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Abstract: Medicinal plants have been used to treat mental health-related conditions among different
ethic groups. Among the commonly used plants in South Africa are Gomphocarpus fruticosus (L.)
W.T.Aiton and Leonotis leonurus (L.) R.Br. This study aimed at generating the phytochemical profiles,
micromorphology, and elemental composition of the leaves of G. fruticosus and L. leonurus as possible
means of explaining the basis for their utilisation for mental health-related conditions in folk medicine
and consideration for further development. The plant parts were subjected to successive solvent ex-
tractions using an ultrasonic method with dichloromethane (DCM) and were chemically characterised
using ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS). Scan-
ning electron microscopy (SEM) was used to examine the micromorphology of the fresh leaves and
energy-dispersive X-ray Spectrometry (EDX) was utilised to perform mineral elemental analyses of
G. fruticosus and L. leonurus using their leaf powder. We identified phytochemicals including rutin and
marrubiin, which are known to alleviate depression-like symptoms. Glandular and non-glandular
trichomes were present in the plants. A weight (%) of 1.32 and 0.82 for calcium, 1.16 and 1.99 for
potassium, and 0.38 and 0.38 magnesium were present in G. fruticosus and L. leonurus, respectively.
These minerals have been linked to mental health stability, with imbalances associated with various
disorders. We established the chemical composition that could suggest potential therapeutic effects
of these two medicinal plants, offering insights into their uses in folk medicine and potential modern
applications in treating mental health issues.

Keywords: Lamiaceae; medicinal plants; mental health; trichomes; marrubiin

1. Introduction

The use of medicinal plants to treat different illnesses has been an integral part of
indigenous knowledge systems for many centuries [1]. Plants are a rich source of sec-
ondary metabolites which are often a source for drug development [2]. Phytochemicals
are classified into four major biochemical groups: alkaloids, glycosides, polyphenols, and
terpenes [3]. They play a role in reducing the risk of some ailments of the central nervous
system and cardiovascular diseases [4,5]. The micromorphology, phytochemical profiles,
and antioxidant activity of South African folk medicine plants have shed light on their
potential medicinal properties, contributing to the translation of ethnobotanical use for
drug development [6,7].
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Furthermore, plants such as Gomphocarpus fruticosus (L.) W.T. Aiton and Leonotis
leonurus (L.) R.Br., have been identified as promising for their antidepressant-like effects in
folk medicine [8]. The utilisation of traditional complementary and alternative medicine
(TCAM) in South Africa, particularly in conjunction with conventional treatments, has been
well documented, highlighting the significance of traditional medicine in the country [9].
In recent times, there have been concerted efforts aimed at a comprehensive understanding
of the medicinal potential of South African plant species, fostering advancements in both
traditional and modern medical practises. Additionally, the economic potential of medicinal
plants has been highlighted, emphasising the commercial and pharmacological significance
of these traditional remedies for improved livelihoods [10,11].

Results from a previous study by Mnqika et al. [12] showed the extracts of G. fruticosus
and L. leonurus exerted activity towards adenosine receptors, illustrating their potential
for neuro activity. On this basis, further characterisation studies such as micromorphology,
elemental composition, and phytometabolite profiling are necessary for a comprehensive
evaluation of their potential for consideration as alternative antidepressant and neuro-
modulation effects. In this study, we focused on generating the phytochemical profile for
G. fruticosus and L. leonurus as a means of bridging traditional knowledge with scientific
evidence by analysing their chemical and elemental levels to understand the compounds
that might contribute to their psychotropic potential. Therefore, the current study delved
into the micromorphology, mineral elemental composition, phytochemical groups present,
and phytochemical constituents of G. fruticosus and L. leonurus.

