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Abstract: In order to study vibro-acoustic characteristics between composite laminated rotationally
stiffened plate and acoustic cavities in the coupled system, first-order shear deformation theory
(FSDT) and modified Fourier series are used to construct a unified analysis model. The involved
coupled systems primarily encompass three types: the coupled system between composite laminated
rotationally stiffened plate and cylindrical-cylindrical cavities, spherical-cylindrical cavities, and
conical-cylindrical cavities. First, the first-order shear deformation theory and the modified Fourier
series are applied to construct the allowable displacement function of the composite laminated
rotationally stiffened plate and the allowable sound pressure function of the acoustic cavities. Second,
the energy functionals for the structural domain and the acoustic field domain are established,
respectively. According to the continuity condition of the particle vibration velocity at the coupling
boundary between the composite, laminated cylindrical shell and the enclosed cavity, the coupling
potential energy between the stiffened plate and two acoustic cavities is introduced to obtain the
energy functional of the coupled system. Third, the Rayleigh-Ritz method is utilized to solve the
energy functional and, when combined with artificial virtual spring technology, the suggested theory
may be used to study the vibro-acoustic characteristics of a coupled system with arbitrary elastic
boundary conditions. Finally, based on validating the fast convergence and correctness of the model,
this paper will analyze the impact of crucial parameters on vibro-acoustic characteristics. Furthermore,
by incorporating internal point forces and point-sound source stimulation, a steady-state response
analysis of the coupled system will be conducted. This research can give a theoretical foundation for
the vibration and noise reduction of a vibro-acoustic coupling system.

Keywords: vibro-acoustic characteristics; unified analysis model; composite stiffened plate-cavity
coupling system; modified Fourier series

1. Introduction

The composite laminated rotationally stiffened plate has found extensive applications
in the aerospace industry. These stiffened plates vibrate under loading, and this vibration in-
teracts with the surrounding airflow, making them a significant source of noise. In practical
engineering, creatin a coupled system between composite laminated rotationally stiffened
plates and acoustic cavities is unavoidable. The coupling potential energy between the
structural domain and the acoustic field domain makes the study of the coupled system’s
vibro-acoustic characteristics exceedingly difficult. Simultaneously, a deeper understand-
ing of the structural-acoustic coupling in such coupled systems is crucial for systematic
structural optimization and noise control. This is why it is necessary to further study
the vibro-acoustic characteristics of the coupled system between a composite laminated
rotationally stiffened plate and acoustic cavities.
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Currently, some progress has been made in the research of structural-acoustic coupled
systems between composite material structures and infinite acoustic fields. Shahraeeni
et al. [1] developed an analytical model of the coupled system between piezoelectric
laminated plate and acoustic cavities under a simply supported boundary using the classical
laminated plate theory and the eigenfunction expansion method. Huang et al. [2] proposed
a modelling methodology according to the wave superposition method. They unified the
analysis of near-field and far-field regions as a single system, providing a quantitative
analysis of how the marine acoustic environment affects the acoustic radiation field of an
elastic shell structure, using the example of an elastic spherical shell. Qu and Meng [3]
employed an improved variational principle and a multi-level partitioning method to
investigate the nonlinear vibration and acoustic radiation responses of laminated plates
with skin-core debonding under time-varying loads in an unlimited fluid. Secgin et al. [4]
proposed a statistical energy analysis method for complex structural acoustic systems,
including point, line, and area connections. This method was used for mid- to high-
frequency vibrations and acoustic analysis of box-model-basing modal impedances.

Structural-acoustic coupled systems composed of an infinite sound field cannot an-
alyze specific product objects in engineering practice. As a result, more study on the
vibro-acoustic characteristics of coupling systems with finite-sized sound fields is required.
In such studies, some researchers have started to establish theoretical models of the coupled
system between composite material structures and acoustic cavities using finite element
or energy methods. Sarigül and Karagözlü [5] investigated the modal, structural-acoustic
coupling properties of plates with different composite material parameters, studying the
impact of material properties, layer angles, and the number of layers on the vibro-acoustic
characteristics of a composite material plate-cavity coupling system and comparing them
to isotropic plate-cavity coupling system. Dozio and Alimonti [6] proposed a novel and
advanced finite element formulation for structural-acoustic problems and studied the cou-
pling problem between rectangular composite-material plates and cavities. Sharma et al. [7]
studied the vibration and sound responses of hyperbolic laminated plate structures under
harmonic point loads and established a structural response simulation model that consid-
ered different geometric shapes, such as cylinders, ellipsoids, spheres, and hyperboloids.
Balakrishnan et al. [8] numerically evaluated the vibro-acoustic performance of metal-fiber
laminated plates with the mid-plane as the center and used finite element methods to study
fluid-structure coupling problems.

With the widespread application of stiffened plates in various fields, there is an
increasing amount of research on the vibro-acoustic characteristics of the coupled system
between a composite laminated stiffened plate and acoustic cavities. Xin and Lu [9]
developed analytical models of the wave and sound propagation characteristics of two
sets of orthogonal stiffened laminated structures subjected to convective fluid pressure.
They checked the accuracy of the analytical model by comparing its predictions to previous
findings. Fu and Chen [10] established an analytical model of the sound transmission
loss of orthogonal stiffened plate structures under a diffuse sound field. They validated
the effectiveness and feasibility of the model by comparing it with experimental results.
Zhao [11] conducted a study on the sound excitation of uniformly stiffened plates using
an approximate model and compared it with the joint acceptance formula of plane wave
harmonic sound excitation.

In summary, while numerous studies have explored the vibro-acoustic characteristics
of the coupled system between a composite laminated stiffened plate and acoustic cavities,
most of these studies have focused on rectangular stiffened plates. There has been limited
research on the coupled system between a composite laminated rotationally stiffened plate
and acoustic cavities. Even in cases where rotationally stiffened plates or other complex
structures are involved [12], the analysis is often confined to finite element method (FEM)
simulations, which may not be conducive to design and practical implementation. This
article aims to utilize the modified Fourier series method and first-order shear deformation
theory to construct a unified analysis model of the vibro-acoustic characteristics of the
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coupling system between a composite laminated rotationally stiffened plate and acoustic
cavities. Firstly, displacement and sound pressure functions of the coupling system are
established by using the modified Fourier series method [13,14]. Subsequently, energy
functionals are formulated for both the structural and acoustic domains. Leveraging
the coupling characteristics between a composite laminated rotationally stiffened plate
and acoustic cavities, a coupling potential energy of the plate-cavity coupling system
is defined. This coupling potential energy is then integrated into the energy functional
of the coupled system between a composite laminated rotationally stiffened plate and
the acoustic cavities to derive the total energy functional of the coupled system. Finally,
utilizing the Rayleigh-Ritz energy technique, the extremal values of the coupled system’s
energy functional are determined to solve for the vibro-acoustic characteristics. Upon
verifying the correctness and convergence of the established coupled system, the correlative
parameterization research is carried out. It investigates the effects of crucial parameters
such as height of the cylindrical cavity, the apex angle of the spherical cavity, the rotation
angle, the cone apex angle of the conical cavity, and the boundary spring stiffness values on
the coupling system’s vibro-acoustic characteristics. Furthermore, it examines the impact
of external excitation amplitude, the impedance value, and material parameters on steady-
state response. This research offers a theoretical direction for the design, vibration control,
and noise reduction of similar engineered structures.

2. Modeling of the Unified Analysis Model of Vibro-acoustic Characteristics
2.1. Model Description

This paper establishes a unified analysis model of the vibro-acoustic characteristics
of the coupled system between a composite laminated rotationally stiffened plate and
the double-cavity structure of cylindrical-cylindrical, spherical-cylindrical, and conical-
cylindrical configurations. These systems represent several examples of the coupled system.
Because the coupling principles of different structural-acoustic systems are similar, this
chapter employs this unified analysis model to analyze the acoustic-vibration characteristics
of the coupled system.

Rotational cylinders, spheres, and conical cavities can be represented using a special
case of a double-curvature cavity unit. As shown in Figure 1, the unit’s bottom surface
(z = 0) is taken as a reference plane for establishing an orthogonal coordinate system. Here,
Rα and Rβ represent the base curvature radii along the α and β axes, while Lα and Lβ

denote the length dimensions along the α and β axes. Additionally, Lz represents the height
dimension of the cavity along the z-coordinate direction.
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Figure 1. Geometric parameters and the coordinate system of a double-curvature cavity unit cross-
section. 

Figure 1. Geometric parameters and the coordinate system of a double-curvature cavity unit
cross-section.

In order to facilitate the establishment of a unified model of rotational cavity coupling
systems, it is necessary to transform the parallelogram cross-sections in the system into
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square cross-sections. As illustrated in Figure 2, coordinate transformations are used to
transform the plane ros coordinate system into the plane ξoη coordinate system. The
expressions for the coordinate transformation equations and shape functions are given by
Equations (1) and (2). {

r
s

}
=

4

∑
i=1

Ni(ξ, η)

{
r(i)
s(i)

}
(1)

Ni(ξ, η) = (−1)i+1
(

1 − ξ(i) − ξ
)(

1 − η(i) − η
)

(2)
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(r(i), s(i)) represent the coordinates of the i-th vertex in the ros plane coordinate system,
and Ni (ξ, η) denotes the shape function of the i-th vertex on the plane. Meanwhile, (ξ(i), η(i))
signifies the coordinates of the i-th vertex in the ξoη plane coordinate system (i = 1, 2, 3, 4).

