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Abstract: Grapheme-to-phoneme conversion (G2P) is the task of converting letters (grapheme
sequences) into their pronunciations (phoneme sequences). It plays a crucial role in natural language
processing, text-to-speech synthesis, and automatic speech recognition systems. This paper provides a
systematical overview of the G2P conversion from different perspectives. The conversion methods are
first presented in the paper; detailed discussions are conducted on methods based on deep learning
technology. For each method, the key ideas, advantages, disadvantages, and representative models
are summarized. This paper then mentioned the learning strategies and multilingual G2P conversions.
Finally, this paper summarized the commonly used monolingual and multilingual datasets, including
Mandarin, Japanese, Arabic, etc. Two tables illustrated the performance of various methods with
relative datasets. After making a general overall of G2P conversion, this paper concluded with the
current issues and the future directions of deep learning-based G2P conversion.

Keywords: grapheme-to-phoneme conversion; speech synthesis; machine learning; deep learning

1. Introduction

Natural Language Processing (NLP) is a crucial branch of artificial intelligence aimed
at enabling computers to understand, generate, and process human language. Text-to-
speech (TTS) technology is a significant application of NLP and is widely used in voice
assistants, accessibility communication, and other fields. In TTS systems, the grapheme-to-
phoneme (G2P) model converts text into phoneme sequences, directly impacting the quality
of speech synthesis and determining whether TTS systems can achieve state-of-the-art
performance levels. G2P is a language processing technology that maps graphemes (such
as letters or letter combinations) in a writing system to their corresponding phonemes, the
smallest units of speech. This technology converts letter strings like APPLE into phoneme
strings like [AEPAHL]. Formally, let ΣG be the grapheme alphabet and ΣP be the phoneme
alphabet. For a word w in a language, grapheme-to-phoneme refers to the mapping:

g(w) → p(w), (1)

where g(w) ∈ Σ∗
G and p(w) ∈ Σ∗

P are the grapheme and phoneme representations of w,
respectively.

Grapheme-to-phoneme conversion has a wide range of applications and plays a crucial
role in text-to-speech and automatic speech recognition systems. The state-of-the-art per-
formance of these systems depends heavily on the accuracy of the grapheme-to-phoneme
conversion. In text-to-speech systems, a high-quality G2P model is an essential compo-
nent that significantly impacts the system’s quality. Inaccurate grapheme-to-phoneme
conversion can lead to unnatural pronunciations and unintelligible speech. Given the
inherent complexity of languages, the G2P task presents numerous challenges. Initially, the
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many-to-one and one-to-many mapping relationships between graphemes and phonemes,
coupled with the contextual dependency of pronunciation, significantly augment the task’s
complexity. Subsequently, the pronounced disparities in spelling and pronunciation rules
across various languages and dialects, which are exacerbated by the introduction of loan-
words, further complicate the G2P conversion process. In the context of multilingual and
low-resource language conversion tasks, G2P conversion within a multilingual framework
necessitates the accommodation of the divergent spelling and phoneme systems of different
languages, while low-resource languages grapple with issues of data scarcity.

Numerous researchers have proposed many solutions for the grapheme-to-phoneme
conversion task. From a developmental perspective, grapheme-to-phoneme conversion
algorithms can be categorized into traditional rule-based and dictionary-based methods,
statistical machine learning methods, and deep learning-based conversion methods.

Very early grapheme-to-phoneme conversion systems were specifically designed for
English, utilizing language-specific characteristics or domain knowledge to formulate rules
aimed at addressing the variations within the English language. These systems required
custom-tailored rules for individual languages, and their performance was largely confined
to the language itself. Dictionary-based methods also had many limitations; even frequent
updates to the dictionary could not guarantee coverage of all words in a given language.

The combination of dictionaries and rules offered relatively better performance,
whether they primarily used a dictionary with post-processing rules or primarily used
rules for languages with regular pronunciations while only using dictionary lookups for
exceptional cases. This traditional approach could accurately convert input text into corre-
sponding phonemes. Overall, these methods achieved good recognition results in specific
corpora, but they were costly to develop and could not be easily ported to other languages.
Even in highly regular languages, there are special cases, especially for loanwords from
foreign languages, where rule-based methods could lead to incorrect conversions.

Statistical machine learning methods surpassed rule-based methods, alleviating some
of the burden of technical expertise and improving model performance, but they required
training and tuning to achieve optimal performance.

Neural network models eliminated the dependency on explicit alignment and cap-
tured finer and more effective features, and it could generalize well to predict the correct
pronunciations of unseen words, thus achieving high performance. The introduction
of attention mechanisms addressed the issue of neural networks not being able to com-
pute in parallel. Even with long data sequences, attention mechanisms could capture
focal information without losing important details, reducing model parameters, speeding
up computation, and improving model performance. Due to the similarities in vocab-
ulary, spelling, writing systems, and phoneme inventories between low-resource and
high-resource languages, multilingual MT techniques have been used to train large-scale
multilingual grapheme-to-phoneme conversion systems.