2. Materials and Methods
2.1. Plant Selection, Collection, and Preparation for Screening

Plant selection and collection were conducted as described by Mnqika et al. [12].
Thereafter, a portion of the fresh leaves of G. fruticosus and L. leonurus were harvested and
fixed in 70% ethanol for the plant morphology using a scanning electron microscope (SEM).
The other portion of the two plant parts were washed with distilled water and oven-dried at
37 ◦C for 2 days. The dried plant material was pulverised into powder to screen for mineral
elementals using a scanning electron microscope energy-dispersive X-ray spectroscopy
(SEM-EDX) (Elecmi, Madrid, Spain). A 1:10 ratio was used to extract the plant material with
DCM by using an ultrasonicator (ScienTech, Indore, India). The extraction was repeated,
and the extracts were filtered using a Buchner filtration system. This was evaporated using
a rotary evaporator and freeze-dried and stored at 4 ◦C until ready for use. Leonotis leonurus
was further extracted with other solvents (see Supplementary Materials) and analysed.
These extracts were selected based on their high binding affinity to the serotonin reuptake
transporter (SERT) and adenosine A1/A2A receptor assays, as reported in our previously
study [12].

2.2. Chemical Fingerprinting Using Ultra-Performance Liquid Chromatography–Mass Spectrometry

UPLC-MS analyses were performed using the Waters Acquity Ultra Performance
Liquid Chromatographic system. UPLC separation was achieved on a Kinetex C18 column
(150 mm × 2.1 mm, i.d., 1.7 µm particle size, Phenomenex, Torrance, CA, USA) maintained
at 40 ◦C. For the L. leonurus extracts, the mobile phase consisted of 0.1% formic acid in water
(solvent A) and acetonitrile (solvent B) at a flow rate of 0.4 mL/min; a gradient elution
was performed as follows: 90% A: 10% B, to 60% A: 40% B for 2 min, to 30% A: 70% B
for 10 min, to 5% A: 95% B for 2 min, keeping for 0.5 min and back to the initial ratio for
another 0.5 min. The samples were injected in the mobile phase with an injection volume of
1.0 µL (full-loop injection). For detection, mass spectrometry (MS) (G2QTof) was operated
in positive ion electrospray mode. N2 was used as the desolvation gas. The desolvation
temperature was set to 400 ◦C at a flow rate of 600 L/h, and the source temperature was
100 ◦C. The data were collected between 100 and 1200 m/z. For G. fruticosus DCM extract,
the mobile phase consisted of 0.1% formic acid in water (solvent A) and acetonitrile (solvent
B) at a flow rate of 0.3 mL/min; a gradient elution was performed as follows: 90% A: 10% B,
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to 10% A: 90% B for 14 min, keeping for 0.5 min and back to initial ratio for another 0.5 min.
The samples were injected in the mobile phase with an injection volume of 1.0 µL (full-loop
injection). MS was operated in negative ion electrospray mode. Nitrogen was used as the
desolvation gas. The desolvation temperature was set to 400 ◦C at a flow rate of 600 L/h,
and the source temperature was 100 ◦C. The capillary and cone voltages were set to 2500
and 35 V, respectively. The data were collected between 100 and 1200 m/z.

2.3. Micromorphology Analysis Using Scanning Electron Microscope

The harvested plant parts were cut into small sections approximately 2–3 × 4.0 mm2

and fixed using freshly prepared 70% ethanol for 15 min and further dehydrated (twice)
in 100% ethanol for another 15 min. After dehydration, a critical point drying process
was accomplished in a critical point drier (CPD). Thereafter, each sample was mounted
on a brass stub with double-sided sticky adhesive carbon tape. The treated samples were
made conductive with an automated Emscope TB 500 Module sputter coater through the
application of a thin (ca.25 nm) layer of carbon over the samples; thereafter, gold–pallidum
was used to further sputter coat the samples. The sample surfaces were examined at
varying magnification, with the use of a Quanta FEG250 SEM at an acceleration voltage of
5 kV, and all the examined representative features were captured digitally.

2.4. Elemental Analysis Using a Quanta FEG 250 Scanning Electron Microscope (SEM) Coupled
with an Energy-Dispersive X-Ray Spectrometer

The powders (ca. 0.5 mg) of G. fruticosus and L. leonurus were separately subjected
to elemental analysis using a Quanta FEG 250 scanning electron microscope (SEM) (FEI
Company, Hillsboro, OR, USA) coupled with an energy-dispersive X-ray spectrometer
(EDX. Oxford INCA software system) at 15 kV accelerating voltage [13].

2.5. Data Analysis

The elemental composition was performed in triplicate, and the resulting data were
analysed using SPSS 29 for Windows (IBM Corporation, New York, NY, USA). Statistical sig-
nificance was determined using Student’s t-test. The results are reported as means ± standard
deviation, with a significance level set at p < 0.05.