The transformation relations for the coordinates can be written in matrix form:[
∂

∂ξ
∂

∂η

]T
= J
[

∂
∂r

∂
∂s

]T
(3)

J =

[
∂r
∂ξ

∂s
∂ξ

∂r
∂η

∂s
∂η

]
(4)


∂r
∂ξ =

∂

[
4
∑

i=1
Ni(ξ,η)r(i)

]
∂ξ

∂r
∂η =

∂

[
4
∑

i=1
Ni(ξ,η)r(i)

]
∂η


∂s
∂ξ =

∂

[
4
∑

i=1
Ni(ξ,η)s(i)

]
∂ξ

∂s
∂η =

∂

[
4
∑

i=1
Ni(ξ,η)s(i)

]
∂η

(5)

The inverse form of Equation (3) can also be written as follows:

[
∂
∂r

∂
∂s

]T
= J−1

[
∂

∂ξ
∂

∂η

]T
(6)

J−1 =

[
J11 J12
J21 J22

]
=

1
|J|

[
∂s
∂η − ∂s

∂ξ

− ∂r
∂η

∂r
∂ξ

]
(7)

Table 1 provides the relevant parameters for the conversion between the 0cylinder-
cylinder cavity, spherical-cylinder cavity, and cone-cylinder cavity coupling systems: (1) the
relationship between the local coordinate system and the double-curvature coordinate
system of the cavity unit in each cavity coupling system, (2) the Lame coefficients for
rotational cavities, (3) the maximum values for each coordinate axis in the system, and
(5) the coordinate transformation parameters.
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Table 1. Related parameters of conversion between the cylinder-cylinder cavity, the spherical-cylinder
cavity, and the cone-cylinder cavity coupling systems.

System Type Parameter

cylinder-cylinder cavity coupling system

(1) α1 = s1, β1 = θ1, z1 = r1; α2 = s2, β2 = θ2, z2 = r2
(2) Hα1 = 1, Hβ1 = r1, Hz1 = 1; Hα2 = 1, Hβ2 = r2, Hz2 = 1
(3) Lα1 = L1, Lβ1 = ϑ1, Lz1 = H; Lα2 = L2, Lβ2 = ϑ2, Lz2 = H
(4) |J1| = 1, J1

11 = J1
22 =

√
2/2, J1

12 = J1
21 = 0;

|J2| = 1, J2
11 = J2

22 =
√

2/2, J2
12 = J2

21 = 0

spherical-cylinder cavity coupling system

(1) α1 = φ1, β1 = θ1, z1 = r1; α2 = s2, β2 = θ2, z2 = r2
(2) Hα1 = r1, Hβ1 = r sin φ1, Hz1 = 1; Hα2 = 1, Hβ2 = r2, Hz2 = 1
(3) Lα1 = ϕ, Lβ1 = ϑ1, Lz1 = H; Lα2 = L2, Lβ2 = ϑ2, Lz2 = H
(4) |J1| = 1, J1

11 = J1
22 =

√
2/2, J1

12 = J1
21 = 0;

|J2| = 1, J2
11 = J2

22 =
√

2/2, J2
12 = J2

21 = 0

cone-cylinder cavity coupling system

(1) α1 = η1, β1 = θ1, z1 = ξ1; α2 = s2, β2 = θ2, z2 = r2
(2) Hα1 = 1, Hβ1 = r1 = R2 + (R1 − R2) · η + H · ξ, Hz1 = 1;
Hα2 = 1, Hβ2 = r2, Hz2 = 1
(3) Lα1 = 1, Lβ1 = ϑ1, Lz1 = 1; Lα2 = L2, Lβ2 = ϑ2, Lz2 = H
(4) |J1| = L1H cos α, J1

11 = 1/H, J1
21 = tan α/H, J1

12 = 0,
J1
22 = 1/L1 · cos α; |J2| = 1, J2

11 = J2
22 =

√
2/2, J2

12 = J2
21 = 0

The model of the coupled system is shown in Figure 3, and its cross-sectional geometric
parameters and coordinate systems are as follows:
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and the acoustic cavities.

(a) The coupling system consisting of a composite laminated rotationally stiffened
plate and cylindrical-cylindrical double-cavity configuration includes two local systems of
coordination: (o-s, θ, r) and (on- zn, θn, xn). The composite laminated rotationally stiffened
plate and the two cylindrical acoustic cavities share the same inner radius and outer radius,
denoted as R1 and R2, respectively. The difference between them is given by R = R1 − R2.
The thickness of the laminated plate is hp, and the curvature radius of the laminated beams
is Rbn, with a width of bn and a thickness of hn. The thickness of the acoustic cavities
is H, and their heights are denoted as L1 and L2, respectively. The rotation angle of the
entire coupling systems is ϑ. (b) The coupling system consists of the composite laminated
rotationally stiffened plate [15] and the spherical-cylindrical double-cavity configuration
includes three local systems of coordination (o-φ1, θ1, r1), (o-s2, θ2, r2), and (on-zn, θn, xn). R1
and R2 represent the inner and outer radii of the composite laminated rotationally stiffened
plate and the two cavities, respectively. The laminated plate has a thickness of hp, and the
curvature radius of the laminate beams is Rbn with a width of bn and a thickness of hn. The
thickness of the cavities is denoted as H. The apex angle of spherical cavity 1 is ϕ = ϕ2 − ϕ1,
and L corresponds to the height of cylindrical cavity 2. (c) The coupling system between the
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composite laminated rotationally stiffened plate and the conical-cylindrical double-cavity
configuration includes two local systems of coordination (o-s, θ, r) and (on- zn, θn, xn). The
conical cavity 1 has small- and large-end radii R1 and R2, with a cone apex angle α and
a generatrix length L1. The inner and outer radii of the composite laminated rotationally
stiffened plate and the two cavities are denoted as R2 and R3, respectively. The laminated
plate has a thickness of hp, and the curvature radius of the laminated beams is Rbn, with
a width of bn and a thickness of hn. The height of the cylindrical cavity is L2, and the
overall thickness of the coupled system cavities is H. To research the displacement and
acoustic response characteristics of the coupled system, a single sound source Q and a
harmonic point force F, which can be placed at any position within the coupled system,
have been added.

According to the artificial virtual spring technology [16–18], as shown in Figure 4a, for
the edge of the laminated, rotationally stiffened plate, the general boundary conditions can
be expressed by inserting three sets of linear springs ku, kv, and kw along the u, v, and w
directions and two sets of torsional springs, Kr and Kθ . These spring groups are consistently
distributed along the boundary. ku

θ0, kv
θ0, kw

θ0, Kr
θ0, and Kθ

θ0 represent five sets of spring of
the boundary at the θ = 0◦ boundary [19]; similarly, the spring of the boundary at θ = ϑ,
r = 0, and r = Rp can be represented using this approach. For the sector-shaped composite
stiffened plate, the spring of the boundary at r = 0 has a stiffness of 0. For the ring-shaped
composite stiffened plate, the boundary springs at θ = 0◦ and θ = 360◦ have a stiffness of 0.
For the circular composite stiffened plate, the boundary springs at r = 0, θ = 0◦, and θ = 360◦

all have a stiffness value of 0. When the angle of rotation ϑ = 360◦, the composite laminated
plate (the nth laminated beam) in the composite laminated rotationally stiffened plate will
generate the coupled boundary, as shown in Figure 4 b, c. This coupling is achieved by
uniformly setting three sets of linear coupling springs kp

uc, kp
vc, and kp

wc(kbn
uc , kbn

vc , kbn
wc), and

two sets of torsional coupling springs, Kp
rc, Kp

θc, and (Kbn
xc , Kbn

θc ) on the coupled boundary.
Figure 4d represents the coupling springs uniformly set between the laminated plate and
the laminated beams in the composite laminated rotationally stiffened plate, including
three sets of linear coupling springs kcp

uc, kcp
vc , and kcp

wc and two sets of torsional coupling
springs, Kcp

xc and Kcp
yc .
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2.2. Construction of Allowable Displacement and Sound Pressure Functions

According to the FSDT and the two-dimensional modified Fourier series expression,
the allowable displacement functions [20,21] of the composite laminated rotationally stiff-
ened plate are formulated. the allowable functions of the sound pressure of two cylindrical
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cavities are established by using the three-dimensional modified Fourier series expression.
The specific expressions of the allowable displacement and sound pressure functions are as
follows [22,23]:

up(r, θ, t) = e−jωt

(
ΦM

u (r, θ) +
2
∑

Nq=1
Φ

Nq
u (r, θ)

)
Amn

vp(r, θ, t) = e−jωt

(
ΦM

v (r, θ) +
2
∑

Nq=1
Φ

Nq
v (r, θ)

)
Bmn

wp(r, θ, t) = e−jωt

(
ΦM

w (r, θ) +
2
∑

Nq=1
Φ

Nq
w (r, θ)

)
Cmn

ϕrp(r, θ, t) = e−jωt

(
ΦM

ϕr
(r, θ) +

2
∑

Nq=1
Φ

Nq
ϕr
(r, θ)

)
Dmn

ϕθp(r, θ, t) = e−jωt

(
ΦM

ϕθ
(r, θ) +

2
∑

Nq=1
Φ

Nq
ϕθ
(r, θ)

)
Emn

(8)

ubn(θn, t) = e−jωt

(
ΨΩ

un(θn) +
2
∑

Θq=1
Ψ

Θq
un (θn)

)
Al

vbn(θn, t) = e−jωt

(
ΨΩ

vn(θn) +
2
∑

Θq=1
Ψ

Θq
vn (θn)

)
Bl

wbn(θn, t) = e−jωt

(
ΨΩ

wn(θn) +
2
∑

Θq=1
Ψ

Θq
wn(θn)

)
Cl

ϕxbn(θn, t) = e−jωt

(
ΨΩ

ϕrn
(θn) +

2
∑

Θq=1
Ψ

Θq
ϕrn

(θn)

)
Dl

ϕθbn(θn, t) = e−jωt

(
ΨΩ

ϕθn
(θn) +

2
∑

Θq=1
Ψ

Θq
ϕθn

(θn)

)
El

(9)

p1(r1, θ1, s1, t) = e−jωt

(
PΩ

1 (r1, θ1, s1) +
6
∑

Θq=1
P

Θq
1 (r1, θ1, s1)

)
Amtnt lt

p2(r2, θ2, s2, t) = e−jωt

(
PΩ

2 (r2, θ2, s2) +
6
∑

Θq=1
P

Θq
2 (r2, θ2, s2)

)
Bmtnt lt

(10)

The detail expressions are given in Appendix A. The supplementary polynomial of the
displacement of the composite laminated plate [15] could be represented as ΦM and ΦNq

(Nq = 1, 2). These parameters can be expressed as:

ΦM
u = ΦM

w = ΦM
v = ΦM

ϕr
= ΦM

ϕθ
=

{
cos λα

0r cos λ
β
0 θ, · · ·, cos λα

mr cos λ
β
nθ, · · ·,

cos λα
0r cos λb

Nθ, · · ·, cos λα
Mr cos λ

β
Nθ

}

Φ
N1
u = Φ

N1
v = Φ

N1
w = Φ

N1
ϕr

= Φ
N1
ϕθ

=

{
sin(λα

−2r) cos(λβ
0 θ), · · ·, sin(λα

−2r) cos(λβ
nθ), · · ·,

sin(λα
−2r) cos(λβ

Nθ), · · ·, sin(λα
−1r) cos(λβ

Nθ)

}

Φ
N2
u = Φ

N2
v = Φ

N2
w = Φ

N2
ϕr

= Φ
N2
ϕθ

=

{
cos(λα

0r) sin(λβ
−2θ), cos(λα

0r) sin(λβ
−1θ), · · ·,

cos(λα
mr) sin(λβ

−2θ), · · ·, cos(λα
Mr) sin(λβ

−1θ)

} (11)

The displacement supplement polynomial of the nth laminated beam could be ex-
pressed as Ψn

Ω and Ψn
Θq (Θq = 1, 2). These parameters can be expressed as:

ΨΩ
un = ΨΩ

vn = ΨΩ
wn = ΨΩ

ϕxn
= ΨΩ

ϕθn
=
{

cos λαn
0 θn, · · ·, cos λαn

l θn, · · · cos λαn
L θn

}
Ψ

Θ1
un = Ψ

Θ1
vn = Ψ

Θ1
wn = Ψ

Θ1
ϕxn

= Ψ
Θ1
ϕθn

= αn
2π sin

(
πθn
2αn

)
+ αn

2π sin
(

3πθn
2αn

)
Ψ

Θ2
un = Ψ

Θ2
vn = Ψ

Θ2
wn = Ψ

Θ2
ϕxn

= Ψ
Θ2
ϕθn

= − αn
2π cos

(
πθn
2αn

)
+ αn

2π cos
(

3πθn
2αn

) (12)
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The pressure supplement polynomial of the nth cavity can be expressed as Pn
Ω and

Pn
Θq (Θq = 1, 2, . . ., 6): these parameters can be expressed as:

PΩ
n (rn, θn, sn) =

{
cos λαn

0 rn cos λ
βn
0 θn cos λzn

0 sn, · · ·, cos λαn
0 rn cos λ

βn
0 θn cos λzn

Lc
sn, · · ·,

cos λαn
0 rn cos λ

βn
Nc

θn cos λzn
Lc

sn, · · ·, cos λαn
Mc

rn cos λ
βn
Nc

θn cos λzn
Lc

sn

}

PΘ1
n (rn, θn, sn) =

{
sin λαn

−2rn cos λ
βn
0 θn cos λzn

0 sn, · · ·, sin λαn
−2rn cos λ

βn
0 θn cos λzn

Lc
sn, · · ·,

sin λαn
−2rn cos λ

βn
Nc

θn cos λzn
Lc

sn, · · ·, sin λαn
−1rn cos λ

βn
Nc

θn cos λzn
Lc

sn

}

PΘ2
n (rn, θn, sn) =

{
cos λαn

0 rn sin λ
βn
−2θn cos λzn

0 sn, · · ·, cos λαn
0 rn sin λ

βn
−2θn cos λzn

Lc
sn, · · ·,

cos λαn
0 rn sin λ

βn
−2θn cos λzn

Lc
sn, · · ·, cos λαn

Mc
rn sin λ

βn
−1θn cos λzn

Lc
sn

}

PΘ3
n (rn, θn, sn) =

{
cos λαn

0 rn cos λ
βn
0 θn sin λzn

−2sn, cos λαn
0 rn cos λ

βn
0 θn sin λzn

−1sn, · · ·,
cos λαn

0 rn cos λ
βn
Nc

θn sin λzn
−2sn, · · ·, cos λαn

Mc
rn cos λ

βn
Nc

θn sin λzn
−1sn

}

PΘ4
n (rn, θn, sn) =

{
sin λαn

−2rn sin λ
βn
−2θn cos λzn

0 sn, · · ·, sin λαn
−2rn sin λ

βn
−2θn cos λzn

Lc
sn, · · ·,

sin λαn
−2rn cos λ

βn
−1θn cos λzn

Lc
sn, · · ·, sin λαn

−1rn cos λ
βn
−1θn cos λzn

Lc
sn

}

PΘ5
n (rn, θn, sn) =

{
sin λαn

−2rn cos λ
βn
0 θn sin λzn

−2sn, sin λαn
−2rn cos λ

βn
0 θn sin λzn

−1sn, · · ·,
sin λαn

−2rn cos λ
βn
Nc

θn sin λzn
−2sn, · · ·, sin λαn

−1rn cos λ
βn
Nc

θn sin λzn
−1sn

}

PΘ6
n (rn, θn, sn) =

{
cos λαn

0 rn sin λ
βn
−2θn sin λzn

−2sn, cos λαn
0 rn sin λ

βn
−2θn cos λzn

−1sn, · · ·,
cos λαn

0 rn sin λ
βn
−1θn sin λzn

−2sn, · · ·, cos λαn
Mc

rn sin λ
βn
−1θn cos λzn

−1sn

}

(13)

where λα
m = mπ/α, λ

β
n = nπ/β, λαn

mt = mtπ/αn, λαn
l = lπ/αn, λαn

nt = ntπ/αn,
λαn

lt
= ltπ/αn (n = 1, 2).

2.3. Stress-Strain and Displacement Relations

According to the relevant knowledge of elastic mechanics, normal and shear strain at
any location on the composite, laminated plate [24] or the laminated beam can be defined
in terms of mid-surface strains and curvature changes:{

ε
p
r = ε

p0
r + zχ

p
r

ε
p
θ = ε

p0
θ + zχ

p
θ

(14)


γ

p
rθ = γ

p0
rθ + zχ

p
rθ

γ
p
rz = γ

p0
rz

γ
p
θz = γ

p0
θz εbn

θ = εbn0
θ + zχbn

θ


γbn

θx = γbn0
θx + zχbn

θx
γbn

θz = γbn0
θz

γbn
xz = γbn0

xz

(15)

The detail expressions are given in Appendix A. Hooke’s law may be used to determine
the stress-strain relationship between the laminated plate and the laminated curved beam
at the k-th layer: 

σ
p
r

σ
p
θ

τ
p
rθ

τ
p
rz

τ
p
θz


=


Qk

11 Qk
12 0 0 Qk

16
Qk

21 Qk
22 0 0 Qk

26
0 0 Qk

44 Qk
45 0

0 0 Qk
54 Qk

55 0
Qk

61 Qk
62 0 0 Qk

66





ε
p
r

ε
p
θ

γ
p
rθ

γ
p
rz

γ
p
θz


(16)


σbn

θ
τbn

θx
τbn

θz
τbn

xz

 =


Qk

22 0 0 Qk
26

0 Qk
44 Qk

45 0
0 Qk

54 Qk
55 0

Qk
62 0 0 Qk

66




εbn
θ

γbn
θx

γbn
θz

γbn
xz

 (17)
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where Qk
ij (i, j = 1, 2, . . ., 6) is the relevant stiffness coefficient, which can be obtained from

the following equation:
Qk

11 Qk
12 0 0 Qk

16
Qk

21 Qk
22 0 0 Qk

26
0 0 Qk

44 Qk
45 0

0 0 Qk
54 Qk

55 0
Qk

61 Qk
62 0 0 Qk

66

 = T


Qk

11 Qk
12 0 0 0

Qk
21 Qk

22 0 0 0
0 0 Qk

44 0 0
0 0 0 Qk

55 0
0 0 0 0 Qk

66

TT (18)

In Equation (16), T is the transformation matrix, defined as follows; the included angle
between the main direction and the r direction is called θk and is the layer angle:

T =


cos2 θk sin2 θk 0 0 −2 sin θk cos θk
sin2 θk cos2 θk 0 0 2 sin θk cos θk

0 0 cos θk sin θk 0
0 0 − sin θk cos θk 0

sin θk cos θk − sin θk cos θk 0 0 cos2 θk − sin2 θk

 (19)

in which Qk
ij represents the k layer’s material coefficient of the k layer of the laminated

plate (laminated curved beam), the value of which may be achieved using the engineering
constant of the k layer of the laminated plate (laminated curved beam):

Qk
11 = E1

1−µ12µ21
Qk

12 = µ12E2
1−µ12µ21

= Qk
21 Qk

22 = E2
1−µ12µ21

Qk
44 = G23 Qk

55 = G13 Qk
66 = G12

(20)

where E1 and E2 are Young’s modulus; G12, G13, and G23 are the shear moduli. Ac-
cording to the symmetry of the flexible matrix, the engineering constants of the orthotropic
materials satisfy the following equations. The relationship between Poisson’s ratio µ12 and
µ21 is as follows: µ12E2 = µ21E1.

Integrating the stresses on the plane yields the forces and moments experienced by
the laminated plate and the laminated curved beam. From one layer of the laminated plate
and laminated curved beam to the other layer, by integrating the thickness, we can obtain:

Np
r

Np
θ

Np
rθ

Mp
r

Mp
θ

Mp
rθ


=



A11 A12 A16 B11 B12 B16
A12 A22 A26 B12 B22 B26
A16 A26 A66 B16 B26 B66
B11 B12 B16 D11 D12 D16
B12 B22 B26 D12 D22 D26
B16 B26 B66 D16 D26 D66





ε
p0
r

ε
p0
θ

γ
p0
rθ

χ
p
r

χ
p
θ

χ
p
rθ


(21)

[
Qp

θ
Qp

r

]
= κs

[
A44 A45
A45 A55

][
γ

p0
θz

γ
p0
rz

]
(22)


Nbn

θ
Nbn

θx
Mbn

θ
Mbn

θx

 =


A22 A26 B22 B26
A26 A66 B26 B66
B22 B26 D22 D26
B26 B66 D26 D66




εbn0
θ

γbn0
θx

χbn
θ

χbn
θx

 (23)

[
Qbn

x
Qbn

θ

]
= κs

[
A44 A45
A45 A55

][
γbn0

xz
γbn0

θz

]
(24)

Aij =
NL
∑

k=1
Qk

ij(Zk+1 − Zk) Bij =
1
2

NL
∑

k=1
Qk

ij

(
Z2

k+1 − Z2
k

)
Dij =

1
3

NL
∑

k=1
Qk

ij

(
Z3

k+1 − Z3
k

) (25)
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In which Np
r , Np

θ , and Np
rθ represent the resultant force in the plane of the laminated

plate; Mp
r , Mp

θ , and Mp
rθ represent the bending and torsional moments in the plane of the

laminated plate; and Qp
θ and Qp

r are the resultant force of the horizontal shear force of the
laminated plate. Nbn

θ and Nbn
θx represent the resultant force in the plane of the laminated

curved beam, Mbn
θ and Mbn

θx represent the bending and torsional moments in the plane
of the laminated curved beam, and Qbn

x and Qbn
θ are the resultant force of the horizontal

shear force in the plane of the laminated curved beam. κs is the shear correction coefficient,
NL indicates the layer number of the laminated plate or laminated curved beam, Zk is the
thickness coordinate value of the bottom surface of the k layer, and Zk+1 is the thickness
coordinate value of the upper surface.