Besides discussion about the various deep-learning models, this paper also represents
four learning strategies for G2P conversion. A pre-trained model is a kind of deep learning
model that has been trained; the pre-trained model can be fine-tuned to adapt to other
specific tasks. Transfer learning is the idea of applying features learned from one problem
to a new, similar problem. Multi-task learning is a form of collaborative learning where
multiple tasks are learned in parallel, and the results influence each other. Multimodal
learning aims to integrate and process different types of data during the learning process.

Although the majority of G2P converters are monolingual, multilingual G2P conver-
sion is also a popular research direction since the grapheme-to-phoneme conversion is a
subfield of linguistics. After talking about the learning strategies, this paper discussed
recent approaches for multilingual G2P conversion.

The above Figure 1 illustrates the overall structure of this paper. This paper will
mainly discuss the various methods of G2P conversion and focus on deep learning-based
G2P; then, the learning strategies and multilingual G2P will be covered; finally, this paper
will talk about the dataset and the evaluation metrics.



Appl. Sci. 2024, 14, 11790 3 of 20

Figure 1. Overall structure of this survey.

2. Grapheme-to-Phoneme Methods

Figure 2 illustrates commonly used grapheme-to-phoneme conversion methods.
This section will list G2P methods sequentially from the traditional rule and dictionaries
to the most recent deep learning-based conversion. This paper will focus on deep-
learning methods.

Figure 2. Commonly employed grapheme-to-phoneme conversion methods.

2.1. Traditional Methods
2.1.1. Rule-Based and Dictionary-Based Methods

The simplest method for grapheme-to-phoneme conversion is dictionary lookup, but
constructing a large dictionary is both expensive and time-consuming, and there will al-
ways be words outside the vocabulary. Therefore, rule-based methods were proposed to
address the issues with dictionary lookups. Rule-based grapheme-to-phoneme conver-
sion is a traditional language processing technique that requires mapping the graphemes
(shapes and arrangements of letters) to their corresponding phonemes (the smallest units
of speech) through predefined sets of rules. This method typically relies on the in-depth un-
derstanding of language structure and pronunciation rules by linguists or domain experts.
By summarizing the spelling and pronunciation rules of a language, phonetic conversion
rules are manually formed to predict the pronunciation of words. Developing such a
grapheme-to-phoneme system requires the use of numerous grapheme-to-phoneme rules
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and expert knowledge. For certain languages (such as Chinese and Japanese) with complex
writing systems, constructing rules requires a significant amount of human effort and is
costly, and it is difficult to cover most possible scenarios. The literature [1] proposed a rule-
based G2P system, formulating a set of 329 grapheme-to-sound rules to convert English text
into the International Phonetic Alphabet (IPA). The literature [2] studied mathematical and
computational tools for reasoning about regular languages and regular relations, proposing
several rule-based methods. However, some languages (such as Chinese and Japanese)
have very complex writing systems, requiring a significant amount of human effort to
construct grapheme-to-phoneme rules, and there is no guarantee that the dictionary will
contain all words in the text.

The literature [3] used a hand-seeded algorithm to achieve optimal alignment, then
employed decision tree technology to implement a general framework for building letter-
to-sound (LTS) rules from a list of words in a language, successfully constructing LTS
models for four different languages. This method can remove regular examples from the
word list, allowing even smaller dictionaries to cover all words. The model’s performance
in handling unknown words was evaluated in detail through the conversion results of
unknown words in news texts. The model can generate reasonable pronunciations for
unseen words, with errors mainly concentrated on proper nouns, especially those from
foreign languages.

The literature [4] proposed a method to represent the complexity of languages to guide
developers in addressing the question of “how to use words to learn rules”, designing a
word selection strategy that outperforms random selection. Moreover, the introduction of
knowledge about word alignment and rule order errors can further improve this strategy.
However, this method is not suitable for languages with unclear connections between
graphemes and phonemes, as the number of grapheme-to-phoneme conversion rules in
these languages almost grows linearly with the size of the dictionary.

2.1.2. Statistical Machine Learning-Based Methods

Statistical machine learning-based methods utilize probabilistic statistics and machine
learning algorithms to build a speech model with sufficient training data and employ
decoding algorithms to label each word.

This type of task can be summarized as follows: given a sequence of letters L, find the
phoneme sequence P∗ that maximizes Pr(P|L),

P∗ = arg max
P

Pr(P | L) = arg max
P

Pr(L, P) (2)

Selecting either the conditional distribution Pr(P|L) or the joint distribution Pr(L, P)
can accomplish this task; both frameworks have seen extensive work on grapheme-to-
phoneme conversion. N-gram models have been successfully used in speech recognition
and other data sequence statistical modeling applications, offering flexibility, compactness,
and fast decoding capabilities. Joint models do not require pre-aligned data for training
and are a natural way to generate the alignment needed for conditional models. Addi-
tionally, joint models are typically symmetric, allowing them to be used directly for both
grapheme-to-phoneme and phoneme-to-grapheme conversion. In the literature [5], the
Expectation Maximization (EM) Algorithm is utilized to infer the minimal correspondence
between the graphemes and phonemes; the G2P converter is constructed by a joint N-
gram model. Experimental results also show that adding accent information and word
frequency information to the training data can improve the model’s accuracy. Formally,
within the context of a joint sequence model, consider a word w with its spelling repre-
sented as γ(w) = l1l2 . . . ln, where li denotes a letter, and its pronunciation represented
as π(w) = p1 p2 . . . pm, where pi denotes a phoneme. The joint probability P(Y(w), π(w))
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is pertinent in this scenario. The task can be articulated as identifying the most probable
transcription π∗ for the given input γ:

π∗ = arg max P(γ, π) (3)

Here, P(γ, π) signifies the joint probability of the spelling γ and the pronunciation π.
Ref. [6] combined the joint n-gram model with a decision tree model to measure the impact
of improved G2P models on LVCSR performance in challenging ASR tasks, proposing the
use of N best pronunciation variants instead of a single best pronunciation.

