Section 5.2 is displayed in Figure 9. For a low number of particles (i.e., <1024), the block-
based parallelization (MB1T) shows the best performance. In contrast, limiting the number
of blocks by maximizing their occupancy (MBNT) minimizes the processing time for higher
numbers of particles. The 1BNT configuration is the most inconvenient parallelization
strategy. The MBNT configuration shows constant processing time for all the tested use
cases for numbers of particles above 1024.

The most efficient parallel implementation guarantees an acceleration of a factor of 70
for 1024 particles and around 270 for 4096 particles.

Appl. Sci. 2024, 14, 11466 25 of 40

0 1000 2000 3000 4000
particles

2.0

1.5

1.0

0.5

0.0

0.5

el
ap

se
d

tim
e

[lo
g1

0(
m

s)
]

1B1T
1BNT
MB1T
MBNT

Figure 9. Particle Prediction—elapsed time.

6.3. Data Association

The data association functional block is subdivided into three kernels as discussed in
Section 5.3. Therefore, the experimental results are shown for the three kernels separately
in Sections 6.3.1–6.3.3. The sensitivity analysis is performed based on the number of
particles and landmarks on the map. Since our implementation deals with the observations
sequentially, this parameter is kept constant at 16.

6.3.1. Mahalanobis Distance

The experimental results of the sensitivity analyses for the Mahalanobis Distance
computation are shown in Figure 10. Figure 10a shows the results of the particle-based
sensitivity analysis (Nl = 1024), while Figure 10b the results for the landmark-based
analysis (Np = 1024). The fully parallelized implementation (MBNT) performs best
under all test cases since the Mahalanobis Distance computation is highly computationally
intensive on the landmarks, making block-based parallelization the most inefficient among
the parallelized implementations. The most efficient implementations reduce by a factor of
around 1500 for the highest numbers of particles (Nl = 1024), a factor of almost 2000 for
the highest values of Nl , with Np = 1024.

0 500 1000 1500 2000
particles

1

0

1

2

3

4

el
ap

se
d

tim
e

[lo
g1

0(
m

s)
]

1B1T
1BNT
MB1T
MBNT

(a) By particles

500 1000 1500 2000 2500 3000 3500 4000
landmarks

0

1

2

3

4

el
ap

se
d

tim
e

[lo
g1

0(
m

s)
]

1B1T
1BNT
MB1T
MBNT

(b) By landmarks

Figure 10. Mahalanobis Distance—elapsed time.

6.3.2. Problem Preparation

The experimental results of the sensitivity analyses for the Problem Preparation are
shown in Figure 11. Figure 11a shows the results of the particle-based sensitivity anal-
ysis (Nl = 1024), while Figure 11b shows the results for the landmark-based analysis

Appl. Sci. 2024, 14, 11466 26 of 40

(Np = 1024). The fully parallelized implementation (MBNT) demonstrates the best per-
formance among all test cases. The most efficient implementations reduce the processing
time by a factor of around 150 for the highest numbers of particles (Nl = 1024), a factor of
almost 260 for the highest values of Nl , with Np = 1024.

0 500 1000 1500 2000
particles

1

0

1

2

3
el

ap
se

d
tim

e
[lo

g1
0(

m
s)

]

1B1T
1BNT
MB1T
MBNT

(a) By particles

500 1000 1500 2000 2500 3000 3500 4000
landmarks

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

el
ap

se
d

tim
e

[lo
g1

0(
m

s)
]

1B1T
1BNT
MB1T
MBNT

(b) By landmarks

Figure 11. Problem Preparation—elapsed time.

6.3.3. Branch and Bound

The experimental results of the sensitivity analyses for the Branch and Bound are
shown in Figure 12. Figure 12a,b show the results of the particle-based sensitivity analysis
with Nl = 256 and Nl = 1024 respectively, while Figure 11b shows the results for the
landmark-based analysis (Np = 1024). The fully parallelized implementation (MBNT)
demonstrates the best performance among all test cases. It is worth pointing out that for a
low number of landmarks, the block-based (MB1T) parallelization performs better than the
thread-based parallelization (1BNT), which, in turn, is more efficient for a higher number
of landmarks.

The most efficient implementation reduces the processing time by a factor of around
2500 for the highest numbers of particles (Nl = 1024), a factor of almost 220 for the highest
values of Nl , with Np = 1024.

0 500 1000 1500 2000
particles

0

1

2

3

4

5

el
ap

se
d

tim
e

[lo
g1

0(
m

s)
]

1B1T
1BNT
MB1T
MBNT

(a) By particle—256 landmarks

0 500 1000 1500 2000
particles

1

2

3

4

5

6

el
ap

se
d

tim
e

[lo
g1

0(
m

s)
]

1B1T
1BNT
MB1T
MBNT

(b) By particle—1024 landmarks

250 500 750 1000 1250 1500 1750 2000
landmarks

1

2

3

4

5

6

el
ap

se
d

tim
e

[lo
g1

0(
m

s)
]

1B1T
1BNT
MB1T
MBNT

(c) By landmark

Figure 12. Branch and Bound—elapsed time.

6.4. Proposal Adjustment

The experimental results of the sensitivity analyses for the Proposal Adjustment are
shown in Figure 13. Figure 13a shows the results of the particle-based sensitivity analysis
(Nl = 512), while Figure 13b shows the results for the observed landmark-based analysis
(Np = 1024). The fully parallelized implementation (MBNT) demonstrates the best perfor-
mance among all test cases. It is worth pointing out that for a low number of landmarks, the
block-based (MB1T) parallelization performs better than the thread-based parallelization
(1BNT), which, in turn, is more efficient for a higher number of landmarks.

Appl. Sci. 2024, 14, 11466 27 of 40

The most efficient implementation reduces the processing time by around 2300 for the
highest numbers of particles (Nl = 512).

0 1000 2000 3000 4000
particles

2

1

0

1

2

3

el
ap

se
d

tim
e

[lo
g1

0(
m

s)
]

1B1T
1BNT
MB1T
MBNT

(a) By particles

0 100 200 300 400 500
landmarks

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

el
ap

se
d

tim
e

[lo
g1

0(
m

s)
]

1B1T
1BNT
MB1T
MBNT

(b) By landmarks

Figure 13. Proposal Adjustment—elapsed time.