2.4. Energy Functional

The energy equation of the coupled system of composite laminated rotationally stiff-
ened plate and acoustic cavities can be derived, with the expression of the Lagrangian
equation of the coupled system, as follows:

LP = TP − UP − UP-coupling − USP − WP&Bn − WP&C1 − WP&C2 + WF (26)

LBn = TBn − UBn − UBn-coupling − WP&Bn (27)

LC1 = TC1 − UC1 − UC1-coupling − WP&C1 + WC1-wall + WQ1 (28)

LC2 = TC2 − UC2 -UC2-coupling − WP&C2 + WC2−wall + WQ2 (29)

where TP, TBn , TCn and, respectively, represent the entire kinetic energy of the composite,
laminated plate, the nth laminated beam, and the nth cavity. UP, UBn , and UCn represent
the entire potential energy of the laminated plate, the nth laminated beam, and the nth
cavity, respectively. UP-coupling, UBn-coupling, and UCn-coupling denote the coupling potential
energy of the laminated plate, the nth laminated beam, and the nth cavity when ϑ = 360.
USP represents the potential energy due to the boundary springs of the laminated plate.
WP&Bn is the coupling potential energy between the laminated plate and the nth laminated
beam; WP&C1 and WP&C2 represent the coupling potential energy between the laminated
plate and cavity 1 and cavity 2, respectively. WCn-wall indicates the impedance potential
energy generated by the impedance wall surface within the nth cavity. WF indicates the
work performed by the harmonic point force F on the composite laminated rotationally
stiffened plate. WQn indicates the work performed by the monopole-point sound source
within the coupling system’s nth cavity.

Several total kinetic energies within the coupled system TP, TBn , and TCn can be
written as:

TP =
1
2

∫ Rp

0

∫ ϑ

0


Ip0

(
∂up
∂t

)2
+ 2Ip1

(
∂up
∂t

)(
∂ϕrp

∂t

)
+ Ip2

(
∂ϕrp

∂t

)2
+ Ip0

(
∂vp
∂t

)2

+2Ip1

(
∂vp
∂t

)(
∂ϕθp

∂t

)
+ Ip2

(
∂ϕθp

∂t

)2
+ Ip0

(
∂wp
∂t

)2

(r + R1)drdθ (30)

Ip0 =
NL

∑
k=1

∫ Zk+1

Zk

ρk
pdz Ip1 =

NL

∑
k=1

∫ Zk+1

Zk

ρk
p · zdz Ip2 =

NL

∑
k=1

∫ Zk+1

Zk

ρk
p · z2dz (31)

TBn =
1
2

∫ ϑ

0

 Ibn0

(
∂ubn

∂t

)2
+ 2Ibn1

(
∂ubn

∂t

)(
∂ϕxbn

∂t

)
+ Ibn2

(
∂ϕxbn

∂t

)2
+ Ibn0

(
∂vbn

∂t

)2

+2Ibn1

(
∂vbn

∂t

)(
∂ϕθbn

∂t

)
+ Ibn2

(
∂ϕθbn

∂t

)2
+ Ibn0

(
∂wbn

∂t

)22

Rbndθn (32)

Ibn0 =
NL

∑
k=1

∫ Zk+1

Zk

ρk
bndzn Ibn1 =

NL

∑
k=1

∫ Zk+1

Zk

ρk
bn · zndzn Ibn2 =

NL

∑
k=1

∫ Zk+1

Zk

ρk
bn · z2

ndzn (33)
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TCn =
1

2ρCn ω2

∫ Lαn

0

∫ Lβn

0

∫ Lzn

0



([(
Jn
11
)2

+
(

Jn
21
)2
](

∂pΩ
n

Hzn ∂zn
+

6
∑

q=1

∂p
Θq
n

Hzn ∂zn

))2

+

(
Jn
11 · Jn

21
)( ∂pΩ

n
Hzn ∂zn

+
6
∑

q=1

∂p
Θq
n

Hzn ∂zn

)(
∂pΩ

n
Hαn ∂αn

+
6
∑

q=1

∂p
Θq
n

Hαn ∂αn

)
+([(

Jn
12
)2

+
(

Jn
22
)2
](

∂pΩ
n

Hαn ∂αn
+

6
∑

q=1

∂p
Θq
n

Hαn ∂αn

))2

+

(
Jn
12 · Jn

22
)( ∂pΩ

n
Hzn ∂zn

+
6
∑

q=1

∂p
Θq
n

Hzn ∂zn

)(
∂pΩ

n
Hαn ∂αn

+
6
∑

q=1

∂p
Θq
n

Hαn ∂αn

)
+[

∂pΩ
n

Hβn ∂βn
+

6
∑

q=1

∂p
Θq
n

Hβn ∂βn

]2



|Jn| · Hαn Hβn Hzn dαndβndzn (34)

Several total potential energies within the coupled system Up, UBn and UCn can be written as:

UP = Ustretch + Us-b + Ubend =
1
2

∫ Rp

0

∫ ϑ

0

{
Np

r ε
p0
r + Np

r ε
p0
r + Np

rθγ
p0
rθ + Mp

r χ
p
r +

Mp
θ χ

p
θ + Mp

rθχ
p
rθ + Qp

r γ
p0
rz + Qp

θ γ
p0
θz

}
rdrdθ (35)

UBn =
1
2

∫ ϑ

0



A22

(
∂vbn

Rbn∂θ +
wbn
Rbn

)2
+ 2A26

(
∂ubn

Rbn∂θ

)(
∂vbn

Rbn∂θ +
wbn
Rbn

)
+ A66

(
∂ubn

Rbn∂θ

)2

+κs A44(ϕxbn)
2 + 2κs A45

(
∂wbn
Rbn∂θ −

vbn
Rbn

+ ϕθbn

)
(ϕxbn)

+κs A55

(
∂wbn
Rbn∂θ −

vbn
Rbn

+ ϕθbn

)2
+ 2B22

(
∂ϕθbn
Rbn∂θ

)(
∂vbn

Rbn∂θ +
wbn
Rbn

)
+2B26

(
∂ϕxbn
Rbn∂θ

)(
∂vbn

Rbn∂θ +
wbn
Rbn

)
+ 2B26

(
∂ϕθbn
Rbn∂θ

)(
∂ubn

Rbn∂θ

)
+2B66

(
∂ϕxbn
Rbn∂θ

)(
∂ubn

Rbn∂θ

)
+ D22

(
∂ϕθbn
Rbn∂θ

)2
+ D66

(
∂ϕxbn
Rbn∂θ

)2

+2D26

(
∂ϕxbn
Rbn∂θ

)(
∂ϕθbn
Rbn∂θ

)


Rbndθn (36)

UCn =
1

2ρCn c2
n

∫ Lαn

0

∫ Lβn

0

∫ Lzn

0

{
PΩ

n (αn, βn, zn) +
6

∑
q=1

P
Θq
n (αn, βn, zn)

}2

|Jn| · Hαn Hβn Hzn dαndβndzn (37)

ρk
p represents the material density of the kth layer of the laminated plate, ρk

bn represents
the material density of the kth layer of the laminated beam, ρCn represents the density of the
acoustic medium inside cavity n, cn represents the speed at which acoustic waves propagate
within cavity n, and ω represents the circular frequency of the rotationally acoustic cavity.

When ϑ = 360◦, the potential energy of coupling within the coupled system UP-coupling,
the coupled potential energy of the nth laminated curved beam UBn-coupling, and the coupled
potential energy of the nth sound cavity UCn-coupling can be written as:

UP-coupling =
1
2

∫ Rp

0

∫ hp/2

−hp/2


kp

uc
(

up
∣∣
θ=360◦ − up

∣∣
θ=0

)2
+ kp

vc
(

vp
∣∣
θ=360◦ − vp

∣∣
θ=0

)2

+kp
wc
(

wp
∣∣
θ=360◦ − wp

∣∣
θ=0

)2
+ Kp

rc
(

ϕrp
∣∣
θ=360◦ − ϕrp

∣∣
θ=0

)2

+Kp
θc

(
ϕθp
∣∣
θ=360◦ − ϕθp

∣∣
θ=0

)2

dzdr (38)

UBn-coupling =
1
2

∫ ϑ

0

∫ hn/2

−hn/2


kbn

uc

(
ubn|θn=360◦ − ubn|θn=0

)2
+ kbn

vc

(
vbn|θn=360◦ − vbn|θn=0

)2

+kbn
wc

(
wbn|θn=360◦ − wbn|θn=0

)2
+ Kbn

xc

(
ϕxbn|θn=360◦ − ϕxbn|θn=0

)2

+Kbn
θc

(
ϕθbn|θn=360◦ − ϕθbn|θn=0

)2

dzn (39)

UCn-coupling =
∫ Lαn

0

∫ Lzn

0



(
∂PΩ

n (αn ,0,zn)
Hβn ∂βn

+
6
∑

q=1

∂P
Θq
n (αn ,0,zn)
Hβn ∂βn

)

∗


(

PΩ
n (αn, 0, zn) +

6
∑

q=1
P

Θq
n (αn, 0, zn)

)

−
(

PΩ
n
(
αn, Lβn , zn

)
+

6
∑

q=1
P

Θq
n
(
αn, Lβn , zn

))



|Jn| · Hαn Hzn dαndzn (40)
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The specific expression of the potential energy of the boundary spring USP is:

USP = Uθ
SP + Us

SP (41)

Uθ
SP =

1
2

∫ ϑ

0

∫ hp/2

−hp/2


[
ku

r0u2
p + kv

r0v2
p + kw

r0w2
p + Kr

r0ϕ2
rp + Kθ

r0ϕ2
θp

]
r=0

+
[
ku

rRp
u2

p + kv
rRp

v2
p + kw

rRp
w2

p + Kr
rRp

ϕ2
rp + Kθ

rRp
ϕ2

θp

]
r=Rp

(r + R1)dzdθ (42)

Us
SP =

1
2

∫ Rp

0

∫ hp/2

−hp/2


[
ku

θ0u2
p + kv

θ0v2
p + kw

θ0w2
p + Kr

θ0ϕ2
rp + Kθ

θ0ϕ2
θp

]
θ=0

+
[
ku

θϑu2
p + kv

θϑv2
p + kw

θϑw2
p + Kr

θϑϕ2
rp + Kθ

θϑϕ2
θp

]
θ=ϑ

dzdr (43)

The potential energy of coupling generated when the laminated plate and the nth
laminated curved beam WP&Bn are coupled can be expressed as:

WP&Bn =
1
2

∫ ϑ

0

 kcp
uc

(
up
∣∣
r=Rb

− wbn

)2
+ kcp

vc

(
vp
∣∣
r=Rb

− vbn

)2
+ kcp

wc

(
wp
∣∣
r=Rb

− ubn

)2

+Kcp
xc

(
ϕrp
∣∣
r=Rb

− ϕxbn

)2
+ Kcp

yc

(
ϕθp
∣∣
r=Rb

− ϕθbn

)2

dθ (44)

The specific expressions of WP&C1 and WP&C2 , which indicate the potential energy of
coupling between the laminated plate and cavity 1 and cavity 2, respectively, are as follows:

WP&C1 =
∫ Rp

0

∫ ϑ

0



(
ΦM +

2
∑

Nq=1
ΦNq

)(
PΩ

2 +
6
∑

Θq=1
P

Θq
2

)∣∣∣∣∣
s=hc1

AmnFmtnt lt

+

(
ΦM +

2
∑

Nq=1
ΦNq

)(
PΩ

2 +
6
∑

Θq=1
P

Θq
2

)∣∣∣∣∣
s=L1

BmnAmtnt lt

+

(
ΦM +

2
∑

Nq=1
ΦNq

)(
PΩ

2 +
6
∑

Θq=1
P

Θq
2

)∣∣∣∣∣
s=L1

CmnAmtnt lt

+
hp
2

(
ΦM +

2
∑

Nq=1
ΦNq

)(
PΩ

2 +
6
∑

Θq=1
P

Θq
2

)∣∣∣∣∣
s=L1

DmnAmtnt lt

+
hp
2

(
ΦM +

2
∑

Nq=1
ΦNq

)(
PΩ

2 +
6
∑

Θq=1
P

Θq
2

)∣∣∣∣∣
s=L1

EmnAmtnt lt



(r1 + R1)dr1dθ1 (45)

WP&C2 =
∫ Rp

0

∫ ϑ

0



(
ΦM +

2
∑

Nq=1
ΦNq

)(
PΩ

2 +
6
∑

Θq=1
P

Θq
2

)∣∣∣∣∣
s=0

AmnGmtnt lt

+

(
ΦM +

2
∑

Nq=1
ΦNq

)(
PΩ

2 +
6
∑

Θq=1
P

Θq
2

)∣∣∣∣∣
s=0

BmnBmtnt lt

+

(
ΦM +

2
∑

Nq=1
ΦNq

)(
PΩ

2 +
6
∑

Θq=1
P

Θq
2

)∣∣∣∣∣
s=0

CmnBmtnt lt

+
hp
2

(
ΦM +

2
∑

Nq=1
ΦNq

)(
PΩ

2 +
6
∑

Θq=1
P

Θq
2

)∣∣∣∣∣
s=0

DmnBmtnt lt

+
hp
2

(
ΦM +

2
∑

Nq=1
ΦNq

)(
PΩ

2 +
6
∑

Θq=1
P

Θq
2

)∣∣∣∣∣
s=0

EmnBmtnt lt



(r2 + R1)dr2dθ2 (46)

As an example, for 0 < ϑ < 2π, the dissipated energy due to the impedance wall surface
within cavity n in the coupled system can be expressed as:

WCn-wall = − 1
2jω

x

Sr

6

∑
i=1

[
PΩ

n (αn, βn, zn) +
6
∑

q=1
P

Θq
n (αn, βn, zn)

]2

Zr
dSr (47)
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WCn-wall = W1
Cn-wall + W2

Cn-wall + W3
Cn-wall + W4

Cn-wall + W5
Cn-wall + W6

Cn-wall (48)

in which j represents the imaginary unit. Sr indicates the region of the r-th surface of
uncoupled acoustic wall, where Zr is the equivalent acoustic wall impedance.

The work performed by the harmonic point force F on the laminated plate within the
composite stiffened plate is expressed as follows:

WF =
x

S

{
fuup + fvvp + fwwp + fϕr ϕrp + fϕθ

ϕθp
}

rdrdθ (49)

fi = Fδ(r − r0)δ(θ − θ0) (50)

where fi (i = uj, vj, wj, ϕr, ϕθ) are functions of the outside load distribution; the location of
the harmonic point force F is at (r0, θ0).

The work performed by the source of point sound within cavity n in the coupled
system WQn can be expressed as:

WQn =
−1
jω

∫ Lαn

0

∫ Lβn

0

∫ Lzn

0

{(
PΩ

n (αn, βn, zn) +
6

∑
q=1

P
Θq
n (αn, βn, zn)

)}
Qn

s |Jn| · Hαn Hβn Hzn dαndβndzn (51)

Qn
s =

4πA
jρCn cnk

δc(α − αe)δc(β − βe)δc(z − ze) (52)

in Equation (52), Qn
s is the point sound source’s distribution function acting within cavity

n. The amplitude of the source of the point sound is denoted as A (kg/s2); its related
location of action is (αe, βe, ze). δc represents the three-dimensional Dirac delta function.
The wavenumber of sound is represented by k, which is the ratio of circular frequency ω to
the speed of sound cn: k = ω/cn.

Once the energy equation of the coupling system has been obtained, it can be solved
using the Rayleigh-Ritz method [25,26]:

∂LP

∂Pmn
=

∂TP

∂Pmn
− ∂UP

∂Pmn
−

∂UP-coupling

∂Pmn
− ∂USP

∂Pmn
− ∂WP&Bn

∂Pmn
−

∂WP&C1

∂Pmn
−

∂WP&C2

∂Pmn
+

∂WF

∂Pmn
= 0 (53)

∂LBn

∂Ql
=

∂TBn

∂Ql
− ∂UBn

∂Ql
−

∂UBn-coupling

∂Ql
− ∂WP&Bn

∂Ql
= 0 (54)

∂LC1

∂Amtnt lt
=

∂TC1

∂Amtnt lt
−

∂UC1

∂Amtnt lt
−

∂UC1-coupling

∂Amtnt lt
−

∂WP&C1

∂Amtnt lt
+

∂WC1-wall

∂Amtnt lt
+

∂WQ1

∂Amtnt lt
= 0 (55)

∂LC2

∂Bmtnt lt
=

∂TC2

∂Bmtnt lt
−

∂UC2

∂Bmtnt lt
−

∂UC2-coupling

∂Bmtnt lt
−

∂WP&C2

∂Bmtnt lt
+

∂WC2-wall

∂Bmtnt lt
+

∂WQ2

∂Bmtnt lt
= 0 (56)

Pmn =
[
Amn Bmn Cmn Dmn Emn

]T (57)

Ql =
[
Al Bl Cl Dl El

]T (58)

where Pmn represents the two-dimensional unknown Fourier coefficient matrix of the
laminated plate, and Ql represents the one-dimensional unknown Fourier coefficient matrix
of the laminated beam.

For an acoustic cavity with an impedance wall, its characteristic values are generally
complex, forming a complex modal problem, which, in physics, represents the system
undergoing damped oscillations. In the complex characteristic values, the real part cor-
responds to the natural circular frequency of the acoustic cavity, and the imaginary part
represents modal decay. Furthermore, the imaginary part is a relatively small number.
Therefore, in this study of natural frequencies, only the structure-acoustic coupling system
under a rigid wall is considered. Equations (53)–(58) can be transformed into matrix form:

(KP − ω2MP)Pmn + CBn&PQl + CC1&P Amtnt lt − CC2&PBmtnt lt = F (59)
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(KBn − ω2MBn)Ql + CP&Bn Pmn = 0 (60)

(Kc1 − ωZc1 − ω2Mc1)Amtnt lt + ω2CP&C1Pmn = Q1 (61)

(Kc2 − ωZc2 − ω2Mc2)Bmtnt lt − ω2CP&C2Pmn = Q2 (62)

where KP, KBn and Kcn indicate the laminated plate’s stiffness matrices, the nth laminated
beam, and the nth acoustic cavity, respectively. MP, MBn , and Mcn are the laminated plate’s
mass matrices, the nth laminated beam, and the nth acoustic cavity, respectively. CBn&P
denotes the coupling matrix between the nth laminated beam and the laminated plate,
CP&Bn = CBn&P

T , while Zcn is the matrix of impedance of the nth cylindrical cavity. CCn&P
represents the acoustic-structural coupling matrix within the laminated plate and the nth
cylindrical acoustic cavity, while CP&Cn = CCn&P

T .
When Fn and Qn are set to 0, meaning that no point force or point sound source

are introduced, the system of equations for solving the natural frequencies and mode
shapes of the coupled system between the composite laminated rotationally stiffened plate
and acoustic cavities can be obtained. Eventually, the natural frequencies ω and their
corresponding modes G of the coupled system can be determined. By substituting the
source of the point sound and the harmonic point force into Equations (63)–(65), the steady-
state response of the coupling system could be acquired. The detail expressions are given
in Appendix A.