Ref. [7] first applied Weighted Finite State Transducers (WFST) to the G2P conversion
task, using EM for alignment. This effectively reduced storage space and accelerated
decoding speed, significantly shortening training time compared to [8] without degrading
performance. Ref. [9] introduced a new open-source WFST-driven G2P conversion toolkit
that supports a range of features, including EM-driven many-to-many alignment algorithms
and three novel decoding techniques. The training process involves first converting aligned
sequence pairs into aligned joint label pairs, (g1 : p1, g2 : p2, ..., gn : pn), training a joint
N-gram model, and then using the mitlm tool to convert the N-gram model into a WFST.
Ref. [10] improved joint sequence modeling by enhancing the alignment algorithm and
using an RNN LM alongside the standard n-gram LM for N-best rescoring.

Ref. [11] investigated two related issues in the WFST-based G2P conversion domain.
The first was the impact of the method used to convert target words into equivalent finite-
state machines on downstream decoding efficiency. The second issue was the impact of the
method used to represent the joint n-gram model within the WFST framework on system
speed and accuracy.

Ref. [12] applied Hidden Markov Models (HMMs) to G2P transformation, and [13]
modeled context at HMMs’ observations with discrete observations and discrete probabil-
ity distributions. Ref. [14] proposed a new many-to-many alignment training technique.
Bigram prediction of letter chunks automatically managed digraphs and diphones, combin-
ing HMM methods with local classification models to predict the global phoneme sequence
given a word, achieving good results.

Ref. [15] proposed two methods for integrating alignment into CRF training processes.
The first method uses a two-step approach with maximum approximation, iteratively
improving the initial alignment. The second method considers all possible alignments
given certain constraints.

Ref. [16] proposed Hidden Conditional Random Field (HCRF) models, which use
hidden variables to model the alignment of grapheme and phoneme sequences. Ref. [17]
compared three methods for defining hidden conditional random fields that can express
a wide range of mappings between grapheme and phoneme sequences. At the cost of
performance degradation, they introduced a model inspired by the phrase-based machine
translation framework, which significantly reduced computational costs by using efficient
methods to prune the search space. Ref. [18] combined the joint n-gram model with the
CRF model, enhancing the generalization capability of the model.

2.2. Methods Based on Deep Learning

With the development of artificial intelligence, more researchers are using deep learn-
ing models to tackle the G2P conversion problem. Their goal is to outperform earlier
approaches in terms of accuracy and make it simple to include in speech recognition and
end-to-end text-to-speech systems. Compared with the traditional statistical machine
learning approaches, neural network-based G2P conversion models are usually more ro-
bust with better performance. However, they have to face common problems in deep
learning such as overfitting, vanishing and exploding gradients, and high computational
resource requirements.
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2.2.1. LSTM

Long Short-Term Memory Networks (LSTM) have been successfully applied to tasks
such as speech labels for acoustic frames, handwriting recognition, and language modeling.
In acoustic frame labeling tasks, LSTM outperforms standard Recurrent Neural Networks
(RNN). The grapheme-to-phoneme conversion task, which involves transcribing sequences
from words to pronunciations, requires temporal context and is well-suited for LSTM
network structures.

Ref. [19] proposed a general end-to-end sequence learning method that utilizes Long
Short-Term Memory networks (LSTM) to map input sequences to vectors of a specific
dimension, and then uses another deep LSTM to decode the target sequence from this vector,
eliminating the need for separate alignment between grapheme and phoneme sequences.

Inspired by the model in [19], ref. [20] first applied LSTM to G2P conversion, investi-
gating grapheme-to-phoneme models based on Long Short-Term Memory networks. They
proposed three models: ULSTM, DBLSTM, and a combined model.

The ULSTM model featured 1024 memory cells in the output layer, with a softmax
activation function and cross-entropy loss function, initialized with random weights. Since
ULSTM only utilizes left/past context, the authors introduced the concept of output delay
and experimented with Zero-delay, Fixed-delay, and Full-delay scenarios. When using
fixed delay, increasing the delay size slightly improved model performance. The Full-delay
model outperformed any fixed delay model, achieving a 9.1% PER, demonstrating that
larger context information can enhance model performance.

The DBLSTM model is essentially the same as the unidirectional model but includes
a “backward” LSTM layer, allowing it to see the entire input before producing the output
phonemes. The structure is illustrated in the Figure 3. A single input layer is fully con-
nected to two parallel layers, each with 512 units; one is unidirectional, and the other is
bidirectional. The first hidden layer is fully connected to a unidirectional layer containing
128 units, which is then connected to the final output layer. The model is initialized with
random weights and trained with a learning rate of 0.01. Connectionist Temporal Clas-
sification (CTC) is used as the output layer. The CTC output layer has a softmax output
layer with 41 units, each corresponding to 40 output phoneme labels, plus an additional
blank unit, where the probability of the blank unit indicates no label observed at a given
time step.

