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Abstract: To address the issue of low detection accuracy caused by low illumination and occlusion in
underground coal mines, this study proposes an innovative miner detection method. A large dataset
encompassing complex environments, such as low-light conditions, partial strong light interference,
and occlusion, was constructed. The Efficient Channel Attention (ECA) mechanism was integrated
into the YOLOv11 model to enhance the model’s ability to focus on key features, thereby significantly
improving detection accuracy. Additionally, a new weighted Complete Intersection over Union
(CIoU) and adaptive confidence loss function were proposed to enhance the model’s robustness
in low-light and occlusion scenarios. Experimental results demonstrate that the proposed method
outperforms various improved algorithms and state-of-the-art detection models in both detection
performance and robustness, providing important technical support and reference for coal miner
safety assurance and intelligent mine management.

Keywords: underground coal mines; miner detection; efficient channel attention; adaptive confidence
loss

1. Introduction

In underground coal mining environments, complex geological conditions and lim-
ited lighting pose significant challenges to personnel safety. Research on underground
personnel detection in coal mines is essential for preventing safety incidents and enabling
efficient emergency responses. Accurate personnel detection not only enhances the level
of intelligent safety management in coal mines but also significantly reduces the time
costs and safety risks associated with manual inspections. Deep learning-based object
detection technology can automatically and in real-time identify and locate workers in
underground operations, greatly improving detection accuracy and efficiency. The advance-
ment of this technology is expected to overcome the limitations of traditional monitoring
methods, providing technical support for building a safer and more sustainable mining
environment [1,2].

In recent years, the deep learning-based object detection technique has been quite
prominent in many different scenarios. Meanwhile, it is difficult to apply the YOLO series
of detection algorithms directly regarding complex environments, like those encountered
in a coal mine, whose performances have gained broad adoption both in accuracy and
real-time detection [3]. The underground coal mining environment is marked by poor
illumination, significant interference from headlamps, occlusion, pervasive dust, and
varied protective clothing used by miners; all these make detection of personnel harder.
Additionally, the generalization capability of the detection model and the ability to detect
small objects is poor. Therefore, more upgrades are required to strengthen the model and
its reliability [4–6].
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Recent aspects of coal mine safety development include the application of deep learn-
ing techniques to personnel detection and object recognition in an underground environ-
ment. Basically, many studies have focused on different aspects of personnel safety or
monitoring with the help of deep learning, ranging from object detection models to perfor-
mance assessment under constrained conditions. Wang et al. (2020) [7] and Zhang et al.
(2020) [3] investigated the application of convolutional neural networks and deep learning
algorithms for personnel detection in coal mines. These works highlighted how safety has
been enhanced through the automatic detection of personnel, even when visibility is low,
with higher accuracy than previous methods, which relied on historical data. Gao et al.
(2021) [6] developed more state-of-the-art advances in the model for real-time detecting of
personnel using YOLOv4 as a backbone, hence meeting the high-accuracy and real-time
performance demands of the personnel identification scenarios. Surveillance systems for
underground coal mines were improved by Cheng et al. [8] and Li et al. [9]. Cheng et al.
developed a real-time surveillance system using object detection, while Li et al. used an
improved YOLO model to identify personnel in poor light conditions. Therefore, this
work tries to overcome some of these difficulties, such as those related to low illumination
and/or trouble seeing in underground situations. Chen et al. (2022) [10] combined RFID
technology with deep learning and proposed an optimized scheme for positioning and
tracking personnel through underground mines, with safety being the concern. Xu et al.
(2022) [11], on the other hand, focused on generalization capability in a complex UCM
environment when proposing improvement technologies for deep learning small object
detection in high-interference conditions. A real-time object detection and recognition
system for coal mine safety monitoring was realized by Xu et al. [12], and, from improve-
ments made in the study, demonstrated a much better way of preventing such incidents
from happening. Zhang et al. [13] presented some optimization of deep learning models
to increase the accuracy of object detection in occlusion and dust interference complex
mining environments. Li et al. (2024) [14] designed a real-time personnel detection sys-
tem for underground coal mine environments with deep learning-based systems. This
paper greatly improves the efficiency and accuracy of underground mine safety personnel
detection. Zhao et al. (2024) [15] also developed a system that integrated infrared and
thermal imaging to monitor coal mine safety and detect personnel. For example, under bad
visibility conditions in the coal mine environment, it can accurately measure the human
body. In a nutshell, all these works constitute an important advance in the application of
deep learning to coal mine safety. Therefore, the improvement will be in real-time detection,
enhancement of the model under difficult conditions, and integration of technologies like
RFID for boosting the safety of personnel and efficiency in monitoring.

YOLOv11, the latest version of the YOLO series, has been continually enhanced to
improve detection accuracy and speed through progressive improvements to the model
structure [16]. However, due to the complex environment in coal mines, relying solely on
the original YOLOv11 might be insufficient for addressing the challenges of underground
mining scenarios, such as illumination variations, strong light interference, dust occlusion,
and diverse worker attire. In this paper, an improved version of YOLOv11 that integrates
the Efficient Channel Attention (ECA) mechanism is proposed to enhance the model’s fea-
ture extraction capability. The ECA mechanism is used to effectively capture inter-channel
dependencies, thereby improving feature representation, particularly in highlighting target
features and suppressing irrelevant information in complex backgrounds [17].