6.5. Landmark Estimation

The experimental results of the sensitivity analyses for the Landmark Estimation are
shown in Figure 14. Figure 14a shows the results of the particle-based sensitivity analysis
(Nl = 512), while Figure 14b shows the results for the observed landmark-based analysis
(Np = 1024). The fully parallelized implementation (MBNT) demonstrates the best per-
formance among all test cases. For a low number of landmarks, thread-based (MB1T)
parallelization is the least efficient among the parallel implementations.

The most efficient implementation reduces the processing time by a factor of around
250 for the highest numbers of particles (Nl = 512), a factor of almost 270 for the highest
values of Nl , with Np = 1024.

0 1000 2000 3000 4000
particles

2

1

0

1

2

3

el
ap

se
d

tim
e

[lo
g1

0(
m

s)
]

1B1T
1BNT
MB1T
MBNT

(a) By particles

0 200 400 600 800 1000
landmarks

2.0

1.5

1.0

0.5

0.0

0.5

1.0

el
ap

se
d

tim
e

[lo
g1

0(
m

s)
]

1B1T
1BNT
MB1T
MBNT

(b) By landmarks

Figure 14. Landmark Estimation—elapsed time.

6.6. Particle Resampling

The results for the sensitivity analysis for the traditional resampling methods are
shown in Figure 15 and in Figure 16 for the alternative resampling methods. The coalesced
Metropolis algorithm is executed by setting the number of iterations to 10 and a segment
size of 32 if Np > 32 and of Np in the other cases. As for the traditional resampling
methods, the MBNT configuration proves to be the most efficient in all the examined cases,
while the block-based parallelization (MB1T) shows the least efficiency among the parallel
implementations, reaching the same elapsed time as the sequential implementation in the
case of multinomial resampling (Figure 15a) and systematic resampling (Figure 15c). This
is due to the need to compute the cumulative prefix sum performed sequentially in all
blocks, which heavily increases the processing time.

As for the alternative methods, which do not require the computation of the inclusive
prefix sum, we can observe a slightly different behavior. In the case of the Metropolis
methods (Metropolis resampling in Figure 16b, Metropolis C1 in Figure 16c, and Metropolis
C2 in Figure 16d), the MB1T implementation is the most efficient for lower numbers
of particles, while the MBNT configuration is to be preferred for a higher number of
particles. In these three cases, the MB1T configuration is still the most inefficient for a

Appl. Sci. 2024, 14, 11466 28 of 40

higher number of particles due to the high overhead implied by launching a significant
amount of blocks. The rejection resampling algorithm (Figure 16a) shows a similar behavior
as the traditional methods, where the MBNT configuration is preferable under all test cases,
and the MB1T configuration is more sensitive to the increase of the number of particles in
terms of increased processing time. This is due to the necessity of computing the maximum
weight wmax, computed via a parallel reduction in every block.

0 1000 2000 3000 4000
particles

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

el
ap

se
d

tim
e

[lo
g1

0(
m

s)
]

1B1T
1BNT
MB1T
MBNT

(a) Multinomial resampling

0 1000 2000 3000 4000
particles

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

el
ap

se
d

tim
e

[lo
g1

0(
m

s)
]

1B1T
1BNT
MB1T
MBNT

(b) Stratified resampling

0 1000 2000 3000 4000
particles

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

el
ap

se
d

tim
e

[lo
g1

0(
m

s)
]

1B1T
1BNT
MB1T
MBNT

(c) Systematic resampling

Figure 15. Resampling traditional methods—elapsed time.

0 1000 2000 3000 4000
particles

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

el
ap

se
d

tim
e

[lo
g1

0(
m

s)
]

1B1T
1BNT
MB1T
MBNT

(a) Rejection resampling

0 1000 2000 3000 4000
particles

0.5

0.0

0.5

1.0

1.5

2.0

2.5

el
ap

se
d

tim
e

[lo
g1

0(
m

s)
]

1B1T
1BNT
MB1T
MBNT

(b) Metropolis resampling

0 1000 2000 3000 4000
particles

0.5

0.0

0.5

1.0

1.5

2.0

2.5

el
ap

se
d

tim
e

[lo
g1

0(
m

s)
]

1B1T
1BNT
MB1T
MBNT

(c) Metropolis C1 resampling

0 1000 2000 3000 4000
particles

0.5

0.0

0.5

1.0

1.5

2.0

2.5

el
ap

se
d

tim
e

[lo
g1

0(
m

s)
]

1B1T
1BNT
MB1T
MBNT

(d) Metropolis C2 resampling

Figure 16. Resampling alternative methods—elapsed time.

For higher numbers of particles under our test cases, the traditional methods are
accelerated by 120, while the traditional methods are accelerated by a factor of 80 for the
respective most efficient implementations.

6.7. Discussion

In this section, we address some overall considerations on the performance of our
flexible design under different contexts (i.e., sets of parameters) regarding the GPU archi-
tecture leveraged for the validation of our method.

Firstly, we notice that for the functional blocks requiring monodimensional paral-
lelization and that do not include a high number of operations (e.g., Particle Initialization

Appl. Sci. 2024, 14, 11466 29 of 40

(Section 6.1) and Particle Prediction (Section 6.2)), the MB1T parallelization is ideal for
lower values of Np, while, for higher numbers of particles, it is preferable to limit the
number of launched blocks while prioritizing a small grid maximizing the capacity of the
single blocks.

Secondly, in the case of those kernels that are richer in operations and that require
a bi-dimensional parallelization (depending on Np and Nl), such as the Mahalanobis
Distance kernel (Section 6.3.1), the fully parallel modality is by far the most preferable under
all the cases considered in the landmark-based sensitivity analysis (Figure 10b) and in
most of the cases considered in the particle-based sensitivity analysis (Figure 10a). For
small values on Np, the single-block implementation is to be preferred. This is observable
because, for the particle-wise sensitivity analysis, the number of landmarks set to Nl = 1024
(textiti.e., full block occupancy) and, with the number of particles being quite low, the
latency cost of launching multiple blocks at their full capacity is higher than the time
gain guaranteed by the parallelization. Similar considerations can be highlighted for the
Problem Preparation, Branch and Bound, Proposal Adjustment, and Landmark Estimation
kernels (Sections 6.3.2–6.4). The Branch and Bound kernel had a slightly different behavior
in the particle-based sensitivity analysis performed with a lower number of landmarks
(Figure 12a). In this case, for lower values of Np, the fully parallel modality is still the
preferable option. This is because blocks are not launched at the maximum of their capacity.
The time gain provided by higher levels of parallelization has more impact than the latency
given by the launch of the blocks.