Figure 3. DBLSTM-CTC Model.

The performance of the BLSTM architecture outperforms that of the unidirectional
LSTM and is roughly equivalent in accuracy to the joint n-gram model but with fewer
parameters and faster speed. LSTM models are built at the full sequence (word) level,
while joint n-gram models are built at the grapheme level. The authors also explored the
performance of combining LSTM-based modeling methods with joint n-gram modeling
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methods. The output of the LSTM model is represented as a Finite State Transducer (FST),
which is then intersected with the FST output from the n-gram model, selecting a single
best path in the final generated FST. This combined model achieved very good results on
the CMU dataset, with a word error rate of 21.3%, demonstrating that combining the two
modeling methods can produce a better overall model.

The end-to-end sequence learning method proposed by [19] shows excellent per-
formance. Due to the use of alignment, the method proposed by [8] achieved excellent
conversion results. Inspired by this, ref. [21] employed alignment-based models in their
research on G2P. The model structure is illustrated in Figure 4.

Figure 4. Encoder–decoder LSTM.

The LSTM network structure is straightforward and can effectively capture the intricate
relationships between letter sequences and phoneme sequences. One of its advantages
is that it does not require explicit alignment information. The LSTM is trained using
Backpropagation Through Time (BPTT), and the beam search solver selects the hypothesis
sequence with the highest posterior probability as the decoding result, generating the
phoneme sequence during the decoding phase. Although the encode-decode model does
not require alignment, using alignment information to construct the model yields better
results. The model structure is illustrated in Figure 5.

Figure 5. Alignment-based model.

The authors investigated alignment-based models, finding that unidirectional LSTM,
unable to observe the entire input sequence, has a higher Word Error Rate (WER) with
a default window size. The bidirectional LSTM (Bi-LSTM) model demonstrated strong
performance, achieving a Phoneme Error Rate (PER) of 5.45% and a Word Error Rate (WER)
of 23.55%. The model’s prediction performance improved when it could observe the entire
input sequence.

In recent G2P models, alignment issues have not received much attention. Ref. [20]
completely avoided alignment, while [21] simplified alignment to 1-to-1 or 1-to-2 cases.
This did not maximize the performance of LSTM-based G2P models. Ref. [22] proposed an
improved method for G2P models based on deep bidirectional Long Short-Term Memory
(BLSTM) RNNs, utilizing complex many-to-many G2P alignments to enhance G2P model
performance. They applied deep bidirectional LSTM with hyperparameter optimization,
investigating models with varying numbers of hidden layers, linear projection layers, input
concatenation windows, and different alignment constraints. The model was enhanced with
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grapheme-level LMs based on unidirectional LSTM, backoff models, and MAXENT models.
Further improvements were achieved by decoding BLSTM outputs using a beam search
mechanism with a phoneme-level LM. The best model, optimized with hyperparameters,
achieved a Phoneme Error Rate (PER) of 5.37% and a Word Error Rate (WER) of 23.23%.

Building on the encoder–decoder architecture developed by [21], ref. [23] used a
multi-layer bidirectional encoder with Gated Recurrent Unit (GRU) nonlinearities and a
similarly deep unidirectional GRU decoder, where each decoder layer’s initial state was
initialized to the corresponding encoder forward layer’s final hidden state. The model
was trained with teacher forcing and decoded using beam search, achieving 5.8% PER and
28.7% WER on CMUDict.

Most G2P research uses pronunciation dictionaries as input, and training models to
predict phonemes word by word, making it difficult to handle cross-word assimilation
effects. Ref. [24] constructed a G2P converter based on deep neural networks, using short
word sequences for training, which could easily handle (in a language-independent manner)
inter-word and cross-word effects in phoneme sequences. The model was validated on
three different languages (English, Russian, and Czech) and could easily be adapted with
a set of transcription rules for irregular and regular pronunciation languages, competing
with traditional dictionary and rule-based baseline methods in all tested languages. The
model structure is illustrated in Figure 6.

Figure 6. The structure of DNN-based converter for G2P.

The model architecture is illustrated in the figure below: This model uses phrases as
inputs to the network, converting all words Wi in the phrase into symbol sequences of
equal length by using padding symbols. The first layer of the model is the embedding layer,
which converts each symbol/grapheme into a vector representation; and then embed it
into a bidirectional LSTM layer to learn the phonetic relationships within words; the next
LSTM encoder layer creates word embeddings to generate fixed-length representations
for each word, with the sequence dimension changing from characters to words, and
then passes these word embeddings to the next layer—biLSTM layer or convolutional
layer; these layers learn the cross-word-boundary relationship; finally, an LSTM decoder is
utilized to decode the fixed-length intermediate representation into phonemes. The decoder
generates a posterior probability sequence pi of phonemes from word representations. The
BiLSTMDNN model consists of two neural sequences, one for the positive time direction
and the other for the negative time direction. This model has the ability to learn both past
and future states simultaneously, introducing convolutional layers between the encoder
and decoder. The model focuses on the direct neighboring context of specific words.