Furthermore, for the specific task of miner detection in underground coal mines,
a weighted Complete Intersection over Union (CIoU) and an adaptive confidence loss
function are introduced to improve localization accuracy and enhance model robustness.
The adaptive weighting design helps the model focus on uncertain target regions, especially
in low-light and occluded conditions.

The main contributions of this paper include the following:

1. A dataset for miner detection in underground coal mines has been innovatively
constructed, encompassing complex environments such as low light, partial strong
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light interference, and occlusion, which effectively supports the model’s detection
performance in real mining scenarios.

2. The ECA attention mechanism has been incorporated into YOLOv11, enabling the
model to focus more effectively on key features, thereby improving detection accuracy
in complex environments.

3. A weighted CIoU and adaptive confidence loss function have been proposed, where
the adaptive weighting design enhances the model’s attention to uncertain target
areas, particularly under low-light and occlusion conditions.

4. A detailed analysis of the detection efficiency and accuracy of the improved model has
been conducted, comparing it with various other attention mechanism enhancements,
different backbone improvements of YOLOv11, and mainstream object detection mod-
els. Additionally, the performance of different algorithms under extreme conditions,
such as reduced brightness and noise interference, has been tested. Experimental re-
sults show that the proposed method achieves significant performance improvement
and strong robustness in miner detection tasks.

This study not only advances the technological development of intelligent safety
detection in coal mines but also provides an important reference for the future intelligent
management of mining operations, aiming to offer a higher level of safety assurance for
coal mine workers.

2. Materials and Methods
2.1. Dataset Introduction

The standardized target detection dataset for the coal mine underground drilling
site was gathered between July 2020 and August 2023 in a coal mine located in Binzhou
City, Shaanxi Province [18]. An intrinsically safe law enforcement recorder was employed
to capture footage of the drilling site. This equipment was capable of acquiring images
with a maximum resolution of 4 million pixels, achieving a frame rate of 30 FPS, and the
video format used was MPEG-4. The original dataset consists of 976 video clips, with
a total duration of 161.8 h. The dataset used in this study was generated by randomly
extracting video frames from the original footage at intervals of 30–50 frames using the
OpenCV library. After data cleaning, annotation, and expert sampling and verification, the
final dataset consists of 10,066 images of coal miners captured from various drilling sites
and different environmental backgrounds. During the data cleaning process, we did not
specifically address motion blur or low-quality images. This approach was intentional, as
we aimed to provide a diverse and authentic dataset for researchers. These images cover
three brightness levels (low, medium, and high) and are taken from front, left, and right
angles. Additionally, the dataset includes complex scenes, such as target occlusions and
blurring. All images have a resolution of 1280 × 720, with object scales ranging from 500
to 55,000 pixels. The majority of the targets have scales exceeding 3000 pixels, reflecting
significant variation in the target sizes within the dataset, which meets the requirements
for multi-scale object detection.

To enhance the accuracy of the training dataset, it is divided into a training set,
validation set, and test set in an 8:1:1 ratio. It is important to ensure that the chosen
training, validation, and test sets encompass all possible scenarios. This study employs
the LabelImg tool to annotate the image dataset following the VOC format. To ensure
high-quality annotations, the following four standards are strictly adhered to during image
annotation. (1) Annotations should be made by drawing a box closely around the target’s
edge. (2) If the target is largely occluded or the overall size cannot be marked, annotations
are omitted. (3) Even with minor occlusions, the target must still be annotated, with the
obscured part manually added. (4) The annotation box should ideally not be positioned
near the image’s boundary. Consequently, for the issue of pedestrian detection in coal
mines, the experimental results based on this data are more persuasive.

The sample images of the dataset are shown in Figure 1. In general, the images in
the dataset are captured under low-light conditions, with significant challenges such as
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heavy occlusion and intense light interference caused by headlamps and other light sources.
These factors contribute to the complexity and difficulty of accurately detecting miners in
this specific environment. To further evaluate the algorithm’s adaptability in challenging
environments, we applied brightness reduction and blur to the images in the testing dataset,
simulating real-world variations and assessing the algorithm’s generalization capability.
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2.2. Mine Worker Detection Network Structure

As YOLOv11 achieves structural advancements in the object detection domain, pro-
viding both real-time detection efficiency and precision [19], this paper selects it as the
baseline network. Its architecture comprises three main modules: the backbone network,
the neck network, and the head network, each incorporating innovative design elements
to enhance performance. The backbone network adopts a transformer-based structure,
effectively capturing long-range dependencies and global contextual information in images,
which aids in detecting small targets and partially occluded objects. YOLOv11 introduces
the C3k2 (Cross Stage Partial with a kernel size of 2) module, allowing feature partitioning
through more efficient convolutional computations, thereby reducing computational load
while improving feature representation capability. The neck network enhances detection
performance further through multi-scale feature aggregation, utilizing the Spatial Pyramid
Pooling Fast (SPPF) module and the Cross Stage Partial with Spatial Attention (C2PSA)
module to integrate selective spatial attention mechanisms across different feature scales,
enhancing accuracy in feature extraction and key information focus. The head network
incorporates a dynamically adaptive detection head, which automatically adjusts computa-
tional resource allocation to improve detection efficiency in complex scenes. Moreover, the
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model introduces a Non-Maximum Suppression (NMS) replacement algorithm and dual
label assignment mechanism, increasing accuracy in overlapping and dense target scenarios
while reducing inference latency. Overall, the YOLOv11 model achieves higher frame rates
and average precision, with efficient feature extraction and detection capabilities suitable
for high-performance computing environments and adaptable for edge device deployment,
broadening its potential in real-time applications [20].