3. Results and Discussion
3.1. Chemical Profiles Based on Ultra-Performance Liquid Chromatography–Mass Spectrometry

Phytometabolites from various plants have shown promise in treating mental health
disorders such as depression [5,14]. The efficacy of St. John’s wort for major depressive
disorder, curcumin and saffron for depression symptoms, and ginkgo for schizophrenia
symptoms have been supported by several meta-analyses [15]. Secondary plant metabolites
could provide an innovative pathway for developing new drugs by identifying active
compounds to address neuromodulation and metabolic diseases, particularly benefiting
economically developing countries [16]. The leaves of L. leonurus were extracted with DCM
and other solvents (Supplementary Figures S1–S3 and Supplementary Tables S1–S3), and
G. fruticosus leaves were extracted with DCM to obtain fractions. The tentative identification
of L. leonurus DCM extract and other solvents was conducted using UPLC-MS ESI positive
(Tables S1 and S2 in the Supplementary Materials), and UPLC-MS ESI negative mode was
used for the tentative identification of G. fruticosus DCM extract (Table S3 in Supplementary
Materials). The tentative identification of the compounds was achieved by matching MS
fragmentation fingerprints from the PubChem database and the accurate mass-generated
elemental composition.

As shown in Figure 1, the UPLC-MS revealed the phytochemicals of G. fruticosus DCM
extract containing rutin (flavonoid), voruscharin (cardenolide), uscharin (cardenolide), afro-
side (glycoside), and decinnamoyltaxagifine (diterpene). Historically, cardiac glycosides
from this plant were isolated in the 1950s [17,18], with a new glycoside and triterpenoids
discovered in 2016 [19]. Glycosides are molecules composed of carbohydrates linked to



Appl. Sci. 2024, 14, 11540 4 of 12

non-carbohydrate molecules [20], and they may influence neuroprotection and synaptic
plasticity by modulating proteins including G-coupled proteins, essential proteins for in-
tracellular signalling [21]. These proteins are essential in transmitting intracellular signals
through receptors for neurotransmitters, hormones, and neuromodulators [22]. Dysfunc-
tions in glycosides could be associated with neuronal pathway irregularities, potentially
linked to mood disorders or suicidal behaviour [21].
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Figure 1. Representative chromatograms obtained for Gomphocarpus fruticosus dichloromethane (DCM)
extract using ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS).

Cardenolides are toxic steroids with historical medicinal use, primarily as Na+/K+ AT-
Pase inhibitors [23]. While their direct link to mental disorders is unclear, some cardenolides
affect the central nervous system [24], warranting further research. Flavonoid rutin, from
Schinus molle L., has demonstrated antidepressant effects by increasing serotonin and nora-
drenaline levels, as shown in a study by Machado et al. [25], where it reduced immobility
time without altering locomotor activity, suggesting its potential role in mood regulation.

The UPLC-MS generated the phytochemical fingerprint of L. leonurus DCM (Figure 2)
and other solvents namely methanol, acetone and hexane (Supplementary Tables S1–S3),
indicating the presence of 6-methoxyluteolin-4′-methyl ether, 9,13-epoxylabda-6(19)-diol
dilactone, and marrubiin (diterpenes). Percentages of these compounds varied as indicated
by the generated peaks from each of the different solvent extracts. Diterpenes are essential
oils widely recognised for their neurobiological activities [26]. While decinnamoyltaxagifine
has been identified in plants of the Taxaceae family [27,28], there is currently no evidence
supporting its antidepressant properties.
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Figure 2. Representative chromatograms obtained for Leonotis leonurus dichloromethane (DCM) extract
based on ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS).

Conversely, diterpenes, recognised for neurobiological activities [26,29], include ginkgolides,
which exhibit antidepressant and anti-anxiety effects through specific neural pathways
like NT3 TrkA and Ras-MAPK [30,31]. Based on the use of UPLC-MS, 6-methoxyluteolin-
4′-methyl ether, 9,13-epoxylabda-6(19)-diol dilactone, and marrubiin (diterpene) were
identified in L. leonurus extract (Figure 2). The marker compound, marrubiin, is com-
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monly present in the mint family, Lamiaceae, and it has been previously isolated from L.
leonurus [32].