Many methods cannot achieve both speed and performance, ref. [20] proposed the
CTC-based model requires output length to implement a delay strategy, and the large
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model parameters limit the application scenarios. Thus, ref. [25] integrated the advantages
of expert knowledge and the CTC algorithm and proposed a fast, lightweight, and theoret-
ically parallel new model LITEG2P, which can be applied simultaneously on both cloud
and device, with accuracy comparable to models based on Transformers, but with a speed
increase of over 30 times.

2.2.2. CNN

Convolutional neural network (CNN), due to its strong ability to extract internal
representations between objects that have spatial relationships, is widely utilized in various
fields. Besides LSTM models, research made efforts to develop G2P conversion models with
CNN. Ref. [26] proposed a non-sequential greedy decoding (NSGD) model and combined
fully convolutional encoder–decoder model with NSGD, compared with the recurrent
neural networks, CNN can outperform in non-sequential tasks.

LSTM sequentially reads inputs and outputs depending on the previous input, LSTM
cannot parallelize these networks while applying CNN can reduce computational com-
plexity by using a large receiving domain. Ref. [27] first applied CNN in G2P conversion
and proposed a Seq2Seq G2P model based on BiLSTM and CNN. The CNN layer of this
method uses pixels as inputs for convolution operations, introduces residual connections
to solve the problem of gradient vanishing, increases the number of network layers, and
improves model performance.

The G2P conversion of convolutional neural networks based on residual connections
(mid part in Figure 7) has high PER (5.84%) and WER (29.74%), but the model has fewer
parameters. The encoder convolutional neural network and decoder Bi LSTM (right part
in Figure 7) model with residual connections achieved the best PER (4.81%) and WER
(25.13%), with PER better than previous solutions on both CMU and NetTalk datasets, and
WER very close to the results obtained in [28].

Figure 7. The structure of CNN and BiLSTM G2P converters.

2.2.3. Transformer

The Transformer model consists of an encoder and a decoder, both of which are
composed of multiple stacked self-attention layers and fully connected layers. The attention
mechanism is an attention mechanism that associates different positions of a single sequence
to calculate its internal representation. Add positional encoding to input and output
embeddings without using any loop layers. Location information provides the order of
input and output sequences for Transformer networks. Ref. [29] utilized the attention
mechanism in English-German translation that achieved a state-of-the-art result. The
Transformer network structure is illustrated in Figure 8.
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Ref. [30] first introduces the Transformer to G2P conversion to obtain better perfor-
mance. Ref. [31] proposed a transformer structure for grapheme-to-phoneme conversion,
which improves the performance of the model by increasing the number of encoder–
decoder layers. This work studied 3 × 3 (3-layer encoder and 3-layer decoder), 4 × 4, and
5 × 5 models based on Transformer and evaluated them. The 4 × 4 model achieved the
best performance, with a PER of 5.23% and a WER of 22.1%, which illustrates appropriately
increasing the number of encoder and decoder layers can improve model performance, but
the model will have relatively more training parameters; a large number of parameters will
increase the training time of the model and may also reduce its performance. The model
structure is illustrated in Figure 8.

Figure 8. Transformer structure.

Compared with other deep learning G2P models, the model with the best performance
in Transformer has competitiveness, small model parameters, short training time, fewer
training resources required, and higher accuracy. Ref. [32] proposed A novel Transformer
G2P model architecture (NN-KoG2P) for the Korean language, which reflects the character-
istics of Korean pronunciation and has fast inference speed. It can generate pronunciation
sequences in real-time services.

3. Strategies of G2P Conversion

Besides deep learning-based methods for achieving grapheme-to-phoneme conversion,
this paper also lists a number of strategies for deep learning-based G2P, including pre-
training, multi-task learning, multimodal learning, and transfer learning.

3.1. Pre-Traning for G2P Conversion

Pre-training is a process in which a model is initially trained on a large or general
dataset. Then, the model for a specific task can be fine-tuned by the corresponding dataset.
Ref. [33] fine-tuned a G2P conversion model from a pre-trained Text-to-Text Transfer Trans-
former (T5) model named T5G2P. This model carried out English and Czech tasks which is
able to convert an input text sentence into a phoneme sequence. The subsequent works
include [34,35] that the researchers expanded their pre-trained G2P model to multiple lan-
guages. However, most of the pretraining models rely on large-scale datasets, in G2P field,
these corpora may not apply to some languages. Inspired by the BERT language model,
ref. [36] proposed a pre-trained grapheme model named “grapheme BERT” (GBERT), which
is trained in a self-supervised manner on large word lists of specific languages. GBERT
aims to capture the contextual relationships among graphemes within words. Experimental
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results demonstrate that GBERT-based G2P models perform exceptionally well under both
medium-resource and low-resource data conditions. The model structure is illustrated in
Figure 9.

Figure 9. GBERT pre-trained G2P.

3.2. Multi-Task Learning for G2P Conversion

MTL (Multi-Task Learning) is a method of modeling human inductive transfer con-
cepts as machine learning models. It enhances the generalization capability and learning
efficiency of individual tasks by simultaneously learning multiple related tasks. By leverag-
ing the interdependencies among these tasks, MTL shares underlying features, which more
effectively utilizes data and reduces overfitting compared to single-task learning. This ap-
proach is particularly strong in areas like natural language processing, where text contains
various prompts that facilitate the completion of multiple tasks simultaneously. MTL helps
focus the model’s attention on truly important features, making it highly suitable for NLP
applications.