As for the resampling algorithms, discussed in Section 6.6, the MBNT configuration is
to be preferred under all test cases for the traditional methods (Figure 15). In fact, although
they support only particle-wise parallelization like the Particle Prediction and Particle
Initialization kernels, they still require the computation of a collective operation, which
would be carried out sequentially in the MB1T configuration, decreasing its performance
even for smaller values of Np. On the other hand, this is not the case for the Metropolis
methods (Figures 16), which show instead a similar behavior to the other two functional
blocks. On the other hand, the rejection resampling algorithm (Figure 16a) shows a similar
behavior as the traditional methods, where the MBNT configuration is preferable under
all test cases, and the MB1T configuration is more sensitive to the increase in Np in terms
of processing time. This is due to the necessity of computing the maximum weight wmax,
computed via a parallel reduction in every block. It is worth remarking that, for higher
numbers of particles, the MBNT configuration settles on a lower value for the traditional
methods in comparison with the alternative methods. These results seem to contradict
the conclusions drawn in the state-of-the-art [53]. In fact, the alternative methods should
benefit more from the parallel programming due to the removal of collective operations and,
in the cases of Metropolis C1 and Metropolis C2, by the access of more compact portions of
the shared memory. However, the test cases mentioned in Section 2.3 concern a very high
number of particles (>216) while, in the case of our target GPU architecture, we perform
our evaluation on much lower values of Np. On the other hand, the elimination of the
collective operations and the subdivision of the shared memory into intervals introduce the
necessity for additional expensive operations such as random number generations. Based
on our experimental results, we can conclude that for the values of Np compatible with the
use cases contemplated here and in the case of our specific target architecture, we cannot
observe the benefits of optimizations such as coalesced memory access and elimination of
collective operations. Therefore, given these specific circumstances, we would not need to
compromise on accuracy to reduce the computation time, and we may choose one of the
three traditional methods as a resampling algorithm for hypothetical real navigation.

7. Conclusions

In this paper, we proposed a context-adaptable design of FastSLAM 2.0 based on the
CUDA parallel computing platform. The proposed design can accommodate different
parallelization modalities without the need for a complete re-implementation. Multiple

Appl. Sci. 2024, 14, 11466 30 of 40

resampling methodologies have been included in the design to meet the needs of the
widest possible variety of use case scenarios. In addition, we provided a methodology to
assess the optimal parallelization modality depending on the GPU architecture in use and
the specifications of the contemplated navigation use case. Such specifications define the
set of parameters determining the algorithm’s computational complexity and, as a direct
consequence, its execution latency. The algorithm was divided into functional blocks; the
parameters affecting their computational complexity were identified and leveraged in the
parallelization design, which uses shared memory to enhance collaborative data manage-
ment. The methodology was validated on a high-end GPU, where all the parallelization
modalities were tested under different parameter sets through a sensitivity analysis. As a
further contribution, our design includes the parallelization of the data association step,
implemented via the Joint Compatibility Branch and Bound (JCBB) methodology.

This flexible implementation of FastSLAM 2.0 and its corresponding selection method-
ology are designed to facilitate optimization in the deployment process of SLAM onto
GPGPU, while enabling real-time robot localization and environmental mapping. Therefore,
future work will explore the interfacing of the proposed design with a real environmental
sensing setup within a real navigation scenario.

In addition, further adaptations of the proposed design will be contemplated in
the scope of future work. Firstly, our design is meant to be compatible with a wide
variety of hardware architectures where the CPU (host) and GPU (device) do not share
the same memory space and, within the device, the global device memory and the shared
memory are also located in separate locations. Examples of GPU memory architectures
meeting these characteristics include, but are not limited to, Video Random Access Memory
(VRAM), Graphics Double Data Rate (GDDR), and High-bandwidth Memory (HBM).
Future developments of our contribution may involve extending the proposed method to
architectures such as the Unified Memory Architecture (UMA), which is typical of devices
such as the NVIDIA Jetson Nano, which are commonly used for robotics applications.
In such devices, the shared memory is a part of the global device memory instead of a
separate memory space. Such characteristics would require a redesign of the memory
management criteria.

Furthermore, another possible extension of the proposed design is to contemplate
3D pose estimation. As described in Section 4.1, our design models the robot as a rigid
body moving across a planar space and the landmarks as points. While such simplification
is feasible under many use cases (e.g., autonomous cars, ground robots) and is indeed to
be preferred for avoiding adding unnecessary computational complexity, some scenarios
might need pose estimation in the tri-dimensional space (e.g., aerial drones, underwater
robots). Though necessary changes would not affect the evaluation methodology and the
overall parallelization design, they would require an expansion of the state variables, in-
creasing the memory occupancy. As a direct consequence, the hardware architecture in use
might enable the support of a smaller map (i.e., less landmarks) and/or a smaller number
of particles.

Author Contributions: Conceptualization, J.G. and M.P.C.; methodology, J.G. and M.P.C.; soft-
ware, J.G.; validation, J.G.; formal analysis, J.G.; investigation, J.G.; resources, J.G. and D.P.M.S.;
data curation, J.G.; writing—original draft preparation, J.G.; writing—review and editing, J.G. and
M.P.C.; visualization, J.G. and M.P.C.; supervision, M.P.C. and D.P.M.S.; project administration,
D.P.M.S.; funding acquisition, D.P.M.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was funded by the German Federal Ministry of Education and Research BMBF
under grant number 16ME0097 (ZuSE KI-mobil).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: Jessica Giovagnola was employed by the company Infineon Technologies AG.
The remaining authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

Appl. Sci. 2024, 14, 11466 31 of 40

Abbreviations
The following abbreviations are used in this manuscript:

CPU Central Processing Unit
CUDA Compute Unified Device Architecture
EKF Extended Kalman Filter
FAST Features from Accelerated Segment Test
GDDR Graphics Double Data Rate
GNSS Global Nation Satellite System
GPGPU General Purpose Graphics Processing Unit
GPU Graphics Processing Unit
GPS Global Positioning System
HBM High-Bandwidth Memory
IF Information Filter
IMU Inertial Measurement Unit
JCBB Joint Compatibility Branch and Bound
LiDAR Light Detection And Range
PF Particle Filter
RBPF Rao–Blackwellized Particle Filter
RTK Real-Time Kinematics
SLAM Simultaneous Localization and Mapping
UKF Unscented Kalman Filter
UMA Unified Memory Architecture
VRAM Video Random Access Memory