This paper further proposes an improved network structure called the YOLOv11_ECA
network, based on the YOLOv11 model, to further improve the detection precision in com-
plex real-world scenes resulting from occlusion, low illumination, and partial interference
caused by strong light. In this respect, it involves the mechanism of ECA above the SPPF
layer to strengthen the learning ability in channel attention relations of great importance
for maintaining the accuracy of occlusion condition detection. In addition, we propose
a new loss function better suited to complex environmental conditions for single-class
object detection in mining. This comprises weighted CIoU and an adaptive confidence
loss component for better optimization of localization precision and robustness. This loss
function mainly pays attention to the emphasis of certain predictions by dynamically
adjusting its penalty scale according to the confidence level, thus allowing better results
in unfavorable conditions. The use of a customized loss function is foreseen to increase
model accuracy and robustness in real-world mining scenarios where object visibility could
be compromised by varied lighting and physical obstructions. The improved network
structure is shown in Figure 2. The detailed structures and algorithms of each module will
be described in the following subsections.
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2.2.1. ECA Attention Mechanism

The Efficient Channel Attention (ECA) mechanism dynamically adjusts the channel
weights of input features, which empowers the network with stronger attention to key
features [21]. Compared with the traditional squeeze-and-excitation mechanism, an ECA
module avoids reducing the channel dimension and directly learns channel-wise attention
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through a one-dimensional convolution after global average pooling [22]. In a word, the
key of the ECA mechanism is how to adaptively determine the size of the one-dimensional
convolution kernel so that the range of local interactions between channels is equal to the
dimension of the channel. Through this adaptive mechanism, the way to handle the feature
automatically according to the number of feature channels can be learned on ECA; thus,
effective feature learning is realized without tedious manual tuning of parameters.

The implementation steps of the ECA module are divided as follows, as illustrated
in Figure 3: The ECA module first applies global average pooling (GAP) to the input
feature map of dimensions (H × W × C), reducing it to a feature vector of size (1 × 1 × C),
thereby capturing the global information for each channel. Subsequently, the adaptive
convolution kernel size, computed using Equation (1), is employed to capture inter-channel
dependencies. Finally, the Sigmoid function, as defined in Equation (2), is used to compute
the activation values of the one-dimensional convolution output, thereby generating the
channel-wise attention weights.

k = ψ(C) =
log2 C + 1

2
(1)

Sigmoid(x) =
1

e−x + 1
(2)
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In YOLOv11, the ECA attention module was added above the SPPF layer of the
back-bone network, enhancing the capture of significant information relevant to object
detection. Because the ECA mechanism does not involve any dimensionality reduction,
it can maintain more original information about features from the target objects, thus
further strengthening the network for its feature representation capability [23]. In addition,
one-dimensional convolution-based local interaction also allows the model to pay more
attention to those important channel features that relate to object detection and adjust the
receptive field adaptively, thus improving accuracy in detection and enhancing recognition
capability, especially when faced with a complex background [24]. This lightweight design
will greatly improve the network performance without adding too much computation cost
or parameter count, hence supporting YOLOv11 in achieving high precision and efficiency.

The specific process for adding the ECA attention mechanism is as follows. First,
create an ECA.py file in the ultralytics/nn folder and paste the core implementation code
into it, then save the file. Next, import this module into the __init__.py file. Finally, complete
the module import and registration in the ultralytics/nn/tasks.py file.

2.2.2. Weighted CIoU with Adaptive Confidence Loss Function (WCIoU-ACLoss)

In single-class object detection tasks of miners, especially under complex environments
such as occlusion and low illumination, it is very important to design a loss function to
improve the localization accuracy and enhance the robustness of the model. The proposed
loss function consists of weighted CIoU [25] and adaptive confidence loss. As for the



Appl. Sci. 2024, 14, 11700 7 of 19

design rationale, it can be found below. In challenging environments with occlusion, the
precision of localization is essential for object bounding boxes. Complete Intersection over
Union integrates the distance between the centers of predicted and ground-truth boxes
and their aspect ratio consistency into the standard IoU formulation. Additionally, it also
incorporates a weighting factor into the complete gain of Intersection over Union to further
improve robustness in complex conditions [26,27]. In the single-class detection, the loss
weight will be dynamically adjusted with the variation of the predicted confidence score so
that low-confidence regions will suffer higher penalties. The adaptive weighting design
helps the models to pay more attention to the uncertain object regions, especially those
under dark and occlusion circumstances. The formula of the weighted CIoU component of
the loss function is given by Equation (3).