Ref. [37] trained a speech-language model in a multitasking training environment.
The perplexity of the joint model in all languages is lower than that of individual speech-
language models. Inspired by this work, ref. [38] studied using MTL to improve the
performance of the Seq2Seq G2P converter and trained a single Seq2Seq model on a
polyphonic dictionary dataset containing multiple languages and pinyin letters. However,
this method has not shown improved error rates in multilingual learning. Ref. [39]
presented a multi-task sequence to sequence training to enhance the English pronunciation
generation of the German G2P model. Improve English pronunciation recognition results
by generating English pronunciations and adding them to the pronunciation dictionary of
the ASR model. The improvement of the English word test set indicates that this method
has the potential to solve the challenge of English words in German ASR.

3.3. Multimodal Learning for G2P Conversion

The majority of existing G2P systems are trained separately on spelling and pro-
nunciation data, ignoring audio modalities. IPA character sequences used to represent
pronunciation do not capture all of their subtle differences. Ref. [40] raised a multimodal
model with an attention mechanism. This model can learn robust joint representations of
grapheme and speech data in multiple languages and then predict phoneme sequences
given only grapheme. Speech data are only used for training, and the model only utilizes
grapheme input during inference. The model structure is illustrated in Figure 10.
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Figure 10. Multimodal G2P.

The model is a Seq2Seq model with a single encoder and two decoders; one is the
MFCC decoder composed of an LSTM, which predicts MFCC coefficients from grapheme
(sub-task), and the other decoder task is to predict IPA character sequences (main task). This
multimodal model performs well in both accuracy and efficiency, reducing the phoneme
error rate from 8.21% to 6.39% compared with the single modal. However, this study
still relies on spelling and pronunciation pairs, which means that this method may not be
applicable to languages without spelling and pronunciation pairs.

3.4. Transfer Learning for G2P Conversion

For low-resource languages, a single language dataset cannot meet the requirements
of the Transformer model. The G2P system supports multiple languages and can be trained
on several languages datasets to improve data availability in low-resource languages [41].

Ref. [42] utilized transfer learning to construct an end-to-end multilingual grapheme-
to-phoneme model to improve the conversion performance of foreign words in different
languages. The author combines the model with corresponding input parameters, embeds
language distribution (Bidage ID) and language labels (System ID) (such as <en US>,<en
UK>,<de DE>,<fr FR>, etc.) as input embeddings, connects them with attention context
vectors, and feeds them forward to the decoder’s fully connected layer before softmax. The
language distribution vector represents the degree to which a specific word belongs to each
language, and the calculation formula is as follows:

p(id | l) =
C(w)

log |N| , ∑
l

p(id | l) = 1 (4)

where N refers to the size of the dictionary, C(w) refers to the count of occurrences of
words found in a given language dictionary. The language ID vector helps the model
distinguish words with multiple pronunciations in different languages and model their
phoneme distribution accordingly. The performance of this work shows that for low-
resource languages, the average phoneme error rate decreased by 7.2%.

Transformer-based models require a large amount of training data and are not suitable
for dialects with limited data. Ref. [43] adopts a transfer learning-based approach to cross-
learn English dialects and establishes a G2P model based on Transformer, achieving high
accuracy in dialect conversion with small available data. The model structure is illustrated
in Figure 11.
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Figure 11. Transfer learning for G2P system.

Ref. [44] combined the global character vector GCV and bidirectional recurrent neural
network BRNN to establish a high-performance multilingual G2P model, which enables the
model to process multiple languages simultaneously. And further explored multilingual
G2P and monolingual G2P in multiple languages.

These studies suggest that transfer learning is an effective approach to building power-
ful G2P models for dialects with limited data. For low-resource languages, using pre-trained
models for transfer learning can significantly improve PER and quality, while increasing dic-
tionary size can improve model performance. Using dictionaries and generated phonemes
to fine-tune the model can also improve its accuracy. The drawback is that pre-trained
models require a large amount of training data for transfer learning between different
dialects or languages.

4. Multilingual G2P Conversion

A monolingual G2P converter means that it is necessary to train a model for each
language. On the other hand, the multilingual approach proposes using a single model to
handle two or more languages.

Ref. [45] utilized the multilingual speech dictionary of Wikipedia and the rule ta-
ble of Wikipedia to establish a high-resource G2P model and proved that adding G2P
rules as training data can improve the performance of the converter. The author trained
weighted finite state transition (WFST) models on various high-resource languages and
then transferred these models to low-resource languages. The language distance metric
was used to select which high-resource models to use, and the phoneme distance metric
was used to map the phonemes of high-resource languages to the phoneme library of
low-resource languages. The G2P model for high speech resources was improved, and
229 G2P models for low-resource languages were established. To overcome the scarcity
of data in low-resource languages. Ref. [46] proposed a Seq2Seq neural network model
that uses spelling pronunciation training from hundreds of languages to train the G2P
model for multilingual conversion. The model includes a global attention architecture and
a 2-layer Bilstm-based encoder and decoder, utilizing the dataset collected from [45].