(R − ωS)G = 0 (63)

R =


KP CP&B CP&C1 −CP&C2

CB&P KB 0 0
0 0 KC1 0
0 0 0 KC2

 (64)

S =


MP 0 0 0

0 MB 0 0
CC1&P 0 MC1 0
−CC2&P 0 0 MC2

 (65)

3. Numerical Results and Discussion

Following to the developed, unified analytical model of the vibro-acoustic properties
of the coupling system between the composite laminated rotationally stiffened plate and
the acoustic cavities, numerical discussions and results analyses were conducted in this
section to further study its vibro-acoustic coupling characteristics [27]. This part primarily
validated the convergence and accuracy of the coupling system model, investigated the
factors that influence the natural frequencies of free vibration, and investigated the steady-
state response analysis of the coupling system while being affected by the source of point
sound and point force. The materials utilized for the laminated plate and laminated beams
are listed in Table 2. The acoustic cavities in the coupled system are primarily modeled
using air as the acoustic medium, with air density defined as ρair = 1.21 kg/m3. The speed
of sound in air is specified as cair = 340 m/s.

Table 2. The material parameters used in the numerical calculations in this paper.

Material ρ (kg/m3)
Material Property Parameter

E1 (Pa) E2 (Pa) G23 (Pa) G12(Pa) G13 (Pa) µ12

Graphite fiber resin 1600 1.85 × 1011 1.09 × 1010 7.3 × 109 7.3 × 109 7.3 × 109 0.28
Glass epoxy resin 1810 3.9 × 1010 8.4 × 109 4.2 × 1010 4.2 × 1010 4.2 × 1010 0.26

Q235 steel 7800 2.16 × 1011 2.16 × 1011 8.31 × 1010 8.31 × 1010 8.31 × 1010 0.3
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3.1. Verification of Convergence and Correctness

Here, we validate the convergence and accuracy of the previously established model
of the coupled system of the composite laminated rotationally stiffened plate and acoustic
cavities. The convergence of the coupled system primarily depends on the truncation
values of the composite laminated rotationally stiffened plate (Mp, Np) and the cavities
(Mc, Nc, Qc). Table 3 provides the natural frequencies of the coupling system among the
composite laminated rotationally stiffened plate and cylindrical-cylindrical cavities under
various plate and cavity truncation conditions obtained using the present method. These
results are compared with finite element simulation results [28].

Table 3. Convergence analysis of the coupling system among the composite laminated rotationally
stiffened plate and the cylindrical-cylindrical cavities.

Mc × Nc × Qc Mp × Np
Modal Order

1 2 3 4 5 6 7 8

3 × 3 × 3 10 × 10 82.33 132.23 132.24 169.89 210.59 215.29 221.15 221.27
12 × 12 81.78 132.23 132.24 169.89 210.30 215.28 221.15 221.27
14 × 14 81.32 132.23 132.29 169.86 210.01 215.28 221.14 221.27
16 × 16 80.95 132.21 132.24 169.89 209.78 215.27 221.14 221.27
18 × 18 80.64 132.18 132.23 169.89 209.54 215.27 221.14 221.27

4 × 4 × 4 10 × 10 82.33 132.24 132.25 169.89 210.59 215.28 221.17 221.27
12 × 12 81.78 132.23 132.24 169.90 210.30 215.28 221.14 221.27
14 × 14 81.32 132.22 132.24 169.89 210.01 215.28 221.17 221.27
16 × 16 80.95 132.17 132.36 169.88 209.77 215.27 221.14 221.27
18 × 18 80.64 132.29 132.33 169.88 209.54 215.27 221.24 221.27

5 × 5 × 5 10 × 10 82.33 132.24 132.26 169.89 210.59 215.28 221.15 221.27
12 × 12 81.78 132.23 132.24 169.89 210.30 215.28 221.15 221.27
14 × 14 81.32 132.22 132.24 169.89 210.01 215.28 221.14 221.27
16 × 16 80.95 132.21 132.24 169.89 209.77 215.27 221.14 221.27
18 × 18 80.64 132.15 132.23 169.88 209.54 215.27 221.14 221.27

FEM 82.33 132.24 132.26 169.89 210.59 215.28 221.15 221.27

The boundaries of the composite laminated rotationally stiffened plate are set to SSSS,
the number of stiffeners (n) is 1, and the coupling system’s geometric parameters are as
follows: R1 = 0.4 m, R2 = 1.2 m, L1 = 0.5 m, L2 = 1 m, hp = 0.02 m, ϑ = 90◦, Rb1 = 0.8 m,
b1 = 0.06 m, and h1 = 0.04 m. The material of the laminated plate is graphite epoxy resin
with a layer angle of [0◦/90◦], the material of the laminated beams is Q235 steel, and the
medium in the cavities is air.

From Table 3, it is evident that when Mc × Nc × Qc is 3 × 3 × 3 and Mp × Np is
18 × 18, the natural frequencies of various modes have essentially converged. Compared
with finite element simulation results, the maximum error in the natural frequencies of
all modes is less than 2.12%. The size and coordinate system used in the finite element
model are the same as that of the model established in this paper, the mesh size is 0.02 of
the global size, and the element shape of the sound cavity is the AC3D20:20 node-acoustic
quadric hexahedron element. The shape of the composite structural element is C3D20R,
the twenty-node hexahedron element.

The natural frequencies of the coupling system among the composite laminated
rotationally stiffened plate and the cylindrical-spherical cavities under different plate
truncation values and cavity truncation conditions obtained using the present method and
the finite element method are shown in Table 4. In this case, the boundaries of the composite
laminated rotationally stiffened plate are scheduled to SSSS, the number of stiffeners (n) is
1, and the coupling system’s geometric parameters are as follows: R1 = 0.4 m, R2 = 1.2 m,
ϕ1 = 30◦, ϕ2 = 90◦, L = 1.5 m, hp = 0.02 m, ϑ = 90◦, Rb1 = 0.8 m, b1 = 0.06 m, and h1 = 0.04 m.
The material of the laminated plate, laminated beams, layer angles, and the medium in the
cavities are the same as in Table 3.
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Table 4. Convergence analysis of the coupling system among the composite laminated rotationally
stiffened plate and the cylindrical-spherical cavities.

Mc × Nc × Qc Mp × Np
Modal Order

1 2 3 4 5 6 7 8

3 × 3 × 3 10 × 10 83.63 113.18 132.05 144.43 174.01 185.80 212.10 221.18

12 × 12 82.77 113.18 132.05 144.39 173.99 185.80 211.90 221.18

14 × 14 82.04 113.19 132.03 144.36 174.01 185.80 211.65 221.18

16 × 16 81.45 113.18 132.01 144.33 173.96 185.79 211.48 221.17

18 × 18 80.93 113.16 131.99 144.22 173.95 185.80 211.27 221.18

4 × 4 × 4 10 × 10 83.59 113.18 132.03 144.42 174.00 185.80 209.37 221.17

12 × 12 82.74 113.17 132.01 144.38 173.98 185.81 209.24 221.16

14 × 14 82.02 113.23 131.99 144.39 173.96 185.80 209.07 221.16

16 × 16 81.42 113.13 131.97 144.31 173.98 185.80 208.97 221.15

18 × 18 80.91 113.21 131.93 144.33 173.96 185.80 208.83 221.15

5 × 5 × 5 10 × 10 83.59 113.18 132.03 144.40 174.00 185.79 209.29 221.17

12 × 12 82.73 113.18 132.01 144.38 173.98 185.79 209.16 221.17

14 × 14 82.01 113.17 131.99 144.39 173.96 185.79 208.99 221.16

16 × 16 81.42 113.18 131.96 144.34 173.95 185.80 208.89 221.16

18 × 18 80.91 113.18 131.93 144.32 173.94 185.80 208.75 221.15

FEM 82.42 113.65 132.18 144.20 173.89 185.89 206.74 221.19

Similarly, from Table 4, it can be observed that the natural frequencies of various
modes have essentially converged when Mc × Nc × Qc is 4 × 4 × 4 and Mp × Np is
18 × 18. At this point, the maximum error in the natural frequencies of all modes compared
to the finite element method results is 1.83%.

Table 5 presents the natural frequencies of the coupling system among the composite
laminated rotationally stiffened plate and the cylindrical-conical cavities under different
plate truncation values and cavity truncation conditions obtained using the present method
and the finite element method. The boundaries of the composite laminated rotationally
stiffened plate are set to SSSS, the number of stiffeners (n) is 1, and the coupling system’s
geometric parameters are as follows: R1 = 0.6 m, R2 = 1.2 m, R3 = 1.8 m, α = 30◦, L = 2 m,
hp = 0.02 m, ϑ = 90◦, Rb1 = 1.5 m, b1 = 0.06 m, and h1 = 0.04 m. The material of the laminated
plate, laminated beams, layer angles, and the medium in the cavities remain the same as in
Tables 3 and 4.

It can be observed that the natural frequencies of various modes have essentially
converged when Mc × Nc × Qc is 4 × 4 × 4 and Mp × Np is 18 × 18. At this point, the
maximum error in the natural frequencies of all modes as compared to the finite element
method results is less than 3.51%. A continuous function can be expanded by Fourier series,
where the truncation value is the Fourier coefficient, which characterizes the smoothness
and convergence of the function. According to the Fourier series convergence property and
theorem, when the truncation value goes to infinity, the Fourier coefficient goes to zero.
However, in numerical calculation, the truncation value needs to be set as a finite number
of terms; in order to ensure the correctness of the calculation results, the truncation value
of the Fourier series in the displacement or sound pressure function needs to be increased
until the solution results are stable. Therefore, the numerical calculation in Tables 2–4
is carried out here with the aim of finding a more reasonable combination of truncation
values for the following examples. In order to fully satisfy the convergence and accuracy,
Mc×Nc×Qc = 4 × 4 × 4 and Mp × Np = 18 × 18 are selected as the cutoff values in the
following numerical examples.
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Table 5. Convergence analysis of the coupling system among the composite laminated rotationally
stiffened plate and the cylindrical-conical cavities.

