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Featured Application: LLM integration in generating new methodologies in OHS.

Abstract: This paper introduces a novel generative artificial intelligence workbench specifically tai-
lored to the field of safety sciences. Utilizing large language models (LLMs), this innovative approach
significantly diverges from traditional methods by enabling the rapid development, refinement, and
preliminary testing of new safety methodologies. Traditional techniques in this field typically depend
on slow, iterative cycles of empirical data collection and analysis, which can be both time-intensive
and costly. In contrast, our LLM-based workbench leverages synthetic data generation and advanced
prompt engineering to simulate complex safety scenarios and generate diverse, realistic data sets on
demand. This capability allows for more flexible and accelerated experimentation, enhancing the
efficiency and scalability of safety science research. By detailing an application case, we demonstrate
the practical implementation and advantages of our framework, such as its ability to adapt quickly
to evolving safety requirements and its potential to significantly cut down development time and
resources. The introduction of this workbench represents a paradigm shift in safety methodology
development, offering a potent tool that combines the theoretical rigor of traditional methods with
the agility of modern AI technologies.

Keywords: OHS; ChatGPT; AI; chain of thought; complexity; design science research; methodology design

1. Introduction

The development and validation of novel methodologies in the field of safety sci-
ence, particularly in the areas of organisational resilience and occupational health and
safety (OHS), requires rigorous testing and a substantial amount of high-quality data [1,2].
However, obtaining this data presents a number of practical and ethical challenges, from
obtaining approval for human-centred studies to navigating complex data protection reg-
ulations [3]. These barriers often limit researchers’ abilities to efficiently prototype and
evaluate new methods, hindering progress in areas where timely innovation is critical. To
address these limitations, this study presents an integrated approach that uses generative
artificial intelligence (AI) tools to create a flexible and accessible workflow workbench for
testing and refining early-stage methods, specifically in the areas of occupational safety
and organisational resilience.

The impetus for this research stems from the development of an integrated Resilience
Analysis Grid-RASCH method, a novel approach to improving organisational resilience by
quantifying and analysing adaptive capacity [4–7]. To assess the viability of this method
without incurring the full cost and complexity of data collection and extensive real-world
testing, we employ a structured workflow based on generative AI tools, such as large
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language models (LLMs). These tools have shown great promise in simulating complex
environments and generating synthetic data, allowing researchers to model and test hy-
potheses in a controlled and reproducible manner before committing to extensive field
trials [8,9].

This article demonstrates how generative AI can serve as a powerful tool for proto-
typing and iterating new methods in an OHS context. While LLMs and other advanced
neural networks typically require extensive computational resources and expertise to de-
velop, recent advances have made accessible and relatively user-friendly tools available to
non-specialist researchers and practitioners [10,11]. The core contribution of this paper is
thus twofold: (1) to illustrate a generalisable model for the use of generative AI in method
development in safety science; and (2) to present a practical walkthrough of a conceptual
workflow workbench that can support researchers in the preliminary testing and refinement
of OHS methods.

In the literature on the application of AI in OHS, one fundamental study is by Jason
Wei et al. (2022) [12], which outlines the use of traditional machine learning algorithms for
predicting workplace accidents based on historical incident data. While this approach has
proven moderately effective, it fundamentally lacks the ability to adapt to novel or evolving
safety conditions, a limitation that our research addresses through the use of LLMs [12].
Moreover, at the present time (December 2024), the Scopus database does not report any
document regarding OHS and Chain-of-thought concurrently. Therefore, the main outcome
of this paper is to propose a structured methodology to generate specific methodologies
for OHS based on Chain-of-thoughts prompting. Our workbench leverages the generative
capabilities of LLMs not only to predict but also to simulate potential safety scenarios,
thereby filling a critical gap in dynamic risk assessment. This method significantly extends
the utility of AI in safety science, offering a more robust, adaptable framework that is
capable of keeping pace with changes in workplace environments and safety protocols.

Given the high stakes of safety-related research and the potential ethical constraints
on data collection, this framework serves as a valuable resource for those seeking to
validate the applicability and robustness of new approaches. In describing the proposed
model, we detail how AI tools can be tailored to specifically support OHS applications
while remaining accessible to researchers without specific training in machine learning or
artificial intelligence. This workbench not only addresses current challenges of data scarcity
and ethical considerations but also provides a scalable model for the broader field of safety
science, bridging the gap between concept and implementation under the lens of a design
science approach.

The article is structured as follows: The Section 2 contextualises the research against
the background of recent international literature; Section 3 details the methodological
framework proposed by the research team; Section 4 guides the reader through an exam-
ple application on how to implement the framework in their own OHS projects; finally,
Section 5 draws conclusions and outlines some potential applications of the framework
proposed here.

2. Literature Background

Recent research highlights the significant impact of artificial intelligence (AI) on
occupational health and safety (OHS) and organisational resilience. AI-driven technologies
are revolutionising workplace safety by providing predictive insights, real-time monitoring,
and risk mitigation strategies [13]. In high-risk sectors such as construction, mining,
and oil and gas, AI applications include computer vision, sensor networks, and machine
learning for hazard identification and risk management [14]. Generative AI and LLMs are
transforming several industries, with applications ranging from healthcare to finance [15].
In the construction industry, generative AI offers innovative solutions to productivity
challenges, with retrieval-augmented generation improving basic LLM performance when
querying contract documents [16]. These advances underscore the potential of AI to
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improve workplace safety, productivity, and decision-making across multiple sectors while
also highlighting the need for responsible innovation and ethical considerations.

AI and machine learning are increasingly being applied to OHS in high-risk industries.
These technologies offer real-time monitoring, risk assessment, and personalised training
solutions. However, the development and validation of OHS methodologies face challenges,
including the need for accurate and ethically collected data and barriers due to data
protection laws [13]. Synthetic data generation using AI has emerged as a potential solution
to these data-related issues, enabling data sharing and use where real-world data are
insufficient or inaccessible [17]. Various ML approaches are being explored for OHS
applications, with ongoing research aimed at identifying the most appropriate techniques
for specific problems in the field [18]. Despite its potential, barriers to the adoption of AI in
OHS include high costs, the lack of skilled personnel, and ethical concerns [14].