LwCIoU =

(
1 − IoU +

ρ2(bp, bg
)

c2 + αv

)
· wocclusion (3)

The parameters in the weighted CIoU formula are defined as follows. IoU represents
the Intersection over Union between the predicted bounding box and the ground-truth box,
indicating their overlap ratio. ρ2(bp, bg

)
is the Euclidean distance between the centers of

the predicted (bp) and ground-truth (bg
)

bounding boxes, while c represents the diagonal
length of the smallest enclosing box that contains both of these bounding boxes. Alpha and
v are the adjustment factors used to ensure aspect ratio consistency between the predicted
and ground-truth boxes. Additionally, an occlusion weight (w_occlusion) is applied to
improve robustness under occlusion and low-light conditions. This weight, defined as
w_occlusion = exp(−confidence), assigns higher importance to low-confidence situations,
thereby enhancing the model’s ability to handle challenging scenarios effectively.

The adaptive confidence loss function is provided in Equation (4). The confidence
score represents the level of certainty that the model has regarding the predicted bounding
box containing the target object. To enhance the model’s sensitivity to uncertain predictions,
an adaptive weighting factor (wconfidence) is incorporated into the loss function. This
weighting factor is designed to increase for low-confidence regions and is formulated as
wconfidence = (1−confidence)γ, where γ serves as a hyperparameter that controls the strength
of the penalty for low-confidence areas. Typically, γ is set to 2, which effectively emphasizes
regions with low confidence, thereby enhancing the model’s robustness under challenging
conditions and contributing to improved detection performance in adverse environments.

Ladptive confidence = −log(confidence) · wcon f idence (4)

The comprehensive loss function is given in Equation (5). λ is a balancing factor
used to control the weight between localization loss and confidence loss. Under severe
occlusion conditions, increasing the value of λ can help enhance localization accuracy. It
is recommended that λ be initially set to 0.7 to prioritize localization loss, with further
fine-tuning during training to optimize the model’s overall performance.

L = λ · LwCIoU + (1 − λ) · Ladptive con f idence (5)

The steps for adding the loss function are as follows. The first step is to create
and implement the weighted CIoU with adaptive confidence loss function code block,
which will then be integrated into the model. Specifically, the existing bbox_iou function
in the ultralytics/utils/metrics.py file will be fully replaced with the new implementation
of the loss function. Subsequently, the forward function of the BboxLoss class in the
ultralytics/utils/loss.py file will be modified to use the newly defined loss function for IoU
calculation, replacing the previous IoU calculation method. Finally, the iou_calculation
function in the ultralytics/utils/tal.py file will be updated to ensure consistency with the
parameter settings used in loss.py. These changes will ensure that the new loss function is
effectively integrated into the training pipeline and aligned with the existing framework.
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3. Experiment and Results
3.1. Experimental Environment

The hardware configuration for this experiment includes an NVIDIA DGX-1 server
equipped with Intel Xeon E5-2698 v4 CPU and NVIDIA Tesla V100-SXM2-32GB GPUs,
sourced from NVIDIA (Santa Clara, California, USA), providing efficient computational
power to support the training and inference of complex deep learning models. The soft-
ware environment for experiments and testing is based on the Ubuntu 16.04 operating
system, combined with CUDA 11.1 and cuDNN 8.0.5 GPU-accelerated libraries to fully
utilize the parallel computing capabilities of the GPU. Additionally, PyTorch is used as the
deep learning framework, facilitating rapid model development and optimization. This
combination of hardware and software ensures experimental efficiency and reproducibility,
providing a solid foundation for in-depth research.

3.2. Evaluation Metrics

In object detection, precision measures the proportion of correct detections, with the
formula shown in Equation (6). Recall evaluates the model’s ability to detect all relevant
objects, with the formula shown in Equation (7), where higher values indicate fewer missed
detections. Both metrics range from 0 to 1, with higher values indicating better model
performance [28–30].

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

where TP (true positives) are correctly detected objects, FP (false positives) are incorrect
detections of non-targets, and FN (false negatives) are actual objects missed by the model.

Mean Average Precision at 0.5 (mAP@0.5) is a key metric for evaluating the overall
accuracy of a model, measuring accuracy across classes by combining localization and clas-
sification performance. The IoU (Intersection over Union) formula is shown in Equation (8).
A detection is considered a true positive (TP) if its IoU with the ground truth exceeds 0.5;
otherwise, it is labeled as a false positive (FP).

IoU =
Area o f Overlap
Area o f Union

(8)

Mean Average Precision (mAP) is calculated by averaging the Average Precision (AP)
values across all classes [31]. First, the AP for each class is computed by the area under the
precision–recall curve. Then, mAP is obtained by averaging these AP values across classes.
The formula is:

mAP =
1
N

N

∑
c = 1

APc (9)

In this formulation, N is the total number of classes, and APc is the Average Precision
for class c. For a specific IoU threshold (e.g., 0.5), this is denoted as mAP@0.5, where AP is
calculated for each class at IoU ≥ 0.5 [32].