Appendix A

Appendix A.1. Resampling Algorithms

Algorithm A1 Multinomial Ancestors

1: function MULTINOMIAL_ANCESTORS(w ∈ [0, ∞)N)
2: W ← InclusivePrefixSum(w)
3: for i← 1 to N do
4: ui ∼ U[0, WN) ▷ Sample uniformly in range [0, WN)
5: ai ← LowerBound(W, ui) ▷ Find lower bound index
6: end for
7: return a
8: end function

Algorithm A2 Stratified Resampling

1: function STRATIFIED_RESAMPLING(w ∈ [0, ∞)N)
2: N ← count(w)
3: W ← InclusivePrefixSum(w)
4: for n← 1 to N do
5: un ∼ U[0, 1) ▷ Sample uniformly in range [0, 1)
6: end for
7: ui ← i−1+ui

N for i = 1, . . . , N
8: k← 1
9: for i← 1 to N do

10: while W(k) < u(i) do
11: k← k + 1
12: end while
13: a(i)← k
14: end for
15: return a
16: end function

Appl. Sci. 2024, 14, 11466 32 of 40

Algorithm A3 Systematic Resampling

1: function SYSTEMATIC_RESAMPLING(w ∈ [0, ∞)N)
2: N ← count(w)
3: W ← InclusivePrefixSum(w)
4: u0 ∼ U[0, 1) ▷ Sample uniformly in range [0, 1)
5: u← u0

N
6: k← 1
7: for i← 1 to N do
8: while W(k) < u(i) do
9: k← k + 1

10: end while
11: a(i)← k
12: end for
13: return a
14: end function

Algorithm A4 Rejection Resampling

1: function METROPOLISC1_RESAMPLING(w ∈ [0, ∞)N)
2: N ← count(w)
3: Initialize a as an array of size N
4: for i← 1 to N do
5: p← i
6: u ∼ U[0, 1)
7: while u < w(p)

wmax
do

8: p← U{1 . . . N}
9: u ∼ U[0, 1)

10: end while
11: a(i)← p
12: end for
13: return a
14: end function

Algorithm A5 Metropolis Resampling

1: function METROPOLISC1_RESAMPLING(w ∈ [0, ∞)N)
2: N ← count(w)
3: B← number of iterations
4: Initialize a as an array of size N
5: for i← 1 to N do
6: p← i
7: for j← 1 to B do
8: u ∼ U[0, 1) ▷ Sample uniformly in range [0, 1)
9: q ∼ U{1, . . . N} ▷ Sample within segment

10: if u ≤ w(q)
w(p) then

11: p← q
12: end if
13: end for
14: a(i)← p
15: end for
16: return a
17: end function

Appl. Sci. 2024, 14, 11466 33 of 40

Algorithm A6 MetropolisC1 Resampling

1: function METROPOLISC1_RESAMPLING(w ∈ [0, ∞)N)
2: N ← count(w)
3: B← number of iterations
4: SC ← number of segments ▷ Number of segments
5: DC ← segment size ▷ Size of each segment
6: Initialize a as an array of size N
7: for i← 1 to N do
8: p← i
9: s ∼ U{1, . . . , SC} ▷ Sample segment index

10: for j← 1 to B do
11: u ∼ U[0, 1) ▷ Sample uniformly in range [0, 1)
12: q ∼ U{(s− 1)× DC + 1, s× DC} ▷ Sample within segment
13: if u ≤ w(q)

w(p) then
14: p← q
15: end if
16: end for
17: a(i)← p
18: end for
19: return a
20: end function

Algorithm A7 MetropolisC2 Resampling

1: function METROPOLISC2_RESAMPLING(w ∈ [0, ∞)N)
2: N ← count(w)
3: B← number of iterations
4: SC ← number of segments ▷ Number of segments
5: DC ← segment size ▷ Size of each segment
6: Initialize a as an array of size N
7: for i← 1 to N do
8: p← i
9: for j← 1 to B do

10: u ∼ U[0, 1) ▷ Sample uniformly in range [0, 1)
11: s ∼ U{1, . . . , SC} ▷ Sample segment index
12: q ∼ U{(s− 1)× DC + 1, s× DC} ▷ Sample within segment
13: if u ≤ w(q)

w(p) then
14: p← q
15: end if
16: end for
17: a(i)← p
18: end for
19: return a
20: end function

Appendix A.2. Particle Initialization

Algorithm A8 Particle Initialization

1: for m = threadId to Np, step = blockDim · gridDim do
2: xm

t = randU(xmin, xmax)
3: ym

t = randU(ymin, ymax)
4: θm

t = randU(θmin, θmax)
5: end for

Appl. Sci. 2024, 14, 11466 34 of 40

Appendix A.3. Particle Prediction

Algorithm A9 Particle Prediction

1: for m = threadId to Np, step = blockDim · gridDim do
2: xm

t = xm
t−1 + δs · cos(θm

t−1 +
δθ
2)

3: ym
t = ym

t−1 + δs · sin(θm
t−1 +

δθ
2)

4: θm
t = θm

t−1 + δθ

5: end for

Appendix A.4. Data Association

Algorithm A10 Mahalanobis Distance and Individual Compatibility Test

1: for m = blockId to Np, step = gridDim do
2: for n = threadId to Nl , step = blockDim do
3: dx = xm

n − xm
r ▷ position of the landmark w.r.t. particle pose

4: dy = ym
n − ym

r
5: ρ̂2 = dx2 + dy2

6: ρ̂ =
√

ρ̂2 ▷ Expected Range
7: angle = arctan(dy

dx)

8: β̂= angle− θm
r ▷ Expected Bearing

9: ẑm
n =

(
ρ̂

β̂

)
▷ Shared Memory

10: Ha =

 dx
ρ

dy
ρ

−dy
ρ2

dx
ρ2

 ▷ Jacobian

11: HPHm
n = Ha · Cm

n · HT
a ▷ Shared Memory

12: end for
13: threadsynch()
14: for n = threadId to Nl , step = blockDim do
15: for k = 0 to No do ▷ Sequential
16: dz = zk − ẑm

n ▷ Innovation
17: S = HPHm

n + R
18: MDm

n,k = S−1dz2
▷ Global Memory

19: if MDm
n,k < χ2

2,.95 then
20: ICm

n,k = 1 ▷ Global Memory
21: else
22: ICm

n,k = 0 ▷ Global Memory
23: end if
24: end for
25: end for
26: threadsynch();
27: end for