Marrubiin has an established pharmacological potential as an antioxidant, anti-
inflammatory, calcium channel blocker, antidiabetic, and vasorelaxant [33]. It modulates
key neurotransmitters such as GABA and glutamate, inhibits voltage-gated Ca2+ channels,
and reduces proinflammatory cytokines, which are linked to depression [34]. While the
diterpenoid 9.13-epoxylabda-6(19)-diol dilactone from L. leonurus lacks studies on antide-
pressant activity, flavonoids including 6-methoxyluteolin-4′-methyl ether from the same
plant family have been isolated and purified from the L. leonurus [35,36].

3.2. Micromorphology of Plant Parts

Micromorphological studies of medicinal plants focus on examining the microscopic
structure and characteristics of plant tissues. Analysing these specific plants will help ensure
the quality and consistency of their medicinal preparations. Psychoactive compounds,
such as salvinorin A, are found in the subcuticular space of peltate glandular trichomes
(GTs) in Salvia divinorum [37]. The variety and distribution of trichome types—peltate,
capitate, and non-glandular—differ among plant species and organs, which aids in the
identification of medicinal plants [38,39]. The leaves were distinguished by the presence of
both glandular and non-glandular trichomes that are present on the leaves of G. fruticosus
(Figure 3A,B). The non-glandular trichomes exhibited varying lengths (Figure 3A). A similar
type of glandular trichomes has been reported in Asclepias curassavica, which also possesses
antidepressant effect [40].
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Flattened and elongated secretory cells were identified by outlining the periphery
of the cavity (Figure 3B). These cells, known as sheath cells, serve as a protective layer
that encases the secretory cavity [41]. The secretory material within typically contains
a variety of compounds, including terpenes, phenolics, and polysaccharides [39]. These
phytochemicals likely contribute to the management of depressive disorders by modulating
various mechanisms [10]. The milky white latex produced by G. fruticosus is secreted by
this secretory material and is considered a synapomorphy of the Apocynaceae [42]. Due to
the composite nature of latex secretion, often comprising a variety of specialised metabo-
lites, several latex-bearing plants are renowned for their specific substances [43]. Stomatal
occurrences were also observed (Figure 3D). Stomata primarily serve two functions: facil-
itating the uptake of carbon dioxide and restricting water loss through evaporation [44].
Additionally, druse crystals were distributed throughout the mesophyll and phloem of
the leaves (Figure 3C). Plants utilise druse crystals to store surplus calcium in the form
of calcium oxalate, and this reservoir can be mobilised as necessary during the calcium
control process [45].

Microscopy examination of L. leonurus leaf surfaces revealed two distinct types of
trichomes, namely glandular and non-glandular trichomes (Figure 4A–E). This highlights
the presence of dense non-glandular trichomes, suggesting enhanced protection for the
plant. These structures act as mechanical barriers, offering defence against excessive water
loss and various external factors [46]. Glandular trichomes, evenly distributed across
the entire leaf surface, are identified as peltate trichomes, characterised by a large disc-
like head and a short stalk (Figure 4D). Each glandular trichome exhibits morphological
divisions in three regions: the multicellular head, stalk, and basal cavities [47]. These
trichomes are recognised for storing and secreting waxes and phytochemicals, including
phenolics, terpenes, flavonoids, and alkaloids. This chemical arsenal provides both chemical
and physiological protection against herbivores and pathogens [39]. Ascensão et al. [48]
reported similar findings with L. leonurus and comparable trichome morphology has been
established in other plants within the Lamiaceae family [49] and also in Cannabis sativa,
which is sometimes used to alleviate psychiatric symptoms, such as anxiety, depression,
and mania [50].

The micromorphology of plant, particularly features such as glandular and non-
glandular trichomes, affects the production and storage of bioactive compounds [51].
Glandular trichomes, for example, serve as sites for synthesising and storing essential oils,
terpenes, and other secondary metabolites [52]. Different trichome types and cellular struc-
tures that contribute to the therapeutic characteristics of G. fruticosus and L. leonurus were
identified by micromorphological research. Both glandular and non-glandular trichomes
were present on the leaves of G. fruticosus; the glandular trichomes were essential for the
secretion of psychotropic substances and other phytochemicals, which may help treat
depressive illnesses. Similar to G. fruticosus, this plant species has non-glandular trichomes
that aid in structural defence. The presence of peltate glandular trichomes allowed for the
secretion of a wide range of bioactive substances, such as terpenes and flavonoids, while
L. leonurus demonstrated a high density of non-glandular trichomes that improve defence
against environmental stresses.