Mc × Nc × Qc Mp × Np
Modal Order

1 2 3 4 5 6 7 8

3 × 3 × 3 10 × 10 72.86 84.98 89.62 95.60 111.71 131.07 141.42 144.26
12 × 12 72.56 85.03 89.62 95.09 111.71 130.72 141.42 144.27
14 × 14 72.53 84.98 89.66 94.58 111.70 130.35 141.42 144.26
16 × 16 72.52 84.96 89.62 94.18 111.70 130.08 141.42 144.26
18 × 18 72.51 84.98 89.65 93.78 111.70 129.79 141.42 144.29

4 × 4×4 10 × 10 72.86 84.95 89.63 95.60 111.71 131.07 141.42 144.27
12 × 12 72.56 84.98 89.62 95.09 111.70 130.72 141.42 144.27
14 × 14 72.53 85.02 89.62 94.58 111.70 130.35 141.42 144.26
16 × 16 72.52 85.01 89.62 94.18 111.70 130.08 141.42 144.26
18 × 18 72.51 84.98 89.61 93.78 111.70 129.79 141.42 144.26

5 × 5×5 10 × 10 72.85 85.02 89.62 95.60 111.71 131.07 141.40 144.27
12 × 12 72.56 84.98 89.62 95.09 111.71 130.72 141.40 144.26
14 × 14 72.53 84.95 89.62 94.58 111.70 130.35 141.40 144.26
16 × 16 72.53 84.93 89.62 94.17 111.70 130.08 141.40 144.27
18 × 18 72.52 84.98 89.62 93.78 111.70 129.79 141.40 144.26

FEM 72.48 84.04 89.46 90.60 111.49 130.89 141.63 144.27

Next, we will research the stiffness values of the springs in the coupled system, which
specifically include linear springs k(ku, kv, kw), torsional springs K(Kr, Kθ), and plate-beam
coupling springs kcp (kcp

uc, kcp
vc , kcp

wc, Kcp
xc , and Kcp

yc ). Due to the influence of acoustic cavity
coupling in the coupled system, we will not analyze the in-plate coupling springs kc (kp

uc,
kp

vc, kp
wc, Kp

rc, Kp
θc) here.

Taking the example of the coupling system among the composite, laminated, rotational
plate and the cylindrical-spherical cavities, we will analyze the impact of the boundary-
spring stiffness values. Figure 5 provides the variation curves of the first four natural
frequencies under different boundary-spring stiffness values. The material parameters and
the dimensional parameters of the coupled system are the same as those in Table 4.

As shown in Figure 5a, initially, the torsional spring stiffness value K is set to zero,
and when the linear boundary spring stiffness value k varies in the range from 10−4 to 105,
the natural frequencies of the coupled system remain at zero. At this point, the laminated
plate is considered to have free boundary conditions. As the linear spring stiffness value
increases, the natural frequencies of the coupled system also increase. When the linear
spring stiffness value k increases to 1012, the natural frequencies become relatively stable,
and the boundaries of the laminated plate in the coupling system can be considered as
simply supported.

In Figure 5b, the linear boundary spring stiffness value is kept constant at 1016. Because
the laminated plate in the coupled system is located between two cavities, the displacement
in the torsional direction is already restricted. Therefore, the natural frequencies of the
coupled system remain unchanged as the torsional spring stiffness value K increases. It
can be assumed that the natural frequencies of the laminated plate in the coupled system
remain consistent when the boundary conditions are either clamped or simply supported.
Table 6 provides the values of the boundary spring stiffness under different boundary
conditions and also lists the values of two elastic boundary condition spring stiffness values
besides the classical boundary conditions.

Similarly, we research the plate-beam coupling conditions, taking the example of
the coupling system among the composite laminated rotationally stiffened plate and the
cylindrical-cylindrical cavities. In this case, the material parameters and dimensional
parameters are the same as those in Table 3. Figure 6 provides the variation curves of
the natural frequencies under different plate-beam coupling spring stiffness values for
two boundary conditions. From Figure 6, it can be observed that, when the plate-beam
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coupling spring stiffness value kcp is less than 104, the natural frequencies remain stable
and are smaller than when the stiffness value kc is relatively large. In this range, the plate-
beam coupling springs have little effect on the natural frequencies of the coupled system.
However, when the stiffness value kcp increases to 1011, it becomes possible to achieve rigid
coupling at the boundary between the composite laminated rotationally stiffened plate and
the laminated beam in the coupled system.
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Figure 5. Variation curves of the natural frequencies of the coupled system between the composite,
laminated rotational plate and the cylindrical-spherical cavities under different boundary spring
stiffness values.

Table 6. The stiffness value of the boundary spring under different boundary conditions.

Boundary Condition
The Stiffness Value of the Boundary Spring

ku kv kw Kr Kθ

C 1016 1016 1016 1016 1016

S 1016 1016 1016 0 0
F 0 0 0 0 0
E1 108 108 108 108 108

E2 106 106 106 0 0

This study conducted experiments using a coupled system between a circular stiffened
plate and a cylindrical cavity, which is relatively straightforward to implement, to validate
the correctness of the unified analysis model of the vibro-acoustic characteristics of the
coupled system between a composite laminated rotationally stiffened plate and acoustic
cavities presented in this paper. The experimental setup included an LC02 impact hammer,
a 3A105 force sensor, a DH5857-1 charge amplifier, a 1A116E accelerometer sensor, and
a DH5922D dynamic signal testing and analysis system, as well as a C-35 Bluetooth
speaker, an MPA201 loudspeaker, a DH40200 shaker, and a YE5872A power amplifier. The
experiment was conducted in an acoustic chamber to minimize the influence of external
environmental noise on the test results. Data were collected by opening the Bluetooth
speaker to provide a point source excitation for the cylindrical-cylindrical cavity system. A
JZK-20 shaker was secured above the circular stiffened plate and connected to the YE5872A
power amplifier. The DH5922D dynamic signal testing and analysis system was also
connected to the power amplifier for control of the shaker. Data collection commenced
after setting the point force amplitude and phase within the system. The amplitude and
phase of the point force could be adjusted using the knobs on the power amplifier. After
collecting specific frequency sound pressure values under point force and ambient noise
excitations, the two sets of values were subtracted.
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Figure 6. Variation curves of the natural frequencies of the coupling system among the composite
laminated rotationally stiffened plate and the cylindrical-cylindrical cavities under different plate-
beam coupling spring stiffness values for two boundary conditions.

The coupled system between the circular stiffened plate and the cylindrical cavity
consisted of a clamped Q235 steel circular stiffened plate and an acrylic cylindrical cav-
ity. The circular plate was connected with top and bottom plates using 32 evenly spaced
Φ16 bolts to create a clamped boundary condition. The structural dimensions of the
stiffened circular plate used in the experiment are as follows: R1 = 0 m, R2 = 0.265 m,
hp = 0.005 m, Rb1 = 0.088 m, Rb2 = 0.177 m, b1 = b2 = 0.02 m, h1 = h2 = 0.01 m, and
ϑ = 360◦. The circular plate was made of either Q235 steel or carbon fiber composite mate-
rial. The material parameters of Q235 steel are: E = 216 GPa, µ = 0.3, and ρp = 7800 kg/m3.
The material parameters of the carbon fiber composite material are: E1 = E2 = 77.8 GPa,
G1 = G2 = G3 = 77.8 GPa, µ = 0.26, and ρp = 7800 kg/m3. The layer angle of the composite
material is [0◦/90◦/0◦/90◦/0◦]. The main body of the cylindrical-cylindrical cavity cou-
pling system was constructed from a 10 mm thick transparent acrylic plate and comprises a
cylindrical shell and two circular plates. The effective dimensions of the cavity coupling
system are as follows: R1 = 0 m, R2 = 0.265 m, L = 0.4 m, and ϑ = 360◦. Additionally, a
20 mm diameter hole was opened at an appropriate position on the cylindrical shell to
cross the wires of various test instruments.

Figure 7 presents the test schematic diagram of the coupled system between the
circular stiffened plate, the cylindrical cavity, and the software parameter interface. The
arrangement of the coupled system between the circular stiffened plate, the cylindrical
cavity, and the experimental instruments in the sound pressure response test is shown
in Figure 8. Figure 9 presents the sound pressure comparison between the experimental
measurements and the results obtained using the present method of the coupled system
between the circular stiffened plate and the cylindrical cavity at specific frequencies and
at different observation points. The observation points are located at (0.14 m, 0.14 m) on
the circular stiffened plate: observation point 1 is located at (−0.14 m, 0 m, 0.25 m) inside
the cylindrical cavity, and observation point 2 is located at (0 m, 0.13 m, 0.22 m) inside the
cylindrical cavity. From Figure 9, it can be observed that the maximum error among the
experimental measurements and the results calculated using the present method is within
an acceptable range of 7.49%, demonstrating the correctness of the unified analysis model
of the vibro-acoustic characteristics of the coupled system established in this study.
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Figure 9. Sound pressure comparison between the experimental measurements and the results
obtained using the present method of the coupled system between the circular stiffened plate and the
cylindrical cavity at specific frequencies and at different observation points.
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3.2. Free Vibration Analysis

This part focuses on the free vibration of the coupled system between the composite
laminated rotationally stiffened plate and the cylindrical-cylindrical, spherical-cylindrical,
and conical-cylindrical cavities, studying the impact of relevant factors affecting the coupled
system’s vibro-acoustic characteristics. Figure 10 depicts the variation curve of the coupled
system’s natural frequencies between the composite laminated rotationally stiffened plate
and the cylindrical-cylindrical cavity at different rotation angles. In this case, the number
of stiffeners in the composite laminated rotationally stiffened plate is n = 2. The geometric
parameters determined of the coupling system are: R1 = 0.9 m, R2 = 1.8 m, L1 = 1 m,
L2 = 2 m, hp = 0.03 m, Rb1 = 1.2 m, b1 = 0.08 m, h1 = 0.06 m, Rb2 = 1.5 m, b2 = 0.08 m, and
h2 = 0.06 m. The material of the laminated plate and stiffeners is glass epoxy resin, with a
layer angle of [90◦/0◦/90◦], and the medium in the cavities is air. The boundary conditions
are defined as CCCC.
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Figure 10. Variation curve of the natural frequencies of the coupling system among the composite
laminated rotationally stiffened plate and the cylindrical-cylindrical cavity at different rotation angles.