Frames per second (FPS) measures a model’s inference speed, indicating how many
frames it can process per second. FPS is calculated by dividing the total number of frames
processed by the total time taken. Higher FPS values signify faster processing, making the
model suitable for real-time applications [33,34], with the formula:

FPS =
Total Frames Processed

Total Time
(10)
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3.3. Results and Analysis

To validate the effectiveness of the proposed algorithm, we conducted comprehensive
experiments using a standardized coal mine underground drilling field miner detection
dataset, aiming to evaluate the detection performance of the proposed method for miner
detection in coal mine environments. The training process involved 300 epochs, with an
initial learning rate of 1 × 10−2. The Adam optimizer was employed, and the batch size
was set to 16.

We conducted four sets of comparative experiments to verify the effectiveness and ro-
bustness of the improved algorithm. Specifically, we performed the following experiments:
(1) a comparative analysis of the YOLOv11 algorithm improved with different attention
mechanisms; (2) a performance comparison of the YOLOv11 algorithm using various back-
bone networks; (3) an analysis of the algorithm’s performance under extreme conditions
involving noise and reduced brightness; and (4) a comparison with existing state-of-the-art
object detection algorithms. These experiments were designed to comprehensively evaluate
the detection performance and robustness of the proposed method in different complex
scenarios, thereby further validating the advantages of the improved algorithm.

3.3.1. Comparison with Different Attention Mechanisms

The proposed model demonstrates lower box localization losses during both training
and validation phases compared to other YOLOv11 variants. As shown in Figure 4, all mod-
els exhibit a rapid decrease in loss at the beginning of training, followed by a stabilization
phase, indicating convergence. The lower loss of the proposed model suggests superior
generalization performance, particularly in challenging environments with occlusion and
low illumination.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 20 
 

 

 

Figure 4. Training and validation loss curves for different attention mechanisms. 

Figure 5 presents the evaluation results of different versions of YOLOv11 (e.g., 

YOLOv11 with CA, GAM, CBAM, and D-LKA attention mechanisms) and the proposed 

model on the validation set for object detection tasks. Except for YOLOv11, which shows 

significantly lower mAP within the IoU range of 0.5–0.95 compared to other algorithms, 

all models exhibit stable and similar performance metrics on the validation set after ap-

proximately 50 training epochs. This indicates that these improved algorithms enhance 

object detection capabilities in complex environments to some extent. However, further 

comparative analysis on the test set is required to comprehensively evaluate the general-

ization ability of each model. 

Figure 4. Training and validation loss curves for different attention mechanisms.

Figure 5 presents the evaluation results of different versions of YOLOv11 (e.g., YOLOv11
with CA, GAM, CBAM, and D-LKA attention mechanisms) and the proposed model on the
validation set for object detection tasks. Except for YOLOv11, which shows significantly
lower mAP within the IoU range of 0.5–0.95 compared to other algorithms, all models exhibit
stable and similar performance metrics on the validation set after approximately 50 training
epochs. This indicates that these improved algorithms enhance object detection capabilities in
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complex environments to some extent. However, further comparative analysis on the test set
is required to comprehensively evaluate the generalization ability of each model.
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Figure 5. Validation set evaluation metrics for object detection under different attention mechanisms.

Table 1 illustrates the performance of various attention mechanisms on the test set
across key metrics, including precision, recall, mAP@50, and FPS. The D-LKA model
achieves the highest precision (0.934), closely followed by the proposed model at 0.932,
indicating strong accuracy in positive detections. In terms of recall, the proposed model
leads with a value of 0.934, reflecting superior sensitivity in identifying true positives.
Furthermore, the proposed model outperforms all others in mAP@50, achieving a score
of 0.958, which highlights its enhanced detection accuracy and robustness under complex
conditions. The proposed model also demonstrates the highest FPS (59.6), significantly
surpassing D-LKA’s FPS of 23.6, where speed is reduced despite high precision. Overall, the
proposed model achieves a balanced improvement in both accuracy and processing speed,
making it the most effective among the compared models for complex object detection tasks.

Table 1. Performance comparison of different attention mechanisms on the test set.

Methods Precision Recall mAP50 FPS

YOLOv11 0.914 0.925 0.938 51.6
YOLOv11_CA 0.920 0.925 0.939 51.1

YOLOv11_GAM 0.928 0.931 0.944 49.8
YOLOv11_CBAM 0.924 0.930 0.946 53.3
YOLOv11_D-LKA 0.934 0.927 0.946 23.6

Ours 0.932 0.934 0.958 59.6
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3.3.2. Comparison with Different Backbone Architectures