Recent advances in generative AI and LLMs have shown significant potential for
synthetic data generation, especially in scenarios with limited data availability [19]. These
technologies are revolutionising OHS by providing predictive insights, real-time monitor-
ing, and risk mitigation strategies. Generative AI, exemplified by models such as ChatGPT
and DALL-E, has rapidly developed and found applications in various sectors, including
healthcare and finance [15]. Synthetic data generation is emerging as a promising solution
to address challenges such as data quality, insufficient data points, and privacy concerns in
machine learning applications [17,20]. This approach enables data sharing and exploitation
in ways that are not possible with real-world data and spans domains such as computer
vision, speech, natural language processing, and healthcare. However, privacy and fairness
concerns related to synthetic data generation remain critical issues that require further
research and consideration [21,22].

The principles of design science provide a structured approach to developing and
evaluating methodological frameworks in applied research fields. Johannesson and Perjons
provided a comprehensive introduction to design science, outlining its core activities and
ethical considerations [23]. This approach can be applied to improve literature review
methods, as demonstrated by Galli et al., who developed a tool using latent semantic
indexing to improve the efficiency of literature searches [24]. Sturm and Sunyaev further
contributed to the field by deriving design principles for systematic search systems that
aim to increase comprehensiveness, accuracy, and reproducibility [25]. The integration
of artificial intelligence (AI) within such frameworks can address methodological gaps
in several fields, including occupational safety and health (OSH). Pishgar et al. present
the REDECA framework for reviewing AI applications in OSH, highlighting the potential
for AI to improve risk identification and control in various industrial sectors [26]. In light
of these advancements, the integration of AI-driven methodologies, particularly through
generative AI and design science principles, presents a compelling opportunity to address
existing challenges and enhance innovation in occupational health and safety (OHS) and
organisational resilience, paving the way for responsible and effective method development
in safety science.

3. Proposed Workflow Workbench

The research team aimed to develop a new method guided by the principles of
Design Science Research (DSR). DSR is an approach used to create and evaluate artefacts
(such as models or methods) intended to solve specific problems. This process starts
with the conceptual design of an abstract model or method, followed by its practical
implementation and testing through a prototype. The artefact created by the team is
both idiographic and prescriptive. ‘Idiographic’ means it is tailored to a specific case or
context, focusing on particularities rather than broad generalizations. ‘Prescriptive’ refers
to providing structured models and actionable methods that offer direct guidance for
problem-solving processes, with clear guidelines tailored for the unique setting under
study. This methodology effectively bridges the gap from general theoretical insights to
specific, practical applications, making a substantial contribution to both research and
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practice [27]. This work reflects recent trends in constructivist methods, which focus on
the emergent construction of artefacts. These methods integrate a mix of qualitative and
quantitative data to develop adaptive, data-driven frameworks capable of evolving with
new insights. Such approaches are crucial for synthesising complex information systems
through ongoing development and fine-tuning specific to the context [28]. By employing
AI for tasks such as clustering and knowledge graph creation, the team managed to weave
complex data into a unified artefact that organically exposes patterns and insights [29].
Grounded in complexity theory, this method mirrors the dynamics of natural systems,
enabling the structure and flexibility necessary for a nuanced, emergent understanding of
interconnected elements within the system [30,31].

3.1. General Structure

The general structure of the proposed workflow consists of two main building blocks:
the use of an LLM and a synthetic data generation package. The former is used to bend the
knowledge implicit in unstructured data sources to the specific context in which the method
designer needs to operate; the latter is used to generate a set of tests for the operational
implementation of the method and to prove its practical feasibility.

3.1.1. LLM-Based Block

The design of the LLM-based block is based on several fundamental considerations
about LLMs. These models operate as probabilistic tools based on the concept of lexical co-
occurrence: the frequency with which two terms occur together in a corpus determines the
strength of their semantic association. Therefore, certain widely recognised terms are more
likely to have been included in the training of LLMs, as they reflect general or well-known
knowledge that is abundant in available data sources; for example, general terms such as the
“Likert scale” are common, as evidenced by approximately 896,000 results in Google Scholar.
In contrast, less common, specialised terms are less likely to be represented in the LLM’s
training data; specific concepts such as “Resilience Analysis Grid” yield significantly fewer
references—around 896 results, or about 10−3 of those associated with the “Likert scale”.
Consequently, the quality and relevance of the LLM’s output is intrinsically dependent
on the breadth and depth of information contained within its training corpus, essentially
reflecting the model’s pre-existing knowledge competence. However, this competence
can be enhanced by supplementing the model with additional context-specific resources
through techniques such as retrieval-augmented generation or by providing documents
tailored to the specific context in question [32,33].

In order to optimise the performance of the LLM in this area, we developed a progres-
sive prompt engineering workflow, which acts as a structured form of Socratic dialogue
designed to encourage iterative learning and adaptation [34]. This approach alternates
between two different types of prompts, called framework and context prompts.

The framework prompt involves the user providing the artificial agent with broad,
general information about the nature of the tasks to be performed, thereby establishing a
basic structure for the interaction.

The context prompt enables the user to provide precise, context-specific information,
allowing the LLM to refine and apply the framework to the task in an operationally
relevant way. This alternation between framework and context prompts helps the model
adapt general principles to specific situations, fostering a dynamic, responsive workflow.
Figure 1 illustrates the dynamic interaction process between a human user and a system
based on a large language model (LLM) through structured prompt engineering. Initially,
the user provides a general framework or outline, which furnishes the LLM with high-
level information about the task or activity (a). This initial stage sets a broad context
and establishes fundamental guidelines for the LLM’s operation, effectively shaping its
subsequent outputs. Following this, the LLM produces initial results based on the user’s
framework (b). These preliminary outputs allow the user to assess the LLM’s work and
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provide feedback, creating an iterative loop of refinement. This feedback is crucial as it
guides the LLM towards generating more precise and relevant outcomes.
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Figure 1. Diagram showing the step-by-step interaction between a human user and an LLM-based
system through structured prompt engineering. Initially, in phase (a), “Provide framework”, the user
defines a general structure for the LLM, setting broad guidelines. In phase (b), “Give feedback”, the
LLM generates initial outputs, which the user refines through feedback, enhancing precision. Phase
(c), “Make requests about a context”, involves the user specifying details to tailor the framework
to the task’s unique needs. Finally, in phase (d), “Provide answers”, the LLM delivers detailed
solutions aligned with both general principles and specific task requirements, illustrating a responsive
and adaptive workflow that enhances the LLM’s effectiveness. The entire process can be subject
to continuous feedback loops at each intermediate stage and can virtually extend indefinitely, as
summarised by the curved arrows between the two agents and the dashed box, respectively.