Appl. Sci. 2024, 14, 11466 35 of 40

Algorithm A11 Problem Preparation

for m = blockId to Np, step = gridDim do
for k = 0 to No do ▷ Sequential

matchablek=CumulativeSum(ICk) ▷ From Global Memory
threadSynch();

end for
new = No ▷ New Label
next = 0 ▷ Auxiliary Variable
nc = 0 ▷ Global Memory
for k = 0 to No do ▷ Sequential

if not matchablek then
hk = new ▷ Global Memory
new+ = 1

else
nc+ = 1
auxnext = k
next+ = 1

end if
threadSynch();

end for
end for

Algorithm A12 Branch and Bound and Joint Compatibility Test
for m = blockId to Np, step = gridDim do

cost = 0
for k = 0 to No do ▷ Sequential

obsId = auxk ▷ Retrieve corresponding matched observation
for n = threadId to Nl , step = blockDim do

if not assignedn then
LBobsId

n = cost + MDm
n,obsId

else
LBobsId

n = inf
end if

end for
threadSynch();
for n = threadId to Nl , step = blockDim do

if LBobsId
n < χ2

2k,.90 then ▷ Joint Compatibility Test
compute PC ▷ Partial Cost

else
PC = inf

end if
LBobsId

n + = inf
end for
threadSynch();
selectedIdx= arg min(LB)
cost+ = MHm

k,selectedIdx
assignedselectedIdx = 0

end for
end for

Appendix A.5. Proposal Adjustment

Algorithm A13 Initialization Σ0, µ0

µm
0 =

xm
t

ym
t

θm
t

Appl. Sci. 2024, 14, 11466 36 of 40

Algorithm A13 Cont.

Hu =

− sin(v) 0
cos(v) 0

0 1

 ▷ Compute Jacobian

Σ0 = Hu ·Qt · HT
u

threadSynch()

Algorithm A14 Preparation for adjustment

1: for n = threadId to Nc, step = blockDim do
2: dx = xn − xr
3: dy = yn − yr

4: angle = arctan(dy
dx − θ)

5: r = (xl − xr)2 + (yl − yr)2

6: Ha =

 dx√
r

dy√
r

− dy√
r

dx√
r

 ▷ Compute Jacobian

7: Zn = HaCm
n HT

a + Rn

8: Hp =

(
− dx√

r − dy√
r 0

dy
r − dx

r −1

)
9: HZH[n] = HT

p Z−1
n Hp ▷ Shared Memory

10: ρ̂ =
√
(x̂n − xr)2 + (ŷn − yr)2

11: β̂ = arctan(ŷn−yr
x̂n−xr

)

12: δ =

(√
r− ρ̂

angle− β̂

)
13: threadSynch();
14: end for

Algorithm A15 Σn computation

1: for n = threadId to Nc, step = blockDim do
2: if n = 0 then
3: Σnminus1 = Σm

0
4: else
5: Σnminus1 = Sigmas[n]
6: Σ−1

n = HZH[n] + Σ−1
nminus1

7: Sigmas[n] = Σn ▷ Shared Memory
8: end if
9: threadSynch();

10: end for

Algorithm A16 µ correction computation

1: for n = threadId to Nc, step = blockDim do
2: SHZ = Σn HT

p Z−1
n δ

3: µ0[n] = SHZ[0] ▷ Shared Memory
4: µ1[n] = SHZ[1] ▷ Shared Memory
5: µ2[n] = SHZ[2] ▷ Shared Memory
6: threadSynch();
7: end for

Appl. Sci. 2024, 14, 11466 37 of 40

Algorithm A17 Correction Application

1: if threadId == 0 then
2: xm

t = µ0[Nc − 1]
3: ym

t = µ1[Nc − 1]
4: θm

t = µ2[Nc − 1]
5: end if

Appendix A.6. Landmark Estimation

Algorithm A18 Landmark Initialization

1: label = zn[3]
2: particleSeenLandmarks[label] = True
3: reinitW = True ▷ Initialize the weights of the particles
4: angle = zn[0] + θm

r
5: xm

n = xm
r + zn[0] · cos(angle) ▷ Initialize Landmark Position

6: ym
n = ym

r + zn[1] · sin(angle)
7:
8: dx = xm

n − xm
r ▷ position of the landmark w.r.t. particle pose

9: dy = ym
n − ym

r
10: ρ̂2 = dx2 + dy2

11: ρ̂ =
√

ρ̂2 ▷ Expected Range

12: H =

 dx
ρ̂

dy
ρ̂

− dy
ρ̂2

dx
ρ̂2

 ▷ Compute Jacobian

13: Cm
n = H−1 ·Q · H−1T

Algorithm A19 Landmark Update

1: dx = xm
n − xm

r ▷ position of the landmark w.r.t. particle pose
2: dy = ym

n − ym
r

3: ρ̂2 = dx2 + dy2

4: ρ̂ =
√

ρ̂2 ▷ Expected Range
5: angle = arctan(dy

dx)

6: β̂ = angle− θm
r ▷ Expected Bearing

7: H =

 dx
ρ̂

dy
ρ̂

− dy
ρ̂2

dx
ρ̂2

 ▷ Compute Jacobian

8: K = Cm
n · HT · (H · Cm

n · HT + Q)−1 ▷ Kalman Gain
9: dρ = zn[0]− ρ̂ ▷ Innovation

10: dβ = zn[0]− β̂
11: xm

n = K[0] · dρ̂ + K[1] · dβ̂ ▷ Update Landmark Position
12: ym

n = K[2] · dρ̂ + K[3] · dβ̂
13: Cm

n = (I − Km
n Ha)Cm

n ▷ Update Landmark Covariance
14: den =det(2π ·Q)

15: Wc[n] = 1
den2 ·

(
dρ dβ

)
· H−1 ·

(
dρ
dβ

)
▷ Compute local weight

Algorithm A20 Particle Weight Update

1: if reinitW then
2: wc = 1/Np
3: else
4: wc = atomicMultiplication(Wc)
5: end if

Appl. Sci. 2024, 14, 11466 38 of 40

References
1. Wang, K.; Zhao, G.; Lu, J. A Deep Analysis of Visual SLAM Methods for Highly Automated and Autonomous Vehicles in

Complex Urban Environment. IEEE Trans. Intell. Transp. Syst. 2024 , 25, 10524–10541. [CrossRef]
2. Zhuang, L.; Zhong, X.; Xu, L.; Tian, C.; Yu, W. Visual SLAM for Unmanned Aerial Vehicles: Localization and Perception. Sensors

2024, 24, 2980. [CrossRef]
3. Ding, S.; Zhang, T.; Lei, M.; Chai, H.; Jia, F. Robust visual-based localization and mapping for underwater vehicles: A survey.