The training and validation box loss curves for various object detection algorithms
were analyzed, as depicted in Figure 6. The results indicate that the proposed method
achieves the lowest box loss on both the training and validation datasets, demonstrating
superior performance in terms of convergence speed and generalization ability. Specifically,
the proposed model exhibits a lower final loss compared to other models, suggesting
better fitting and reduced overfitting. YOLOv11_RepViT also performed well, but its
validation loss was slightly higher than that of the proposed method. In contrast, other
models, such as YOLOv11_PE-YOLO and YOLOv11_Retinexformer, exhibited relatively
higher validation losses, which may imply limited generalization capabilities. Overall, the
proposed method outperforms the other YOLOv11 variants, underscoring its effectiveness
for object detection tasks.
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Figure 7 illustrates the convergence trends of various YOLOv11 models (including
YOLOv11_PE-YOLO, YOLOv11_Retinexformer, YOLOv11_RepViT, YOLOv11_ SwinTrans-
former) and the proposed model (“Ours”) in terms of precision, recall, mAP@IoU = 0.5,
and mAP across the IoU range of 0.5–0.95. The results indicate that all models rapidly
improve to high-performance levels in the early stages of training and gradually stabilize.
The proposed model demonstrates superior performance across all evaluation metrics, par-
ticularly in precision and mAP@IoU 0.5–0.95, suggesting enhanced detection accuracy and
robustness. This indicates that the proposed model has stronger generalization capability
and localization precision across different IoU overlap conditions. In comparison, the other
models show similar performance, with YOLOv11_Retinexformer exhibiting slightly lower
precision and recall, possibly due to limitations in the suitability of its backbone. Overall,
the proposed model demonstrates superior performance in complex detection tasks.
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Table 2 presents a comparison of the test set performance for different backbone archi-
tectures, including precision, recall, mAP@0.5, and FPS. The proposed model achieves the
highest precision (0.932) and recall (0.934), indicating superior accuracy in identifying true
positives. Additionally, “Ours” exhibits the best mAP@0.5 score of 0.958, outperforming all
other models, which implies better overall detection accuracy and robustness. In terms of in-
ference speed, the proposed model significantly outperforms other backbones with an FPS
of 59.6, which is nearly double that of the next fastest model (YOLOv11_SwinTransformer
at 30.4 FPS). These results demonstrate the proposed model’s advantage in terms of both
detection performance and computational efficiency, making it well-suited for real-time
and complex detection tasks.
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Table 2. Comparison of test set performance for different backbone architectures.

Methods Precision Recall mAP50 FPS

YOLOv11_PE-YOLO 0.920 0.932 0.946 10.1
YOLOv11_Retinexformer 0.921 0.928 0.946 16.8

YOLOv11_RepViT 0.926 0.933 0.947 24.7
YOLOv11_SwinTransformer 0.919 0.933 0.949 30.4

Ours 0.932 0.934 0.958 59.6

3.3.3. Comparison Under Challenging Visual Conditions

The test images were subjected to reduced brightness, set to half of their original value,
and blurring to further validate the robustness and detection performance of the models
in complex environments. The blurring operation uses Gaussian blur, and the size of the
Gaussian blur kernel is 7 × 7. These enhanced testing conditions allow for an evaluation of
the models’ performance under challenges such as low illumination and image blurring,
providing a more comprehensive understanding of their generalization ability and stability
across different image qualities.
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The comparison between Tables 1 and 3 reveals the impact of different attention
mechanisms on object detection performance under normal and challenging conditions
(brightness halved). Table 3 represents performance under halved brightness conditions;
precision, recall, and mAP50 values for all methods decreased, reflecting the difficulty of
detecting objects under low-light conditions. However, the proposed method still demon-
strated outstanding performance, maintaining an mAP50 of 0.958 without any degradation
compared to normal conditions, indicating strong robustness to changes in brightness.
YOLOv11_CBAM achieved the highest recall (0.918) among other models, although its
precision and mAP50 slightly declined compared to normal conditions. YOLOv11_D-LKA
maintained a high precision (0.934) despite a drop in recall to 0.904, suggesting that its
accuracy remained strong, but its sensitivity to detecting all instances decreased under
lower brightness. Overall, the comparison results indicate that the proposed method is
not only effective under normal conditions but also demonstrates high robustness in chal-
lenging lighting environments, maintaining higher detection accuracy compared to other
attention mechanisms.

Table 3. Performance comparison of object detection under halved brightness with different attention
mechanisms.

Methods Precision Recall mAP50

YOLOv11 0.918 0.902 0.925
YOLOv11_CA 0.924 0.905 0.928

YOLOv11_GAM 0.926 0.910 0.932
YOLOv11_CBAM 0.925 0.918 0.937
YOLOv11_D-LKA 0.934 0.904 0.933

Ours 0.929 0.930 0.958

The comparison between Tables 2 and 4 highlights the impact of different backbone
architectures on object detection performance under normal and challenging conditions
(brightness halved). In Table 4, which presents the performance of different backbone
architectures under halved brightness conditions, it can be observed that most methods
experienced a decrease in both recall and precision, reflecting the challenges posed by
low-light conditions. However, “our model” maintained the highest mAP50 (0.958), indi-
cating its strong robustness to changes in brightness. Compared to Table 2, the precision
of “our model” slightly decreased from 0.932 to 0.929, but it maintained a high recall
(0.930), suggesting that it is less affected by low-light conditions compared to other mod-
els. In contrast, YOLOv11_PE-YOLO showed a slight increase in precision (0.931) but a
small decrease in recall (0.929), while YOLOv11_Retinexformer, YOLOv11_RepViT, and
YOLOv11_SwinTransformer all exhibited declines in both precision and recall, indicat-
ing their sensitivity to reduced brightness. Overall, the results from these two tables
indicate that “our model” not only provides superior accuracy and efficiency under nor-
mal conditions but also maintains its robustness under challenging lighting conditions,
outperforming other backbone architectures in low-light scenarios.