As the interaction progresses, the user specifies additional, detailed information
relevant to the task at hand (c). This step is critical as it enables the user to tailor the initial
framework to meet the specific requirements of the task, ensuring that the LLM’s responses
are appropriately aligned with the task’s unique needs.

In the final step, the LLM utilises the enhanced framework and specific context pro-
vided by the user to deliver detailed answers or solutions (d). These responses are crafted
to integrate general principles with the specific demands of the task, thereby enhancing
the LLM’s ability to provide accurate, relevant, and contextually tailored answers. This
sequential and adaptive process underpins a responsive and context-sensitive workflow
that significantly boosts the LLM’s effectiveness in practical applications.

3.1.2. Synthetic Data Generation Block

The synthetic data generation block is based on several critical considerations that are
essential for overcoming the inherent challenges of data collection, particularly in areas
such as OHS, where data collection can be both costly and resource intensive. Traditional
methods often require extensive data collection sessions, such as semi-structured interviews,
naturalistic observations, or questionnaires, all of which require a significant and sometimes
impractical level of participant engagement [35]. In addition, real-world data collected
using these methods are often scarce, incomplete, and subject to various types of data
entry errors, thus compromising data quality. Given these limitations, it is neither practical
nor advisable to rely on untested measurement methods in research campaigns, and yet a
paradox remains: how can such methods be tested without reliable data? To address this
issue, freely available software packages are now available that allow the generation of
test data tailored to the specific needs of the research, taking into account different data
types (structured or unstructured), specific probabilistic distributions, levels of respondent
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agreement (e.g., Cronbach’s Alpha), and even variable rates of missing or incomplete
responses within the data set matrix.

Figure 2 outlines the general process for generating synthetic data, detailing each step
from identifying the operating conditions of the test to implementing synthetic data in
method trials. The synthetic data generation workflow is detailed through a structured,
multi-stage process. The initial stage, “Identify the test’s operating conditions”, estab-
lishes the foundational conditions and requirements of the test environment (a). This
involves defining the scope and constraints under which synthetic data will be utilized.
Subsequently, “Identify the typology of needed data” determines the specific type of data
necessary for the research, distinguishing between structured and unstructured formats,
along with any relevant characteristics essential for accurate simulation (b). Following
this, the stage titled “Identify the experimental data parameters” involves defining key
parameters that the synthetic data must adhere to, such as distribution properties, levels
of consistency among variables, and patterns of missing data (c). These parameters are
critical as they guide the data generation process to ensure the synthetic data meet the
experiment’s specific requirements. The next step, “Select the proper synthetic generator”,
involves choosing the most suitable tool for generating the data based on the previously
identified data type and parameters (d). For instance, text-based data may be generated
using a language model, while statistical data may employ parametric tools or Monte Carlo
simulations. After selecting the appropriate generator, the process moves to “Generate
synthetic data according to params.” In this phase, synthetic data are produced according
to the defined parameters, resulting in a data set that reflects the characteristics specified
in earlier steps (e). The final step, “Implement synthetic data in the methods”, sees the
synthetic data being integrated into the research methods, enabling practical testing and
validation of the measurement tools and methodologies under evaluation (f). This sys-
tematic approach ensures robust data generation that is tailored to meet the experimental
needs, facilitating comprehensive testing under controlled conditions.
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Figure 2. Synthetic data generation workflow depicting each stage of the process. In (a), yellow box,
“Identify the test’s operating conditions”, initial conditions and requirements are set, establishing
the data generation foundation, including scope and constraints. In (b), cyan box, “Identify the
typology of needed data,” the necessary data type for the research is specified, distinguishing between
structured and unstructured formats. In (c), green box, “Identify the experimental data parameters”,
key parameters such as data distribution and consistency levels are defined. In (d), orange box,
“Select the proper synthetic generator”, the appropriate tool for data generation is chosen based
on the data type and parameters, such as using a language model for text or parametric tools for
statistical data. In (e), grey box, “Generate synthetic data according to params”, data are produced
according to the specified characteristics. Finally, in (f), white box, “Implement synthetic data in the
methods”, the generated data are integrated into research methods for testing and validation. This
streamlined approach ensures robust, tailored data generation for effective testing under controlled
conditions. All the boxes, except the grey one, correspond to actions performed by human agents.
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The selection of the appropriate synthetic data generation tool is influenced by the
nature of the method—and therefore the type of data—being tested. For example, methods
involving unstructured textual data might use LLMs as synthetic data generators, while
methods requiring data that follow simple statistical distributions might use standard para-
metric generators based on Monte Carlo methods. The workflow involves first identifying
the operating conditions for the test, followed by determining the required data type and
experimental data parameters, selecting the appropriate synthetic generator, and finally
generating synthetic data according to these defined parameters before integrating it into
the methodological test.

4. Walkthrough Application

In developing a comprehensive approach to integrating the Resilience Analysis Grid
(RAG) with the Rasch model, an operator must establish a methodological framework that
supports both data definition and synthetic data generation tailored to the OHS context.