This work highlights the diversity of trichome distribution and form among these
species, emphasising their importance in plant-mediated medicinal effects as well as
their adaptive defence mechanisms. For the storage and secretion of psychotropic sub-
stances that can reduce the symptoms of anxiety and depression, micromorphological
characteristics—such as glandular trichomes in G. fruticosus—are essential. In addition
to acting as defence mechanisms, these trichomes shield the plants from environmental
stresses and herbivory, ensuring a consistent supply of therapeutic chemicals.
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Figure 4. Scanning electron micrographs of Leonotis leonurus leaves. (A) Abundant non-glandular
trichomes were found in the leaves of the plant. (B) Stoma/stomata were found with glandular
trichomes and non-glandular trichomes. Post-secretory glandular trichomes were also present.
(C–E) Developing and developed glandular trichomes; non-glandular trichomes with cuticular wart.
GT = glandular trichome, NGT = non-glandular trichomes, St = stoma/stomata, PS = post-secretory
trichome, DGT = developing trichomes, and W = cuticular wart.

3.3. Elemental Composition

Common elements found in these plants include sodium (Na), calcium (Ca), mag-
nesium (Mg), copper (Cu), manganese (Mn), selenium (Se), zinc (Zn), and iron (Fe) [53].
Studies in different regions have identified specific plants used for mental health treatments,
such as Tilia platyphyllos and Valeriana officinalis, in the Catalan linguistic area [54]. Although
plants accumulate beneficial major elements, some may contain trace heavy metals at levels
exceeding international safety standards [55].

The elemental analysis of G. fruticosus leaves and L. leonurus leaves using SEM coupled
with an energy-dispersive X-ray spectrometer revealed the presence of carbon (C), oxygen
(O), magnesium (Mg), silicon (Si), phosphorus (P), chlorine (Cl), potassium (K), and calcium
(Ca) (Table 1). The presence of the elements was found to be in decreasing order of C > O >
K > Ca > Si > Cl > Mg > P in the leaves of G. fruticosus and C > O > K > Ca > Mg = Cl > Si >
P in the leaves of L. Leonurus. The results indicated an abundance of C, O, K, and Ca in the
two studied plants. These elements are crucial for photosynthesis (C and O), for breaking
down sugars to obtain energy (C), for cellular respiration (O), for producing grains rich
in starch and maintaining turgor (K), and for balancing organic acids within the plant,
improving root growth conditions (Ca) [53]. A variety of factors, including climate and
soil conditions influence the mineral composition of plants in different regions [56]. The
nutritional value of plants is determined by these mineral elements, which are transported
from soil to plant and eventually to humans [57]. The presence of specific elements such
as calcium, magnesium, and potassium, can directly influence the synthesis and stability
of bioactive compounds within the plant [58,59]. These minerals often play a role as
cofactors in enzymatic processes essential for metabolite synthesis, such as the production
of flavonoids, alkaloids, and terpenes [58].



Appl. Sci. 2024, 14, 11540 8 of 12

Table 1. Average weight (%) comparison of Gomphocarpus fruticosus and Leonotis leonurus elemental
composition.

Mineral Elements (% Weight)
Plants

Gomphocarpus fruticosus Leonotis leonurus

Carbon (C) 61.28 ± 1.80 58.12 ± 1.33

Oxygen (O) 34.17 ± 1.57 37.86 ± 1.06

Sodium (Na) 0.00 0.00

Potassium (K) 1.16 ± 0.22 1.99 ± 0.10

Calcium (Ca) 1.32 ± 0.29 0.82 ± 0.04

Chlorine (Cl) 0.62 ± 0.06 0.37 ± 0.05

Sulphur (S) 0.32 ± 0.03 0.17 ± 0.04

Silicon (Si) 0.64 ± 0.26 0.16 ± 0.87

Magnesium (Mg) 0.38 ± 0.03 0.37 ± 0.03

Phosphorus (P) 0.13 ± 0.04 0.15 ± 0.02
No significant difference in the quantity of mineral elements between the two studied plants.