The establishment and maintenance costs of pronunciation dictionaries are high,
and free high-quality dictionaries are only suitable for a few languages, which limits the
development of G2P for some languages. Ref. [47] developed an open-source tool WikiPron,
the authors extracted pronunciation data from Wiktionary and created a pronunciation
database for 165 languages, removing stress and syllable boundary markers. They used
pronunciation strings encoded with the International Phonetic Alphabet and segmented
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them through the segments library. Ref. [48] presented a multilingual grapheme-to-
phoneme conversion quest with a dataset, evaluation metrics, and strong baselines. Nine
participating groups submitted 23 G2P systems, compared with the Seq2Seq baseline; this
reduces the word error rate by up to 18%.

Ref. [49] proposed a rule-based lightweight and accurate G2P system Epitran, which
maps orthographic data to the speech space through consistent grapheme and phoneme
mapping. It supports 61 languages and can be easily extended to new languages. Com-
pared to dictionaries, Epiran has no vocabulary limit and can recognize words outside the
dictionary used to train the model. It can generate consistent and accurate pronunciations
for all words encountered by the system. In low-resource languages, the relationship
between orthography and pronunciation may not be clear, while Epiran can provide accu-
rate G2P conversion methods for some low-resource languages. However, evaluating a
multilingual model like Epitran is difficult as each supported language must be effectively
evaluated individually.

Ref. [50] raised a multilingual G2P model based on attention mechanism Transformer
architecture, using byte-level input representation to adapt to different graphene systems.
Byte representation has a smaller vocabulary compared to traditional character repre-
sentation, reducing lexical sparsity and thus improving the accuracy of the model. In
the development of byte-level models, ref. [51] conducted further work and proposed a
NART-CRF structure for fast bilingual G2P real-time processing.

Due to the lack of multilingual pronunciation dictionaries to train multilingual models,
encoding a large number of correct labels in the model remains challenging. Ref. [52]
presented a G2P model based on BYT5. The author implemented a G2P model based on
ByT5 (a pre-trained model) to solve large-scale multilingual G2P conversion problems.
The error rate is lower than that of monolingual models. This work demonstrates that
the byte-level model BYT5 can outperform most monolingual G2P conversion models.
Ref. [53] proposed a multilingual phoneme recognizer, Allophant, which can be applied to
low-resource languages or even zero sample languages. This architecture combines speech
embedding with a multi-task speech attribute classifier, improving the ability to convert
invisible language. The above research can illustrate that for low-resource languages and
zero-shot tasks, the deep learning-based multilingual G2P conversion will have better
performance compared with the monolingual G2P converters.

5. Dataset and Evaluation Metrics
5.1. Dataset
5.1.1. Monolingual Dataset

The most widely used English G2P conversion datasets are CMUDict and NetTalk [54].
The CMUdict is an open-source pronouncing dictionary for North American English devel-
oped by Carnegie Mellon University, it contains 134,000 words and their pronunciations
that are represented in ARPAbet format. NetTalk contains a list of 20,008 English words,
with a phonetic transcription for each word, the NetTalk dataset is created for training a
proper converter task. Besides the English G2P dataset, there are also various monolingual
datasets for different languages. For example, ref. [55] created a Mandarin dataset that
consists of 99,000+ sentences for Chinese polyphone disambiguation; ref. [56] proposed a
Kurdish text corpus for the Central Kurdish (Sorani) branch; ref. [57] introduced an end-
to-end Persian G2P converter with Persian dataset; ref. [58] provided an Arabic phonetics
database that contains 46,000 files; ref. [59] described a 150,000-entry Japanese phonetic
database; ref. [60] developed a text corpus for the Malayalam language with 62,000 words.

5.1.2. Multilingual Dataset

Most multilingual G2P conversion research chooses to utilize multiple monolingual
datasets as the dataset. The lack of a multilingual dictionary is quite a barrier to multilingual
G2P conversion. There are still some multilingual datasets. Ref. [47] introduced wikiPron,
an extracted pronunciation data from Wiktionary, which contains 1.7 million pronunciations
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from 165 languages. Ref. [61] provided a series of dictionaries consisting of wordlists with
accompanying phonemic pronunciation information in the International Phonetic Alphabet
(IPA). Ref. [52] applied previous datasets and developed a G2P dataset from various sources
that covers 100 languages.

5.2. Evaluation Metrics

To evaluate the performance of a G2P converter, Phoneme Error Rate (PER) and Word
Error Rate (WER) are the two most commonly used metrics. Both of these two metrics are
used to measure the similarity between the predicted text and the reference text. WER is a
word-level indicator which can be defined as the rate of word errors in a predicted text:

WER =
Substitutions + Deletions + Insertions

Number o f Words in Re f erence
(5)

PER is a phoneme-level indicator that can be calculated as the rate of phoneme errors
in a predicted text:

PER =
Substitutions + Deletions + Insertions

Number o f Words in Re f erence
(6)

where the Substitutions, Deletions, Insertions are edit operations that change one text to
another reference text.