The methodological walkthrough of this framework begins with the user establishing
a basic ‘framework’ by referring to a broad, generic questionnaire, such as Hollnagel’s
RAG, which provides a structure around OHS contexts (see Figure 3).Appl. Sci. 2024, 14, 11586 8 of 21 
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Figure 3. Step-by-step workflow illustrates the interaction between a human user and an LLM-based
system within a structured prompt engineering and synthetic data generation framework. The
two blocks constituting the proposed methodology are clearly highlighted. Initially, the user sets a
basic framework based on Hollnagel’s RAG general questionnaire for OHS relevance. The LLM then
provides feedback to refine its model interpretation. Next, the user requests contextual adaptations to
tailor the questionnaire for OHS in manufacturing, leading to the LLM adjusting questions to reflect
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four core OHS competencies. Further, the user requests Likert scale responses, specifies the type of
data required, and sets test conditions to fit a Rasch model, including specifying data parameters
like the number of responses and Cronbach’s alpha for consistency. The “LikertMakeR” R package
is chosen to generate data fitting these criteria, producing a data set that mimics real-world OHS
scenarios in manufacturing. These data are then implemented within the RAG-Rasch framework for
testing and validation, completing a robust, context-specific methodological workflow for early-stage
OHS methodology testing. The colour code in use corresponds to that in Figure 2.

This framework acts as a reference point that the LLM can interpret, initially assessing
the outline and feeding back its understanding to the user in a feedback loop. This initial
response allows the user to assess whether the LLM has accurately captured the general
framework, ensuring that any future refinements are based on a correct interpretation of
the high-level goals. Next, the user makes specific contextual requests, starting with the
adaptation of the general RAG questionnaire to the specific OHS context of manufactur-
ing [36,37]. This requires the LLM to translate the general questionnaire items into those
relevant to the four core competencies in manufacturing and to align them with the unique
requirements and characteristics of this sector.

The user then adds further specificity by introducing a Likert scale format for cap-
turing responses, thus modifying the general framework with a further contextual layer
specifically tailored to OHS in manufacturing. The LLM adapts the general structure of
the Likert scale by interpreting it in the context of each question, and the user refines
these interpretations to ensure consistency with manufacturing-specific needs. With the
basic questionnaire and response format now customised, the user defines the technical
requirements for synthetic data generation and determines that the Likert scale data type is
required to simulate realistic response patterns.

The user proceeds by identifying the operating conditions required to integrate a Rasch
model with the RAG data, a step that involves ensuring that the synthetic data fit a single
latent dimension, an essential criterion for the application of the Rasch model. Once these
criteria are established, the user specifies other data parameters, such as the number of
fictitious respondents and the dimensions required for each respondent’s responses, as well
as distributional properties and internal consistency measures, such as Cronbach’s alpha,
tailored to the experimental needs of the OHS study. On the basis of these specifications, the
user selects the appropriate synthetic data generation tool (in this case the “LikertMakeR”
package, an R-based tool particularly suited to generating data that meet the predefined
distribution and scaling conditions [38]).

The selected generator then produces the synthetic data according to the established
parameters, creating a data set that reflects real-world response patterns to OHS-related
questions in the manufacturing sector.

These data are then ready for implementation in the RAG-Rasch methodology testing
phase, where they are analysed within the structured framework that has been iteratively
refined through the combination of LLM-guided dialogue and synthetic data parame-
terization. This process allows for a comprehensive simulation of the RAG in an OHS
manufacturing context, providing a robust testbed for refining and validating methodolo-
gies without the logistical and ethical complexities of large-scale, real-world data collection.
Through this iterative workflow, based on alternating framework and context prompts,
the LLM is able to dynamically adapt general principles to specific applications, while the
synthetic data generation tools support rigorous and replicable testing, creating a powerful
platform for early-stage methodological development in OHS research. The resulting
questionnaire, as well as the corresponding allowed answers, are reported in Tables A1–A4,
collected in Appendix A. Appendix B reports the original Socratic dialogue between a
member of the research team and the LLM about the creation of the RAG questionnaire
tailored to the OHS domain.

The walkthrough application presented in this paper is based on a real case used to
propose the novel combination of RAG with the Rasch Rating Scale model. The resulting



Appl. Sci. 2024, 14, 11586 9 of 21

RAG-Rasch is presented more in detail in a companion article, entitled “Introducing
the RAG-Rasch Rating Scale Model for Measuring Organizational Resilience Potentials”,
belonging to the same special issue of this journal. To demonstrate the scalability potential
of this Chain-of-thought-based approach, a set of other possible use cases are listed:

• Starting from the general structure of the Analytic Hierarchy Process, the human asks
the LLM to provide a specific AHP-based cost-benefit analysis on the implementation
of Lock Out Tag Out procedures in a dairy factory, also defining the parameters for a
synthetic discrete time simulation of the packaging machines;

• Starting from a typical measuring chain for an experimental setting in hydrogen
natural storage, the goal is to develop a Functional Resonance Analysis Method
model representing the sociotechnical system under the focus of the analysis and also
providing the phenotypes for the associated Monte Carlo simulation;

• Starting from the general structure of Bayesian networks, the human asks the LLM
to provide a specific model to evaluate emergency response strategies in high-rise
buildings. This involves defining parameters for a synthetic simulation, such as
building height, population density, and response times, which will demonstrate the
effectiveness of various safety measures across different building configurations;

• Starting from Decision Tree analyses, the human asks the LLM to develop a model to
assess optimal personal protective equipment (PPE) usage in chemical manufacturing.
The model includes defining decision nodes based on chemical hazards and PPE
types and parameters for synthetic scenarios that adapt to different plant sizes and
exposure levels;

• Starting from dynamic systems modelling, the human agent asks the LLM to create a
model for analysing supply chain resilience in the retail industry. This involves defin-
ing parameters that simulate disruptions like delivery delays and supply shortages
due to the pandemic and tailoring the model to different scales of retail operations
and geographic variables;

• Starting from the agent-based modelling notions, the human agent asks the LLM
to simulate the spread of infectious diseases within corporate offices and evaluate
health interventions. The model will require defining parameters such as office size,
interaction patterns, and intervention efficacy, aiming to provide tailored health and
safety strategies for different office environments;

• Starting from system dynamics theory, the human asks the LLM to analyse energy con-
sumption patterns and sustainability strategies across various industrial complexes.
The setup involves defining dynamic parameters such as energy source types, machin-
ery efficiency, and operational practices, which adapt the model for diverse industrial
sectors and scales.

The examples outlined illustrate the scalability of our proposed methodology across
diverse industries and conditions, demonstrating its broad applicability. Each implemen-
tation, while theoretically sound, must be rigorously validated by researchers to ensure
accuracy and reliability. This continuous validation is crucial to effectively adapt and refine
the methodology for specific real-world applications.