Micronutrients such as copper (Cu), selenium (Se), Mg, K, and Ca assist in maintaining
a stable mental state, and an imbalance of these minerals is associated with mental disor-
ders [60]. As indicated in the current results, Mg, K, and Ca are present in all the plants
selected for the study, and a deficiency in these mineral elements in humans increases
the risk of depression via different pathways [60,61]. Mg plays a vital role in maintaining
the stability and functioning of the brain and central nervous system [62,63]. The multi-
ple possible mechanisms of magnesium involvement in depression and anxiety involve
the blockage of the glutamatergic N-methyl-D-aspartate (NMDA) [64] and its receptors
(NMDAR) [65], which modulates the serotoninergic system [66], and alterations in the gut
microbiota, leading to a negative impact on the gut–brain axis [67].

For all the present minerals, there was no significant difference. P and Ca are two essen-
tial minerals that play a crucial role in maintaining overall physical and mental well-being.
Phosphorus governs the proper functioning of the nervous system, muscle contractions,
and other vital physiological processes, whereas Ca is paramount for the transmission of
nerve impulses, muscle function, and the release of neurotransmitters [68,69]. High con-
centrations elements may support the growth and density of trichomes, which in turn may
act as protective barriers against environmental stressors, preserving the bioactive com-
pounds within [70]. For instance, calcium can contribute to cell wall stability and trichome
formation, indirectly supporting the storage and stability of therapeutic compounds [70,71].

The elemental composition of these plants, which includes vital minerals like P, Ca,
and Mg, promotes neurological health by supporting vital physiological functions includ-
ing neurotransmitter activity. Furthermore, the presence of micronutrients such as Cu
and Se improves the stability of mental health, and interactions between these minerals
and phytochemicals might affect neurotransmitter systems, which helps explain the an-
tidepressant properties of the plants. In general, the medicinal ability of these plants to
effectively treat mental health conditions is influenced by both their micromorphology and
elemental composition.

4. Conclusions

This study on G. fruticosus and L. leonurus revealed a complex interplay between phy-
tochemicals, elemental minerals, and trichomes that support the metabolic and medicinal
properties of plants. This research data is a preliminary step that bridges ethnobotanical use
and modern medicine development. The elements (carbon, oxygen, magnesium, silicon,
phosphorus, chlorine, potassium, and calcium) and compounds (6-methoxyluteolin-4′-
methyl ether, 9,13-epoxylabda-6(19)-diol dilactone, and marrubiin for L. Leonurus and rutin,
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voruscharin, uscharin, afroside, and decinnamoyltaxagifine (diterpene) for G. fruticosus)
found in the plant extracts have been previously shown to have neuro activity and neuro-
modulatory properties. Hence, identification coupled with the chemical and elemental
profile of each plant provides empirical data on their potential for further development as
alternative therapies for mental health-related diseases including depression. However,
further research in disease models needs to be carried out. While this foundational under-
standing supports their continued use in both folk and modern contexts, further rigorous
studies are essential to confirm the efficacy of these phytochemicals. Future research should
explore their therapeutic potential to create effective, evidence-based formulations.

Supplementary Materials: The following supporting information can be downloaded at the follow-
ing website: https://www.mdpi.com/article/10.3390/app142411540/s1. Figure S1: Representative
chromatograms obtained for Leonotis leonurus methanol extract using ultra-performance liquid chro-
matography coupled to mass spectrometry (UPLC-MS). Figure S2: Representative chromatograms
obtained for Leonotis leonurus acetone extract using ultra-performance liquid chromatography coupled
to mass spectrometry (UPLC-MS). Figure S3: Representative chromatograms obtained for Leonotis
leonurus hexane extract using ultra-performance liquid chromatography coupled to mass spectrome-
try (UPLC-MS). Table S1: Tentative identification of Leonotis leonurus extracts using UPLC-MS ESI
positive mode; Table S2: Relative percentage (%) of identified peaks for Leonotis leonurus extracts;
Table S3: Tentative identification of Gomphocarpus fruticosus dichloromethane (DCM) extract using
UPLC-MS ESI negative mode.
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