Ocean. Eng. 2024, 312, 119274. [CrossRef]
4. Zhang, Z.; Cheng, Y.; Bu, L.; Ye, J. Rapid SLAM Method for Star Surface Rover in Unstructured Space Environments. Aerospace

2024, 11, 768. [CrossRef]
5. Singh, J.; Tyagi, N.; Singh, S.; Ali, F.; Kwak, D. A Systematic Review of Contemporary Indoor Positioning Systems: Taxonomy,

Techniques, and Algorithms. IEEE Internet Things J. 2024, 11, 34717–34733. [CrossRef]
6. Yue, X.; Zhang, Y.; Chen, J.; Chen, J.; Zhou, X.; He, M. LiDAR-based SLAM for robotic mapping: State of the art and new frontiers.

Ind. Robot. Int. J. Robot. Res. Appl. 2024, 51, 196–205. [CrossRef]
7. Wang, H.; Li, M. A New Era of Indoor Scene Reconstruction: A Survey. IEEE Access 2024, 12, 110160–110192. [CrossRef]
8. Zhu, J.; Li, H.; Zhang, T. Camera, LiDAR, and IMU based multi-sensor fusion SLAM: A survey. Tsinghua Sci. Technol. 2023,

29, 415–429. [CrossRef]
9. Deng, W.; Dong, Z.; Zhang, L. Single-sensor-based and multi-sensor fusion SLAM: A survey. In Proceedings of the Ninth

International Symposium on Sensors, Mechatronics, and Automation System (ISSMAS 2023), Xiamen, China, 6–8 January 2023;
SPIE: Pamiers, France, 2024; Volume 12981, pp. 186–194.

10. Motlagh, H.D.K.; Lotfi, F.; Taghirad, H.D.; Germi, S.B. Position Estimation for Drones based on Visual SLAM and IMU in
GPS-denied Environment. In Proceedings of the 2019 7th International Conference on Robotics and Mechatronics (ICRoM),
Tehran, Iran, 20–21 November 2019 ; pp. 120–124. [CrossRef]

11. De Pace, F.; Kaufmann, H. A systematic evaluation of an RTK-GPS device for wearable augmented reality. Virtual Real. 2023,
27, 3165–3179. [CrossRef]

12. Bresson, G.; Alsayed, Z.; Yu, L.; Glaser, S. Simultaneous localization and mapping: A survey of current trends in autonomous
driving. IEEE Trans. Intell. Veh. 2017, 2, 194–220. [CrossRef]

13. Zheng, S.; Wang, J.; Rizos, C.; Ding, W.; El-Mowafy, A. Simultaneous Localization and Mapping (SLAM) for Autonomous Driving:
Concept and Analysis. Remote Sens. 2023, 15, 1156. [CrossRef]

14. Chen, Z. Bayesian filtering: From Kalman filters to particle filters, and beyond. Statistics 2003, 182, 1–69. [CrossRef]
15. Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. J. Basic Eng. 1960, 82, 35–45. [CrossRef]
16. Kalman, R.E.; Bucy, R.S. New results in linear filtering and prediction theory. J. Basic Eng. 1961, 83, 95–108. [CrossRef]
17. Julier, S.J.; Uhlmann, J.K. New extension of the Kalman filter to nonlinear systems. In Signal Processing, Sensor Fusion, and Target

Recognition VI; SPIE: Pamiers, France, 1997; Volume 3068, pp. 182–193.
18. Maybeck, P.S. Stochastic Models, Estimation and Control; Elsevier: Amsterdam, The Netherlands, 1982.
19. Dellaert, F.; Fox, D.; Burgard, W.; Thrun, S. Monte carlo localization for mobile robots. In Proceedings of the 1999 IEEE

International Conference on Robotics and Automation (Cat. No. 99CH36288C), Detroit, MI, USA, 10–15 May 1999; Volume 2,
pp. 1322–1328.

20. Montemerlo, M. FastSLAM: A factored solution to the simultaneous localization and mapping problem. AAAI/IAAI 2002, 593598.
21. Montemerlo, M.; Thrun, S.; Koller, D.; Wegbreit, B. FastSLAM 2.0: An improved particle filtering algorithm for simultaneous

localization and mapping that provably converges. IJCAI 2003, 3, 1151–1156.
22. Thrun, S.; Burgard, W.; Fox, D. Probalistic robotics. Kybernetes 2006, 35, 1299–1300. [CrossRef]
23. Wurm, K.M.; Stachniss, C.; Grisetti, G. Bridging the gap between feature-and grid-based SLAM. Robot. Auton. Syst. 2010,

58, 140–148. [CrossRef]
24. Andersone, I. Heterogeneous map merging: State of the art. Robotics 2019, 8, 74. [CrossRef]
25. Strasdat, H.; Montiel, J.; Davison, A.J. Real-time monocular SLAM: Why filter? In Proceedings of the 2010 IEEE International

Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 2657–2664.
26. Aulinas, J.; Petillot, Y.; Salvi, J.; Lladó, X. The SLAM problem: A survey. Artif. Intell. Res. Dev. 2008, 363–371 .
27. Bavle, H.; Sanchez-Lopez, J.L.; Cimarelli, C.; Tourani, A.; Voos, H. From slam to situational awareness: Challenges and survey.