5. Conclusions

This research represents a transformative advance in the field of OHS, providing a
novel AI-driven workbench that not only enables the design and testing of innovative
methodologies but also addresses long-standing challenges in early-stage method valida-
tion. By integrating LLMs and synthetic data generation tools, this framework creates a
dynamic platform that can simulate and evaluate new OHS methodologies with unprece-
dented efficiency and rigour, effectively eliminating the practical and ethical constraints
typically associated with real-world data collection. The applications of this approach are
far-reaching: it provides OHS researchers and practitioners with a powerful tool for pro-
totyping and refining methodologies, ultimately accelerating the adoption of data-driven
safety interventions in industries where rapid, evidence-based responses are critical. This
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workbench has the potential to fundamentally reshape safety science, enabling the iterative
and responsive development of methodologies that can be tailored to different sectors
and adapted to complex and evolving workplace environments. The implications of this
research extend far beyond OHS, positioning it as a valuable model for other high-risk
areas where accurate, context-specific data are difficult to obtain, such as healthcare, envi-
ronmental monitoring, and disaster management. The ability to test new safety protocols
in a simulated environment paves the way for more agile, reliable, and proactive risk
management strategies, fostering a safer and more resilient organisational culture. Despite
its strengths, there are limitations due to the synthetic nature of the data, which, while
highly customisable, may lack the complete unpredictability and variability of real-world
scenarios. In addition, the reliance on LLMs requires careful oversight to ensure that the
outputs generated are accurately aligned with sector-specific requirements. It is also crucial
to recognise the inherent biases present within all LLMs, which can be tracked back to the
training stage in which the word embeddings are built. Since LLMs have to be trained on a
large amount of textual data, it is very difficult to avoid the presence of biases inherited from
the sources. This is a well-documented issue of such models that is currently a trending
research topic both for industry and academia. This is another reason to keep the human
in the loop and not to make the process fully automated. However, the authors want to
warn the audience to take into account any potential discrepancy in AI-generated results
that can lead to other biases where common knowledge is overemphasised while niche,
specific knowledge pertinent to particular fields, such as safety sciences, is marginalized.
To counteract these biases and enhance the quality and relevance of synthetic data, one
might employ advanced techniques such as retrieval-augmented generation. This method,
not addressed in this paper, could supplement the LLM with targeted, context-specific doc-
uments that enrich its understanding and output, ensuring a more balanced and accurate
generation of synthetic data that are reflective of the specialised terminology and concepts
critical to the OHS research domain.

Future developments could focus on improving the realism of synthetic data models
and extending the applicability of the framework to different high-risk domains. This
research thus lays the foundation for a new era in occupational health and safety science,
providing a scalable, adaptable, and scientifically robust tool that enables organisations to
anticipate, assess, and mitigate risk with unprecedented precision and foresight.
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Appendix A

OHS RAG Questionnaire

Table A1. Ability to Respond (OHS in Manufacturing Context).

Possible Answers

ID Item Question 1 2 3 4 5

R1 Event list

What are the key OHS incidents for which the
system has predefined responses (e.g., machinery
accidents, chemical spills, fire, electrical hazards,

slips/trips)? Are there prepared responses for
different types of injuries (e.g., fractures, burns)?

No prepared
responses for

any events

Very few events have
prepared responses

Some events have
prepared responses,

but important
gaps exist

Most events have
prepared responses

All critical events
have detailed,

prepared responses

R2 Background

How were these OHS events identified as
critical? Was it based on risk assessments,
regulatory requirements (e.g., OSHA, EU

regulations), historical incidents within the
manufacturing sector, or industry-wide trends?

No clear rationale for
event selection

Some events were
selected with

rationale, but most
were not

Selection process is
based on partial

evidence or
incomplete analysis

Selection process is
mostly thorough and

follows industry
standards

Event selection is
fully based on

comprehensive risk
assessments and

regulatory
requirements

R3 Relevance

When was this list of OHS-related events
created? How frequently is it reviewed or

updated? Is the list modified after a near-miss,
safety audit, or based on new regulatory

requirements? Who is responsible for updating
it—HR, Safety Officers, or the Compliance Team?

The list has never
been revised

The list is rarely
revised (e.g., only in

response
to incidents)

The list is updated
occasionally (e.g.,

after audits
or inspections)

The list is regularly
updated based on
industry trends or
regulatory changes

The list is
continuously and

proactively revised
with a formal

review process

R4 Threshold

What is the threshold for activating a safety
response (e.g., injury severity, exposure to

hazardous substances)? Does it vary depending
on internal factors like production demands or

external factors like weather conditions? Is there
a trade-off between safety and maintaining

production schedules?

There are no defined
criteria for triggering

a response

Criteria exist but are
vague or

rarely followed

Some criteria are
clear, but others

remain inconsistent
or dependent on

factors like
production pressure

Most criteria are
well-defined and

generally followed

Criteria are fully
defined, specific, and
consistently applied

across all
OHS scenarios

R5 Response
list

How was the list of specific OHS responses
developed (e.g., use of safety standards like ISO
45001)? Is it based on empirical evidence from

accidents in the manufacturing sector, or on
model simulations?

The response list is
inadequate for

almost all events

The response list is
inadequate for
many events

The response list is
somewhat adequate,

but significant
gaps remain

The response list is
adequate for most
events, but a few

gaps exist

The response list is
comprehensive and

fully adequate for all
expected events
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Table A1. Cont.

Possible Answers

ID Item Question 1 2 3 4 5

R6 Speed

How quickly can the safety team respond to
different types of incidents (e.g., how fast can
machinery be shut down in an emergency)?
What measures ensure quick response (e.g.,
location of first-aid kits, accessibility of fire

extinguishers, on-site medical staff)?

Responses are slow
and usually delayed

Responses are often
slow but

occasionally timely

Responses are
reasonably quick but

may face
occasional delays

Responses are quick
and timely in

most cases

Responses are
implemented rapidly

and effectively in
all cases

R7 Duration

For how long can an emergency response (e.g.,
handling a chemical spill) be maintained before
additional resources are required? What is the

minimum acceptable response level (e.g., having
a trained first responder on-site) and how long

can that level be sustained?