Table 4. Comparison of object detection metrics under halved brightness for different backbone
architectures.

Methods Precision Recall mAP50

YOLOv11_PE-YOLO 0.931 0.929 0.947
YOLOv11_Retinexformer 0.923 0.911 0.932

YOLOv11_RepViT 0.930 0.914 0.934
YOLOv11_SwinTransformer 0.930 0.915 0.938

Ours 0.929 0.930 0.958
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The comparison between Tables 1 and 5 highlights the impact of different attention
mechanisms on object detection performance under both normal and challenging condi-
tions, specifically blurred images. In Table 5, which presents the performance of various
attention mechanisms under blurred conditions, it is evident that most methods experi-
enced a decrease in recall, reflecting the difficulty posed by image blurring. The proposed
model demonstrated the highest precision (0.936) and mAP50 (0.906), underscoring its
robustness in the presence of blurred conditions. Compared to Table 1, the recall of the
proposed model slightly decreased from 0.934 to 0.856, yet it still outperformed other
models in this metric. In contrast, YOLOv11_D-LKA showed a slight improvement in
precision (0.936) under blurred conditions but experienced a decrease in recall to 0.846.
YOLOv11_GAM and YOLOv11_CBAM exhibited significant declines in recall, indicating
their increased sensitivity to image blurring. Overall, the findings from Tables 1 and 5
indicate that the proposed model not only provides superior accuracy and efficiency under
normal conditions but also maintains robustness in challenging conditions, such as blurred
images, outperforming other attention mechanisms.

Table 5. Performance comparison of object detection under blurred conditions with different attention
mechanisms.

Methods Precision Recall mAP50

YOLOv11 0.916 0.847 0.895
YOLOv11_CA 0.927 0.846 0.900

YOLOv11_GAM 0.931 0.816 0.885
YOLOv11_CBAM 0.921 0.829 0.885
YOLOv11_D-LKA 0.936 0.846 0.902

Ours 0.936 0.856 0.906

The comparison between Tables 2 and 6 highlights the impact of different backbone
networks on object detection performance under both normal and challenging conditions
(blurred images). In Table 6, which presents the performance of different backbone net-
works under blurred conditions, it can be observed that most models experienced a decline
in recall and mAP50, reflecting the challenges posed by blurred images. However, the
proposed model maintained the highest precision (0.936), recall (0.856), and mAP50 (0.906)
under these conditions, demonstrating its robustness to blurred images. Compared to
Table 2, the recall of the proposed model slightly decreased from 0.934 to 0.856, but it still
outperformed all other models in this metric. YOLOv11_RepViT achieved the highest
precision (0.944) under blurred conditions, but its recall (0.836) and mAP50 (0.896) were
lower than those of the proposed model. YOLOv11_Retinexformer also performed well,
with a recall of 0.841 and an mAP50 of 0.894, but did not surpass the proposed model.
Overall, the comparison between these two tables indicates that the proposed model not
only provides superior accuracy and efficiency under normal conditions but also maintains
robustness under challenging conditions, such as blurred images, outperforming other
backbone networks. This demonstrates the adaptability and effectiveness of the proposed
model under different conditions.

Table 6. Performance comparison of object detection under blurred conditions with different backbone
networks.

Methods Precision Recall mAP50

YOLOv11_PE-YOLO 0.911 0.704 0.816
YOLOv11_Retinexformer 0.912 0.841 0.894

YOLOv11_RepViT 0.944 0.836 0.896
YOLOv11_SwinTransformer 0.916 0.809 0.878

Ours 0.936 0.856 0.906



Appl. Sci. 2024, 14, 11700 15 of 19

3.3.4. Comparison with State-of-Art Methods

The comparison in Table 7 highlights the performance differences between the pro-
posed model and state-of-the-art object detection methods. The proposed model achieved
the highest mAP50 (0.958), indicating superior detection accuracy compared to other meth-
ods. Although YOLOv8 had a slightly lower mAP50 (0.954), it achieved the highest frames
per second (FPS) value of 62.5, demonstrating better real-time performance. Nevertheless,
the FPS of the proposed model (59.6) was also very competitive, indicating a good balance
between accuracy and efficiency. SSD and YOLOX performed well in terms of recall, with
YOLOX achieving the highest recall (0.949). However, both models had lower precision
and mAP50 values compared to the proposed model, suggesting that while these models
excel in detecting more objects, their accuracy in correctly classifying detections is slightly
inferior. Faster RCNN exhibited relatively low FPS (18.6), highlighting its limitations in pro-
cessing speed, although its precision (0.886) and recall (0.936) were relatively competitive.
YOLOv8 showed a balanced overall performance, with a precision of 0.927 and a recall
of 0.929, reflecting a balance between detection accuracy and speed, but it still fell short
of the proposed model in terms of mAP50. Overall, the proposed model outperformed
state-of-the-art methods in terms of accuracy (mAP50) while maintaining competitive FPS,
demonstrating an effective balance between high detection accuracy and efficiency. This
balance makes the proposed model highly suitable for practical applications that require
both high detection accuracy and fast processing speed.