Sensors 2023, 23, 4849. [CrossRef] [PubMed]
28. Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, present, and future of

simultaneous localization and mapping: Toward the robust-perception age. IEEE Trans. Robot. 2016, 32, 1309–1332. [CrossRef]
29. Picard, Q.; Chevobbe, S.; Darouich, M.; Didier, J.Y. A survey on real-time 3D scene reconstruction with SLAM methods in

embedded systems. arXiv 2023, arXiv:2309.05349.
30. Yu, Y.; Zhu, K.; Yu, W. YG-SLAM: GPU-Accelerated RGBD-SLAM Using YOLOv5 in a Dynamic Environment. Electronics 2023,

12, 4377. [CrossRef]
31. Kumar, D.; Gopinath, S.; Dantu, K.; Ko, S.Y. JacobiGPU: GPU-Accelerated numerical differentiation for loop closure in visual

SLAM. In Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13–17
May 2024; pp. 1687–1693.

http://doi.org/10.1109/TITS.2024.3379993
http://dx.doi.org/10.3390/s24102980
http://dx.doi.org/10.1016/j.oceaneng.2024.119274
http://dx.doi.org/10.3390/aerospace11090768
http://dx.doi.org/10.1109/JIOT.2024.3416255
http://dx.doi.org/10.1108/IR-09-2023-0225
http://dx.doi.org/10.1109/ACCESS.2024.3440260
http://dx.doi.org/10.26599/TST.2023.9010010
http://dx.doi.org/10.1109/ICRoM48714.2019.9071826
http://dx.doi.org/10.1007/s10055-023-00863-3
http://dx.doi.org/10.1109/TIV.2017.2749181
http://dx.doi.org/10.3390/rs15041156
http://dx.doi.org/10.1080/02331880309257
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1115/1.3658902
http://dx.doi.org/10.1108/03684920610675292
http://dx.doi.org/10.1016/j.robot.2009.09.009
http://dx.doi.org/10.3390/robotics8030074
http://dx.doi.org/10.3390/s23104849
http://www.ncbi.nlm.nih.gov/pubmed/37430762
http://dx.doi.org/10.1109/TRO.2016.2624754
http://dx.doi.org/10.3390/electronics12204377

Appl. Sci. 2024, 14, 11466 39 of 40

32. Muzzini, F.; Capodieci, N.; Cavicchioli, R.; Rouxel, B. Brief announcement: Optimized gpu-accelerated feature extraction for
orb-slam systems. In Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures, Orlando, FL,
USA, 17–19 June 2023; pp. 299–302.

33. Hu, Z.; Fang, H.; Zhong, R.; Wei, S.; Xu, B.; Dou, L. GMP-SLAM: A real-time RGB-D SLAM in Dynamic Environments using GPU
Dynamic Points Detection Method. IFAC-Papersonline 2023, 56, 5033–5040. [CrossRef]

34. Muzzini, F.; Capodieci, N.; Cavicchioli, R.; Rouxel, B. High-Performance Feature Extraction for GPU-Accelerated ORB-SLAMx.
In Proceedings of the 2024 Design, Automation & Test in Europe Conference & Exhibition (DATE), Valencia, Spain, 25–27 March
2024; pp. 1–2.

35. Kamburugamuve, S.; He, H.; Fox, G.; Crandall, D. Cloud-based parallel implementation of slam for mobile robots. In Proceedings
of the International Conference on Internet of things and Cloud Computing, New York, NY, USA, 22–23 March 2016; pp. 1–7.

36. Lambertus, T.J.; Hobiger, T. Single point positioning by means of particle filtering on the GPU. In Proceedings of the 2019
European Navigation Conference (ENC), Warsaw, Poland, 9–12 April 2019; pp. 1–9.

37. Zhang, H.; Martin, F. CUDA accelerated robot localization and mapping. In Proceedings of the 2013 IEEE Conference on
Technologies for Practical Robot Applications (TePRA), Woburn, MA, USA, 22–23 April 2013; pp. 1–6.

38. Par, K.; Tosun, O. Parallelization of particle filter based localization and map matching algorithms on multicore/manycore
architectures. In Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 5–9 June 2011;
pp. 820–826.

39. Abouzahir, M.; Elouardi, A.; Bouaziz, S.; Latif, R.; Tajer, A. Large-scale monocular FastSLAM2. 0 acceleration on an embedded
heterogeneous architecture. Eurasip J. Adv. Signal Process. 2016, 2016, 88. [CrossRef]

40. Li, Q.; Rauschenbach, T.; Wenzel, A.; Mueller, F. EMB-SLAM: An embedded efficient implementation of rao-blackwellized
particle filter based SLAM. In Proceedings of the 2018 3rd International Conference on Control, Robotics and Cybernetics (CRC),
Penang, Malaysia, 26–28 September 2018; pp. 88–93.

41. Jia, S.; Yin, X.; Li, X. Mobile robot parallel PF-SLAM based on OpenMP. In Proceedings of the 2012 IEEE International Conference
on Robotics and Biomimetics (ROBIO), Guangzhou, China, 11–14 December 2012; pp. 508–513.

42. Chao, M.A.; Chu, C.Y.; Chao, C.H.; Wu, A.Y. Efficient parallelized particle filter design on CUDA. In Proceedings of the 2010
IEEE Workshop On Signal Processing Systems, San Francisco, CA, USA, 6–8 October 2010; pp. 299–304.

43. Zhang, H.; Liu, Y.; Zhu, M.; Xiong, N.; Kim, T.h. An Effective FastSLAM Algorithm Based on CUDA. Int. J. Grid Distrib. Comput.
2016, 9, 143–158. [CrossRef]

44. Maskell, S.; Alun-Jones, B.; Macleod, M. A single instruction multiple data particle filter. In Proceedings of the 2006 IEEE
Nonlinear Statistical Signal Processing Workshop, Cambridge, UK, 13–15 September 2006; pp. 51–54.

45. Abouzahir, M.; Elouardi, A.; Bouaziz, S.; Hammami, O.; Ali, I. High-level synthesis for FPGA design based-SLAM application. In
Proceedings of the 2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA), Agadir,
Morocco, 29 November–2 December 2016; pp. 1–8.

46. Abouzahir, M.; Elouardi, A.; Bouaziz, S.; Latif, R.; Tajer, A. FastSLAM 2.0 running on a low-cost embedded architecture. In
Proceedings of the 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), Singapore, 10–12
December 2014; pp. 1421–1426.

47. Neira, J.; Tardós, J.D. Data association in stochastic mapping using the joint compatibility test. IEEE Trans. Robot. Autom. 2001,
17, 890–897. [CrossRef]

48. Rosten, E.; Porter, R.; Drummond, T. Faster and better: A machine learning approach to corner detection. IEEE Trans. Pattern
Anal. Mach. Intell. 2008, 32, 105–119. [CrossRef]

49. Montemerlo, M.; Thrun, S. Simultaneous localization and mapping with unknown data association using FastSLAM. In
Proceedings of the 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422), Taipei, Taiwan, 14–19
September 2003; Volume 2, pp. 1985–1991.