Full response cannot
be sustained for any

meaningful time

Full response can be
sustained only for a

short period

Full response can be
sustained for a

moderate amount
of time

Full response can be
sustained for an
extended period

Full response can be
sustained indefinitely,
or as long as needed

R8 Stop rule

What criteria are used to determine when it is
safe to resume normal operations after an

incident (e.g., after machinery has been inspected
post-accident or air quality has been verified

post-gas leak)?

There are no defined
criteria for stopping

a response

Stop criteria are
vague or

inconsistently applied

Stop criteria exist but
are not always

followed or
well understood

Stop criteria are
clearly defined and
generally followed

Stop criteria are
well-defined,

consistently applied,
and understood by

all employees

R9 Response
capability

What resources (e.g., personal protective
equipment (PPE), fire suppression systems, spill

control materials) are allocated to ensure
readiness? How many workers are trained for

OHS emergency responses, and who is
responsible for maintaining this readiness (e.g.,

Safety Officers, OHS department)?

Resources are
wholly inadequate

Resources are often
insufficient to

maintain readiness

Resources are
adequate but
stretched thin

at times

Resources are mostly
sufficient, with minor
occasional limitations

Resources are fully
adequate and

consistently available
for all OHS needs

R10 Verification

How is OHS response readiness maintained (e.g.,
regular drills, inspections)? How often is

readiness verified and by whom (e.g., through
third-party safety audits, internal audits)?

Readiness is never or
rarely verified

Readiness is verified
occasionally but

without consistency

Readiness is verified,
but the process is

incomplete
or irregular

Readiness is
regularly verified

and mostly thorough

Readiness is
systematically and

consistently
verified with

comprehensive testing
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Table A2. Ability to Monitor (OHS in Manufacturing Context).

Possible Answers

ID Item Question 1 2 3 4 5

M1 Indicator list

How are safety performance indicators
defined in the manufacturing context?
Are they based on historical incident
data, regulatory requirements (e.g.,

incident rates, near-miss reports), or
industry best practices?

No indicators
are defined

Indicators are poorly
defined and lack

relevance to
OHS risks

Some indicators are
well-defined, but
important areas

are missing

Most indicators are
clearly defined and

relevant to OHS risks

Indicators are
comprehensively
defined and fully

relevant to all
OHS risks

M2 Relevance

When was the OHS indicator list
created? Is it regularly updated based

on audits, risk assessments, or changing
legal requirements? Who is responsible
for maintaining the list (e.g., the Safety

Officer or Compliance Manager)?

The list is outdated
and irrelevant

The list is mostly
outdated with

minimal relevance to
current risks

The list is somewhat
relevant but needs

regular updates

The list is relevant
and updated

fairly regularly

The list is fully
up-to-date and

relevant, with a clear
process for

regular revisions

M3 Indicator type

Are the OHS indicators leading (e.g.,
number of near-misses, safety training
completion rates) or lagging (e.g., injury

frequency, lost workdays)? Are they
based on individual incidents or

aggregated data from across multiple
workstations or facilities?

Only lagging
indicators are used

Mostly lagging
indicators, with very

few leading ones

A balance of leading
and lagging
indicators is
present, but

needs improvement

A strong balance
between leading and

lagging indicators
is maintained

Leading and lagging
indicators are fully

integrated
and balanced

M4 Validity

How is the validity of OHS indicators
ensured? Are they tied to an articulated
risk management model (e.g., hazard

identification and control) or just
general safety guidelines?

Indicators lack
validity and are not

tied to any
systematic model

Indicators have
limited validity,

often relying
on assumptions

Some indicators are
valid, but others

are based on
informal processes

Most indicators are
valid and based on

articulated
OHS models

Indicators are fully
valid, systematically

derived from risk
models or

empirical data

M5 Delay

What is the typical lag between a safety
incident (e.g., injury, equipment

malfunction) and the reporting of the
corresponding indicator? Is the delay

acceptable for timely corrective actions?

The delay is
unacceptable and

causes
significant problems

The delay is too long
and hampers

corrective actions

The delay is
manageable but

should be improved

The delay is
acceptable in

most cases

The delay is minimal
and fully acceptable for

all indicators
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Table A2. Cont.

Possible Answers

ID Item Question 1 2 3 4 5

M6 Measurement
type

Are OHS measurements qualitative
(e.g., employee feedback on safety

culture) or quantitative (e.g., incident
rates, exposure levels)? If quantitative,

what scales are used (e.g., accident
severity scales)?

Measurements are
exclusively

qualitative with no
quantifiable data

Measurements are
mostly qualitative

with minimal
quantitative data

A mix of qualitative
and quantitative
measurements is

used, but
it’s inconsistent

Measurements are
mostly quantitative,

with some
qualitative inputs

Measurements are
systematically

quantitative, with
qualitative inputs
where necessary

M7 Measurement
frequency

How often are safety indicators
measured? Is it continuous (e.g.,

real-time monitoring of air quality or
noise levels) or periodic (e.g., monthly

safety audits)?

Measurements are
rarely taken and
are inconsistent

Measurements are
taken occasionally
but not regularly

Measurements are
taken periodically,

but not with
enough frequency

Measurements are
taken regularly

and with
sufficient frequency

Measurements are
taken continuously or

at very regular
intervals, ensuring

constant monitoring

M8 Analysis/
interpretation

What is the time gap between collecting
safety data (e.g., incident reports) and

analyzing them? How many indicators
require deeper analysis (e.g., trend

analysis of near-misses), and how are
the results communicated to workers

and management?

There is a significant
delay between
measurement
and analysis

Analysis is slow and
often incomplete

Analysis is timely
but requires

improvement for
deeper insights

Analysis is timely
and mostly effective

Analysis is prompt,
thorough, and leads

to actionable
insights quickly

M9 Stability

Are the measured safety effects
temporary (e.g., reduced accidents

during a safety campaign) or
long-lasting (e.g., consistently low

incident rates over years)?