Table 7. Comparison with state-of-the-art object detection methods.

Methods Precision Recall mAP50 FPS

SSD 0.916 0.912 0.920 56.5
YOLOX 0.897 0.949 0.947 29.8

Faster RCNN 0.886 0.936 0.920 18.6
YOLOv8 0.927 0.929 0.954 62.5

Ours 0.932 0.934 0.958 59.6

To further validate the superiority of “Ours”, Figure 8 visualizes the detection results
under challenging conditions such as low illumination, strong light interference, and severe
occlusion. The blue bounding boxes are used to mark coal mine workers who were not
detected by the algorithm, highlighting instances of missed detection. As shown in the
figure, the proposed algorithm achieves the best detection results across various scenarios,
with no false positives or missed detections. Figure 8a illustrates the detection performance
under a complex situation involving simultaneous low illumination, strong light, and
occlusion, where both YOLOX and YOLOv8 exhibit missed detections. Figure 8b,c present
the detection results under low illumination and severe occlusion, where YOLOv8 misses
detections in both Figure 8b,c, while YOLOX fails in Figure 8c. These results highlight the
challenging nature of underground coal mine environments, which are often characterized
by low illumination, headlamp interference, and occlusions from equipment and personnel,
all of which can degrade the feature information of miners, resulting in missed detections
by these algorithms.
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Figure 8. Visual comparison of different object detection methods, comparison results of three
different methods on YOLOX, YOLOv8 and ours stands for ground truth. The first row presents
the ground truth image, while the subsequent rows (second, third, and fourth) illustrate the results
obtained from the YOLOX, YOLOv8, and our proposed algorithm, respectively. (a) Images under
strong light interference, (b) images with equipment occlusion, and (c) images with human occlusion.

3.3.5. Ablation Experiment

Table 8 shows the performance of different improved versions of the YOLOv11 model
on the test set, focusing on the addition of the ECA attention mechanism and the weighted
CIoU with adaptive confidence loss (WCIoU-ACLoss). The ablation study results indi-
cate that both the ECA attention mechanism and WCIoU-ACLoss significantly enhance
YOLOv11’s performance. The ECA mechanism improves precision and mAP50, while the
WCIoU-ACLoss function boosts recall and mAP50, although there is a slight decrease in
precision. When both are combined, the model achieves the best performance in terms of
precision, recall, and mAP50, demonstrating the effectiveness of these two improvements
in enhancing detection accuracy and model robustness.

In summary, the proposed algorithm has demonstrated good effectiveness in object
detection, evidenced by objective metrics and intuitive visual representations of the detec-
tion results. This has been made possible through the introduction of the ECA mechanism,
in which model training can automatically balance channel importance and focus more
on key features. This leads to significantly improved target feature identification under
extreme conditions, such as low light and occlusion, due to enhanced modeling. Addi-
tionally, the introduction of a weighted Complete Intersection over Union (CIoU) with an
adaptive confidence loss function equips the model to deal with uncertain target areas,
thus making the approach more robust under challenging scenarios. These solve the model
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to flexibly address various problems in detection, so the overall performance of detection is
tremendously improved, especially for complex and dynamic scenarios.

Table 8. Ablation Study.

Methods Precision Recall mAP50

YOLOv11 0.914 0.925 0.938
YOLOv11_ECA 0.930 0.922 0.941

YOLOv11_WCIoU-ACLoss 0.915 0.934 0.954
YOLOv11_ECA_

WCIoU-ACLoss (Ours) 0.932 0.934 0.958

4. Conclusions

This study presents an innovative construction of a dataset for miner detection in
underground coal mines, capturing complex environments including low-light conditions,
partial strong light interference, and occlusion. The Efficient Channel Attention (ECA)
mechanism was incorporated into YOLOv11, enhancing the model’s ability to focus on
salient features and thereby substantially improving detection accuracy under challenging
conditions. Additionally, a weighted Complete Intersection over Union (CIoU) and an
adaptive confidence loss function were introduced, which enhanced the model’s focus
on uncertain target regions, particularly in low-light and occluded environments, thereby
improving its robustness. Comprehensive experimental comparisons with multiple im-
proved algorithms and state-of-the-art detection models demonstrated that the proposed
method achieved significant improvements in both detection performance and robustness
in miner detection tasks, providing critical technical support and reference for ensuring
coal miner safety and advancing intelligent mine management. In the future, the model
will be extended to detect additional targets in underground coal mines, such as grippers,
drill chucks, safety helmets, drill rods, etc., with the goal of enabling real-time identifica-
tion of potential hazards and issuing alerts. This will significantly enhance the practical
applicability and value of the model.
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Abbreviations
The following abbreviations are used in this manuscript:

YOLO You Only Look Once
ECA Efficient Channel Attention
CA Channel Attention
GAM Global Attention Mechanism
CBAM Convolutional Block Attention Module
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D-LKA Dynamic Local Key Attention
PE-YOLO Position-Enhanced YOLO
RepViT Reparameterized Vision Transformer
CIoU Complete Intersection over Union
IoU Intersection over Union
SPPF Spatial Pyramid Pooling Fast
FPS Frames Per Second
C2PSA Cross Stage Partial with Spatial Attention
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