PER is more concerned with phoneme-level errors and is suitable for evaluating
phoneme conversion systems’ performance; WER is more concerned with word-level
errors and is suitable for evaluating speech recognition systems’ performance. In general,
lower WER and PER indicate better conversion performance. WER is generally considered
the primary metric for grapheme-to-phoneme conversion tasks because even a small
conversion error can lead to a noticeable decline in the quality of downstream speech
applications.

5.3. Comparison of Different G2P Models

Here are two tables of the performance of G2P models summarized from mentioned
research papers. Table 1 compares the results of the various current G2P conversion
algorithms on the CMUdict dataset and NetTalk Datase; all the G2p models in the table
are designed as English monolingual conversion. Table 2 illustrates the multilingual
G2P conversions on different datasets. Since there is no general multilingual grapheme-
to-phoneme database, all the datasets for the multilingual G2P models are collected or
designed by the researchers, so the performance may vary with the change of dataset.

Table 1. Comparison of G2P conversion algorithms on the CMUdict dataset and NetTalk dataset.

CMUdict Dataset NetTalk Dataset

Method PER (%) WER (%) PER (%) WER (%)

Joint sequence model [8] 5.88 24.53 8.26 33.67

Joint maximum entropy (ME) n-gram model [62] 5.9 24.7

Bi-LSTM + Alignment [21] 5.45 23.55 7.38 30.77

Uni-directional LSTM [21] 8.22 32.64

Encoder–decoder LSTM (2 layers) [21] 7.63 28.61

Many-to-many alignments with deep BLSTM
RNNs [22] 5.37 23.23

Failure transitions for joint n-gram models and
g2p conversion [11] 8.24 33.55 5.85 24.42



Appl. Sci. 2024, 14, 11790 16 of 20

Table 1. Cont.

CMUdict Dataset NetTalk Dataset

Method PER (%) WER (%) PER (%) WER (%)

Joint n-gram model [63] 7.0 28.5

End-to-end CNN (with res. connections)
(model4) [27] 5.84 29.74

Encoder CNN, decoder Bi-LSTM (model5) [27] 4.81 25.13 5.69 30.1

Encoder–decoder LSTM with attention layer
(model1) [27] 5.23 28.36

LSTM with Full-delay [20] 9.1 30.1

DBLSTM-CTC 512 Units [20] 25.8

8-gram FST [20] 26.5

DBLSTM-CTC 512 + 5-gram FST [20] 21.3

Joint multi-gram + CRF [18] 5.5 23.4

Combination of sequitur G2P and
seq2seq-attention and multitask learning [38] 5.76 24.88

Encoder–decoder with global attention [28] 5.04 21.69 7.14 29.2

Encoder–Decoder GRU [23] 5.8 28.7

Transformer 4x4 [31] 5.23 22.1 6.87 29.82

CNN with NSGD [26] 5.58 24.1 6.78 28.45

LiteG2P-medium [25] 24.3

r-G2P (adv) [64] 5.22 20.14 6.64 28.85

MTL (512 × 3, λ = 0.2) [65] 5.26 22.96

Table 2. Comparison of G2P conversion algorithms on the multilingual datasets.

Method Dataset Description PER (%) WER (%)

Ensemble model [41] 15 languages from Wikionary 14.83 3.41

Encoder decoder multilingual
model [66]

Chinese, Tibetan, English, and
Korean, totaling 9620 words. 6.02

Multitask Sequence-to-Sequence
Models [38]

German from Phonolex, English
from CMUDICT dataset 3.73 17.2

Multimodal and Multilingual
model [40]

20 languages from the CMU
Wilderness dataset 26 37.87

Multilingual neural G2P model
[50]

English, French, Spanish, Japanese,
Chinese, total 10 million pairs 4.03 16.14

LangID-All [46] Test set 507 languages, training set
311 languages 37.85 7.41

DialectalTransformerG2P [43]

Different dialects of English,
including American English,
Indian English, and British

English.

1.457
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Table 2. Cont.

Method Dataset Description PER (%) WER (%)

Unioned model [45] Wiktionary pronunciation
dictionaries for 531 languages 14.70 44.14

NART-CRF based G2P model [51] Korean and English, including
20,000 sentences for each language 0.43

ByT5-small [52] The dataset includes 99 languages,
each with over 3000 entries 8.8 25.9

T5G2P [34]

The English dataset contains
128,532 unique sentences, and the

Czech dataset contains 442,029
unique sentences.

0.535 0.175

6. Discussion

After reviewing the above grapheme-to-phoneme conversion materials, we concluded
the current barriers in the G2P research. First is the uniformity of the language; the
performance of the model can be noticeably influenced by the characteristics of the language.
For one-to-one correspondence between graphemes and phonemes, such as in Italian,
Dutch, and Hindi languages, the G2P models always perform better. On the other hand,
in languages with one-to-many and many-to-many mappings between graphemes and
phonemes, it is hard to build a G2P converter with high accuracy. Another issue is that for
some minority languages, it is quite difficult to collect enough data for training a G2P model.
We believe the zero-shot model and transfer learning can be potential solutions to these
minority languages.

Furthermore, with the development of the large language model (LLM), There are
already relevant studies in using LLM to support G2P conversion [67,68]. We believe the
retrieval ability and comprehension ability of the large language models will significantly
promote the development of G2P conversion.
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