The measured effects
are highly transient

and do not last

The effects are mostly
transient with

occasional
lasting impacts

The effects are
somewhat stable, but

not consistently
long-lasting

The effects are mostly
stable and sustained

over time

The effects are highly
stable and

consistently permanent

M10 Organizational
support

Is there a structured schedule for safety
inspections (e.g., weekly equipment

checks, quarterly safety audits)? Is there
adequate resource allocation for

ongoing monitoring (e.g., dedicated
Safety Officers, budget for safety

improvements)?

There is little to no
support for

OHS monitoring

The organization
provides minimal

support for
OHS monitoring

There is some
support, but it is

inconsistent
or insufficient

The organization
provides adequate
support, with room

for improvement

The organization
provides full and

consistent support,
ensuring the

monitoring process is
well-resourced
and effective
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Table A3. Ability to Learn (OHS in Manufacturing Context).

Possible Answers

ID Item Question 1 2 3 4 5

L1 Selection
criteria

What types of OHS incidents or
near-misses are investigated (e.g., only
severe accidents or also near-misses)?

What criteria (e.g., injury severity,
frequency) are used for selecting cases

for detailed investigation?

No clear criteria for
selecting events

to investigate

Events are rarely
selected based on

clear criteria

Events are sometimes
selected based on

frequency or severity,
but inconsistently

Most events are
selected for

investigation based on
relevant criteria

All OHS events are
consistently selected

based on well-defined
and appropriate criteria

L2 Learning basis

Does the organization learn from
positive events (e.g., instances where
employees avoided accidents through

proper safety behavior) as well as
negative ones (e.g., actual accidents)?

The system learns
only from failures,

never from
successes

The system rarely
learns from successes,

primarily focusing
on failures

The system sometimes
learns from successes,

but mostly
from failures

The system often
learns from both

successes and failures

The system fully
integrates learning from

both successes and
failures in a

balanced manner

L3 Classification

How are OHS incidents described,
classified, and categorized (e.g., based

on type of injury, location,
equipment involved)?

There is no system
for classifying or

categorizing incidents

Incidents are rarely
classified or

categorized in a
meaningful way

Incidents are classified
inconsistently or with

limited structure

Most incidents are
systematically

classified
and categorized

All incidents are
comprehensively

described, classified, and
categorized in a

standardized manner

L4 Formalization

Are there formal procedures for
collecting, analyzing, and learning from
OHS incidents (e.g., root cause analysis,

safety debriefs)?

There are no formal
procedures in place

Procedures are
informal and

inconsistently applied

Some formal
procedures exist, but

they are not
always followed

Procedures are mostly
formalized

and followed

Fully formalized
procedures are in place

and consistently applied
for all aspects of data

collection and learning

L5 Training

Is there formal training on how to
collect and analyze safety data? Are

employees and supervisors trained on
how to apply lessons learned from

past incidents?

There is no
training provided

Training is minimal
and insufficient

Some training is
provided, but it

needs improvement

Adequate training is
provided, but with

occasional gaps

Comprehensive and
regular training is

provided to all relevant
staff, ensuring effective
learning from incidents

L6 Learning style

Is learning from safety incidents
continuous (e.g., integrated into regular

safety meetings) or only triggered by
specific events (e.g., after a

major accident)?

Learning only
occurs after major

incidents
or accidents

Learning is mostly
event-driven, with

little focus on
continuous

improvement

Learning is a mix of
event-driven and
continuous, but
mostly reactive

Learning is
often continuous,

with some
event-driven elements

Learning is fully
continuous and
integrated into

everyday practices
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Table A3. Cont.

Possible Answers

ID Item Question 1 2 3 4 5

L7 Resources

Are there adequate resources (e.g.,
dedicated investigation teams, software
tools for incident tracking) allocated for

investigating safety incidents and
facilitating learning?

There are no
dedicated resources

for investigation
and learning

Resources are very
limited

and inadequate

Resources are available
but are often stretched

too thin

Adequate resources are
available, but

occasional
limitations occur

Resources are fully
sufficient and

consistently available for
thorough investigation

and learning

L8 Delay

What is the delay between an incident
and learning from it (e.g., how quickly

are root causes identified, and
corrective actions implemented)? How

are the outcomes communicated
internally (e.g., through safety bulletins)
and externally (e.g., regulatory bodies)?

There is a
significant delay

that prevents
timely learning

Delays are often too
long to ensure

effective learning

There are occasional
delays, but learning is

generally timely

The delay is minimal,
and learning occurs in

a timely manner

Learning happens
promptly after every

incident, with immediate
analysis and

corrective actions

L9 Learning target

At what level does learning take place?
Does it focus on individual workers,

specific teams, or at the
organizational level?

Learning rarely
takes effect at

any level

Learning mostly
affects individuals,

with little
collective or

organizational impact

Learning has some
impact on teams or

individuals, but limited
organizational changes

Learning impacts both
individuals and teams,

with some
organizational changes

Learning is
systematically applied at
the individual, team, and

organizational levels

L10 Implementation

How are lessons learned from OHS
incidents implemented? Are they

translated into revised safety
procedures, updated training programs,

or new workplace designs?

Lessons learned are
rarely, if

ever, implemented

Implementation of
lessons learned is

sporadic
and ineffective

Lessons are sometimes
implemented, but often

inconsistently

Lessons learned are
implemented

effectively most of
the time

Lessons learned are
always implemented

thoroughly and
consistently across the

organization, with clear
impact on procedures

and practices
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Table A4. Ability to Anticipate (OHS in Manufacturing Context).

Possible Answers

ID Item Question 1 2 3 4 5

A1 Expertise

What kind of expertise is used to
anticipate future OHS risks (e.g.,
in-house safety experts, external

consultants)? Is expertise drawn from
cross-industry practices, ergonomics, or

specific manufacturing knowledge?

No expertise is
used to anticipate

future risks

Minimal expertise is
available, and it is
often insufficient

Expertise is available
but is inconsistently
applied or limited

in scope

Expertise is mostly
sufficient and

appropriately applied

Expertise is fully
sufficient,

comprehensive, and
consistently applied

A2 Frequency
How often are future OHS threats (e.g.,

potential risks from new machinery,
changes in production lines) assessed?