50. Yi, Y.; Huang, Y. Landmark sequence data association for simultaneous localization and mapping of robots. Cybern. Inf. Technol.
2014, 14, 86–95. [CrossRef]

51. Cooper, A.J. A Comparison of Data Association Techniques for Simultaneous Localization and Mapping. Ph.D. Thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA , 2005.

52. Nieto, J.; Guivant, J.; Nebot, E.; Thrun, S. Real time data association for FastSLAM. In Proceedings of the 2003 IEEE International
Conference on Robotics and Automation (Cat. No. 03CH37422), Taipei, Taiwan, 14–19 September 2003; Volume 1, pp. 412–418.

53. Nicely, M.A.; Wells, B.E. Improved parallel resampling methods for particle filtering. IEEE Access 2019, 7, 47593–47604. [CrossRef]
54. Miguez, J. Analysis of parallelizable resampling algorithms for particle filtering. Signal Process. 2007, 87, 3155–3174. [CrossRef]
55. Gong, P.; Basciftci, Y.O.; Ozguner, F. A parallel resampling algorithm for particle filtering on shared-memory architectures. In

Proceedings of the 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum,
Shanghai, China, 21–25 May 2012; pp. 1477–1483.

56. Gordon, N.J.; Salmond, D.J.; Smith, A.F.M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Proc.
Radar Signal Process. 1993, 140, 107–113. [CrossRef]

57. Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman & Hall: London, UK, 1993.
58. Kitagawa, G. Monte-Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Graph. Stat. 1996,

1, 1–25. [CrossRef]

http://dx.doi.org/10.1016/j.ifacol.2023.10.1282
http://dx.doi.org/10.1186/s13634-016-0386-3
http://dx.doi.org/10.14257/ijgdc.2016.9.12.13
http://dx.doi.org/10.1109/70.976019
http://dx.doi.org/10.1109/TPAMI.2008.275
http://dx.doi.org/10.2478/cait-2014-0035
http://dx.doi.org/10.1109/ACCESS.2019.2910163
http://dx.doi.org/10.1016/j.sigpro.2007.06.011
http://dx.doi.org/10.1049/ip-f-2.1993.0015
http://dx.doi.org/10.1080/10618600.1996.10474692

Appl. Sci. 2024, 14, 11466 40 of 40

59. Whitley, D. A genetic algorithm tutorial. Stat. Comput. 1994, 4, 65–85. [CrossRef]
60. Douc, R.; Cappe, O.; Moulines, E. Comparison of resampling schemes for particle filtering. In Proceedings of the 4th International

Symposium on Image and Signal Processing and Analysis, Zagreb, Croatia, 15–17 September 2005; pp. 64–69.
61. Murray, L.M.; Lee, A.; Jacob, P.E. Parallel resampling in the particle filter. J. Comput. Graph. Stat. 2016, 25, 789–805. [CrossRef]
62. Dülger, Ö.; Oğuztüzün, H.; Demirekler, M. Memory coalescing implementation of Metropolis resampling on graphics processing

unit. J. Signal Process. Syst. 2018, 90, 433–447. [CrossRef]
63. Klöckner, A.; Pinto, N.; Lee, Y.; Catanzaro, B.; Ivanov, P.; Fasih, A. PyCUDA and PyOpenCL: A scripting-based approach to GPU

run-time code generation. Parallel Comput. 2012, 38, 157–174. [CrossRef]
64. Garland, M.; Le Grand, S.; Nickolls, J.; Anderson, J.; Hardwick, J.; Morton, S.; Phillips, E.; Zhang, Y.; Volkov, V. Parallel computing

experiences with CUDA. IEEE Micro 2008, 28, 13–27. [CrossRef]
65. CUDA C Programming Guide. 2023. Available online: https://docs.nvidia.com/cuda/cuda-c-programming-guide (accessed on

31 May 2023).
66. Dine, A.; Elouardi, A.; Vincke, B.; Bouaziz, S. Graph-based SLAM embedded implementation on low-cost architectures: A

practical approach. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA,
USA, 26–30 May 2015; pp. 4612–4619.

67. Dine, A.; Elouardi, A.; Vincke, B.; Bouaziz, S. Speeding up graph-based SLAM algorithm: A GPU-based heterogeneous
architecture study. In Proceedings of the 2015 IEEE 26th International Conference on Application-Specific Systems, Architectures
and Processors (ASAP), Toronto, ON, Canada, 27–29 July 2015; pp. 72–73.

68. Vincke, B.; Elouardi, A.; Lambert, A. Real time simultaneous localization and mapping: Towards low-cost multiprocessor
embedded systems. Eurasip J. Embed. Syst. 2012, 2012, 5. [CrossRef]

69. Blelloch, G.E. Prefix Sums and Their Applications; Technical Report CMU-CS-90-190; School of Computer Science, Carnegie Mellon
University: Pittsburgh, PA, USA, 1990.

70. Blelloch, G.E. Scans as primitive parallel operations. IEEE Trans. Comput. 1989, 38, 1526–1538. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/BF00175354
http://dx.doi.org/10.1080/10618600.2015.1062015
http://dx.doi.org/10.1007/s11265-017-1254-6
http://dx.doi.org/10.1016/j.parco.2011.09.001
http://dx.doi.org/10.1109/MM.2008.57
https://docs.nvidia.com/cuda/cuda-c-programming-guide
http://dx.doi.org/10.1186/1687-3963-2012-5
http://dx.doi.org/10.1109/12.42122

	Introduction
	Simultaneous Localization and Mapping
	FastSLAM 2.0
	Particle Prediction
	Data Association
	Proposal Adjustment
	Landmark Estimation
	Particle Resampling

	Data Association
	Particle Resampling

	Hardware and Software Setup
	Hardware Setup
	Cuda Programming Paradigm
	PyCUDA
	Memory Access Management

	Evaluation Methodology
	Simulation Environment
	Functional Block Partitioning
	Algorithm Dependencies and Definition of Test Cases
	Performance Assessment

	Deployment
	Particle Initialization
	Particle Prediction
	Data Association
	Proposal Adjustment
	Landmark Estimation
	Particle Resampling

	Results
	Initialization
	Prediction
	Data Association
	Mahalanobis Distance
	Problem Preparation
	Branch and Bound

	Proposal Adjustment
	Landmark Estimation
	Particle Resampling
	Discussion

	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2
	Appendix A.3
	Appendix A.4
	Appendix A.5
	Appendix A.6

	References