Future threats and
opportunities are

never assessed

Assessments are very
rare and

typically ad-hoc

Assessments are
conducted occasionally,

but not regularly

Assessments are
conducted regularly,

with some gaps

Future threats and
opportunities are

assessed frequently
and systematically

A3 Communication

How are forecasts of future OHS risks
or opportunities (e.g., new safety

technologies) communicated within
the organization?

Expectations are
never communicated

Communication of
future risks is very

poor and
rarely reaches

relevant parties

Communication occurs
but is often unclear

or inconsistent

Communication is
mostly clear
and reaches

relevant stakeholders

Communication is
always clear, consistent,
and reaches all relevant

stakeholders in
a timely manner

A4 Strategy

Does the organization have a clear
safety vision or strategy for addressing

future OHS risks (e.g., zero-accident
policies, advanced automation for

hazardous tasks)?

There is no strategy
for future
OHS risks

There is a very vague
or informal strategy

with
minimal planning

There is a strategy, but
it is incomplete or not

well formulated

The strategy is
well-formulated and

mostly clear, with
minor gaps

The organization has a
clearly formulated and
comprehensive strategy

for addressing future
OHS risks

A5 Model

Is the safety strategy or model of future
OHS risks explicitly defined (e.g.,

through formal risk assessments), and is
it qualitative (e.g., expert judgment) or

quantitative (e.g., risk
probability models)?

There is no explicit
model or

assumptions about
future risks

Models are mostly
implicit and

qualitative, with
little structure

Models are somewhat
explicit but lack
thoroughness,

primarily qualitative

Models are explicit and
reasonably detailed,

often blending
qualitative and

quantitative elements

Models are fully explicit,
highly detailed, and

include both qualitative
and quantitative aspects

A6 Time horizon

How far ahead does the system look in
terms of OHS risk anticipation? Does
this vary between business goals (e.g.,

production targets) and
safety priorities?

No
forward-looking

assessments
are made

The time horizon is
very short (e.g., only

a few months)

The time horizon is
moderate

(e.g., 1–2 years), but
may not account for

long-term risks

The time horizon is
substantial

(e.g., 3–5 years), with
good planning for

future risks

The organization looks
far ahead (5+ years),

with comprehensive risk
assessments for the

long-term future
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Table A4. Cont.

Possible Answers

ID Item Question 1 2 3 4 5

A7 Acceptability
of risks

What criteria are used to determine
which OHS risks are acceptable (e.g.,

minor injuries) and which are not (e.g.,
fatalities, permanent disabilities)?

No distinction is
made between
acceptable and

unacceptable risks

The definition of
acceptable risks is

vague or
inconsistently applied

Some criteria exist for
defining acceptable

risks, but they
are incomplete

Acceptable and
unacceptable risks are
mostly well defined

and understood

There are clear,
well-documented criteria

for distinguishing
acceptable and

unacceptable risks,
consistently applied

across the organization

A8 Aetiology

How does the organization define the
nature of future OHS threats? Are they
seen as inherent to the manufacturing

process (e.g., machinery risks) or as
preventable through better

safety controls?

The nature of
future threats is not

anticipated at all

Future threats and
opportunities are

anticipated in a very
limited and
reactive way

Some effort is made to
anticipate future
threats, but the

approach is incomplete

The organization
mostly anticipates the

nature of future threats
and opportunities in a

proactive way

The organization
systematically

anticipates and plans for
future OHS threats and

opportunities with a
proactive approach

A9 Culture

Is there a strong culture of risk
awareness in the organization? Do

employees actively contribute to risk
assessments and proactive

safety measures?

Risk awareness is
not part of the
culture at all

Risk awareness is
minimal and rarely
encouraged within

the organization

Risk awareness is
present but not

consistently reinforced
across the organization

Risk awareness is a
part of the culture and
generally reinforced in

most areas

Risk awareness is fully
embedded in the

organizational culture
and actively promoted at

all levels
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Appendix B

OHS RAG Questionnaire Original Socratic Dialogue

Human: I have a questionnaire from Hollnagel about resilience abilities. Could you
help adapt it for Occupational Health and Safety (OHS) in the manufacturing industry?

LLM: Sure! We can contextualize the questions across four resilience abilities—Respond,
Monitor, Learn, and Anticipate—specific to OHS in manufacturing. This will make it more
applicable to that environment.

Human: Great! Let’s start with the ability to respond. Could you adapt the questions
for this ability and suggest Likert-scale responses?

LLM: Here’s the adapted set of questions for “Ability to Respond” in the manufactur-
ing context, with a 5-point Likert scale. Each question assesses an organization’s readiness
in OHS event response, from event lists to stop criteria.

Human: Perfect! Let’s proceed to the ability to monitor and create the Likert scales for
that as well.

LLM: Here’s the contextualized set of questions and Likert responses for “Ability to
Monitor,” assessing how effectively an organization monitors OHS indicators, measurement
frequency, and analysis.

Human: Excellent. Now, let’s move on to the ability to learn with corresponding
Likert scales.

LLM: Here’s the tailored list for “Ability to Learn,” with questions on data collection,
incident classification, formalization, and implementation of lessons learned.

Human: This looks good. Now let’s complete the questionnaire with the ability to
anticipate questions and the Likert scale options.

LLM: Here’s the adapted set of questions and responses for “Ability to Anticipate,”
focusing on expertise, risk modeling, communication, and risk culture.

Human: This is exactly what I needed! Now, I’d like to generate some synthetic data
based on a Resilience Analysis Grid (RAG) assessment using the Likert scale. Could you
provide an example?

LLM: Certainly. Here’s synthetic data based on the RAG scoring system. Each question
has a corresponding Likert score to simulate an organization’s OHS assessment.

Human: Perfect. Now let’s restructure the steps we’ve followed as a general LLM-
based process.

LLM: Here’s the structured process:

1. Understanding the Task—Analyze and contextualize the initial framework.
2. Contextualization of Framework—Adapt questions for OHS in manufacturing.
3. Creation of Measurement Tools—Develop Likert scales for assessment.
4. Synthetic Data Generation—Generate data using RAG scoring.
5. Feedback Iteration and Refinement—Incorporate user feedback to improve the process.
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