As shown in Figure 10, the natural frequencies of the coupled system decrease as
the rotation angle ϑ increases, but this trend changes when the rotation angle ϑ = 360◦

is reached. Table 7 provides the first eight natural frequencies of the coupled system at
different rotation angles. It can be observed that the natural frequencies at ϑ = 360◦ are
roughly the same as those at ϑ = 180◦. In the case of coupling between two sound walls, a
closed loop is formed, resulting in repeated modes and causing an increase in the natural
frequencies of all orders. These conditions explain the reason for the increase in natural
frequencies at ϑ = 360◦, as shown in Figure 10.

Table 7. Natural frequencies of the coupling system among the composite laminated rotationally
stiffened plate and the cylindrical-cylindrical cavities at different rotation angles.

Rotation Angle ϑ
Modal Order

1 2 3 4 5 6 7 8

45◦ 85.00 155.58 155.58 169.99 170.00 177.30 192.19 192.20
90◦ 80.60 80.62 85.00 117.13 155.58 155.58 169.99 169.99
135◦ 54.13 54.15 84.99 100.78 106.37 106.38 136.16 155.57
180◦ 40.72 40.73 80.60 80.60 84.99 94.25 117.13 118.98
225◦ 32.60 32.62 64.80 64.81 84.99 91.04 96.15 96.16
270◦ 27.21 27.22 54.16 54.16 80.60 80.61 84.98 89.24
315◦ 23.32 23.33 46.49 46.50 69.34 69.35 84.94 88.14
360◦ 40.71 40.73 40.88 40.94 46.37 79.98 80.60 80.60
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Tables 8 and 9 present the coupling system’s initial eight natural frequencies among
the composite laminated rotationally stiffened plate, the spherical-cylindrical cavities, and
the conical-cylindrical cavities for different inner-to-outer radius ratios and rotation angles.
In this example, the number of stiffeners in the composite laminated rotationally stiffened
plate is n = 2; the calculated geometric parameters are as follows:

Table 8. Natural frequencies of the coupling system among the composite laminated rotationally
stiffened plate and the spherical-cylindrical cavities at different rotation angles.

Rotation Angle ϑ
Modal Order

1 2 3 4 5 6 7 8

45◦ 85.21 120.15 155.55 167.37 169.99 177.25 192.20 197.54
90◦ 80.57 84.94 91.78 117.15 120.09 155.64 157.96 167.33
135◦ 54.51 62.77 84.67 101.03 106.46 118.36 120.05 136.82
180◦ 40.55 47.83 81.04 85.00 91.51 94.32 117.22 118.78
225◦ 33.78 36.13 64.85 74.81 85.06 91.10 96.26 106.92
270◦ 27.07 32.53 54.30 62.82 80.64 85.06 89.60 90.75
315◦ 22.97 26.34 46.46 54.80 69.30 79.89 84.99 87.91
360◦ 39.78 40.84 47.76 47.91 47.97 80.52 83.49 85.04

Table 9. Natural frequencies of the coupling system among the composite laminated rotationally
stiffened plate and conical-cylindrical cavities at different rotation angles.

Rotation Angle ϑ
Modal Order

1 2 3 4 5 6 7 8

45◦ 85.15 141.85 144.06 167.83 168.87 169.93 222.99 243.87
90◦ 72.43 85.03 89.84 111.83 142.29 143.89 167.78 169.52
135◦ 48.20 60.57 85.21 96.57 98.19 118.24 128.03 142.61
180◦ 36.48 44.39 72.36 85.39 87.11 92.59 108.35 111.85
225◦ 28.48 37.10 58.33 73.33 84.86 87.26 89.65 102.84
270◦ 24.76 28.97 48.03 61.36 72.35 85.09 88.39 90.03
315◦ 23.33 23.61 41.37 49.49 62.27 76.84 83.38 85.25
360◦ 36.37 38.22 42.77 44.80 60.53 72.71 83.96 84.22

(a) Spherical-Cylindrical: R1 = 0.9 m, R2 = 1.8 m, ϕ1 = 30◦, ϕ2 = 90◦, L = 2 m, hp = 0.03 m,
Rb1 = 1.2 m, b1 = 0.08 m, h1 = 0.06 m, Rb2 = 1.5 m, b2 = 0.08 m, and h2 = 0.06 m.

(b) Conical-Cylindrical: R1 = 0.6 m, R2 = 1.2 m, R3 = 1.8 m, α = 30◦, H = 0.6 m, L2 = 2 m,
hp = 0.03 m, Rb1 = 1.4 m, b1 = 0.08 m, h1 = 0.06 m, Rb2 = 1.6 m, b2 = 0.08 m, and h2 = 0.06 m.

The material of the laminated plate and stiffeners is glass epoxy resin, with a layer
angle of [90◦/0◦/90◦], and the medium in the cavities is air. The numerical results in
Tables 8 and 9 show that the influence of the rotation angle on the vibro-acoustic char-
acteristics is applicable to both the coupled system between the composite laminated
rotationally stiffened plate and the spherical-cylindrical and conical-cylindrical cavities,
similar to the coupling system among the composite laminated rotationally stiffened plate
and the cylindrical-cylindrical cavity.

For the coupling system between the composite laminated rotationally stiffened plate
and the cylindrical-cylindrical cavities, it is necessary to analyze the influence of the heights
L1 and L2 of cylindrical cavities 1 and 2 on the natural frequencies of the coupled system.
Figure 11 shows the trends of the first four natural frequencies of the coupled system
as L1 and L2 vary. In this example, the number of stiffeners is n = 2, and the calculated
parameters of geometry are as follows: R1 = 0.8 m, R2 = 1.7 m, ϑ = 120◦, hp = 0.02 m,
Rb1 = 1.1 m, b1 = 0.05 m, h1 = 0.05 m, Rb2 = 1.4 m, b2 = 0.05 m, and h2 = 0.05 m. The
material of the laminated plate and stiffeners is graphite epoxy resin, with a layer angle
of [90◦/0◦/90◦], and the medium in the cavities is air. The boundary conditions are set as
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CCCC. From Figure 8, it is evident that the natural frequencies of the coupled system at the
same order decrease as the heights L1 and L2 of cylindrical cavities 1 and 2 increase.
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laminated rotationally stiffened plate and the cylindrical-cylindrical cavities as the height of the
cylindrical cavities L1 and L2 vary.

The parametric study of the coupling system among the composite laminated rota-
tionally stiffened plate and the spherical-cylindrical cavity considers both the height L of
the cylindrical cavity and the top angle ϕ of the spherical cavity. Figure 12 illustrates the
trends of the first four natural frequencies of the coupled system between the composite
laminated rotationally stiffened plate and the spherical-cylindrical cavity as ϕ and L vary.
In this example, the number of stiffeners is n = 2, the calculated parameters of geometry are
as follows: R1 = 0.8 m, R2 = 1.7 m, ϑ = 120◦, ϕ2 = 90◦, hp = 0.02 m, Rb1 = 1.1 m, b1 = 0.05 m,
h1 = 0.05 m, Rb2 = 1.4 m, b2 = 0.05 m, and h2 = 0.05 m.

The material used is graphite epoxy resin with a layer angle of [90◦/0◦/90◦], and
the medium in the cavities is air. The boundary conditions are set as CCCC. As shown
in Figure 12, the natural frequencies of the coupled system in the same order decrease as
the height L of the cylindrical cavity increases. The top angle ϕ of the spherical cavity also
generally causes a decrease in the system’s natural frequencies, but the effect within the
range of 0◦ to 90◦ is relatively small.

We consider the influence of the cone top angle α of the conical cavity and the height
L2 of the cylindrical cavity on the natural frequency of the coupled system between the
composite laminated rotationally stiffened plate and the conical-cylindrical cavity, and
the parametric analysis is carried out. Figure 13 illustrates the trend surface plots of the
first four natural frequencies of the coupled system as α and L2 vary. In this example, the
number of stiffeners is n = 2, and the determined geometric parameters are as follows:
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R1 = 0.6 m, R2 = 1.3 m, R3 = 1.9 m, H = 0.4 m, ϑ = 120◦, hp = 0.02 m, Rb1 = 1.5 m, b1 = 0.05 m,
h1 = 0.05 m, Rb2 = 1.7 m, b2 = 0.05 m, and h2 = 0.05 m.
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The material used is graphite epoxy resin with a layer angle of [90◦/0◦/90◦], and the
medium in the cavities is air. The boundary conditions are set as CCCC. From Figure 13,
it can be observed that the natural frequencies of the coupled system at the same order
decrease as the height L2 of the cylindrical cavity increases, and the frequencies increase
with the increase of the cone top angle α of the conical cavity.

Compared to the rotationally acoustic cavity coupling system, the coupled system
between the composite laminated rotationally stiffened plate and the acoustic cavity is also
influenced by the essential parameters for the composite stiffened plate. Therefore, it needs
to be parametrically studied. The coupling system’s initial eight natural frequencies under
different boundaries are shown in Table 10. In this example, the geometric parameters of
the coupling system are the same as those in Tables 7–9, with a rotation angle of ϑ = 180◦.
The material used is isotropic steel.

From Table 10, it can be observed that the natural frequencies of the three coupling
systems rise as the stiffness values of the boundary springs increase, and the findings for
elastic boundary 1 (E1) and elastic boundary 2 (E2) support this conclusion.
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Figure 13. Trends of the first four natural frequencies of the coupled system between the composite
laminated rotationally stiffened plate and the conical-cylindrical cavity as height L2 of the cylindrical
cavity and the cone top angle α of the conical cavity vary.

Table 10. The natural frequencies of the coupling system between the composite laminated rotation-
ally stiffened plate and the acoustic cavity under different boundary conditions.

Boundary Condition Type
Modal Order

1 2 3 4 5 6 7 8

SFSF Cylindrical-Cylindrical 40.72 40.72 80.60 80.61 84.44 85.79 94.26 117.14
Spherical-Cylindrical 40.22 45.54 80.32 84.99 91.37 94.36 117.49 118.88
Conical-Cylindrical 36.96 41.79 72.51 85.06 89.66 92.25 108.49 112.10

FFFS Cylindrical-Cylindrical 40.63 40.67 61.31 80.56 80.60 84.99 94.25 117.14
Spherical-Cylindrical 40.46 47.00 80.59 85.02 91.73 94.41 117.23 119.00
Conical-Cylindrical 35.55 45.95 72.03 85.57 89.88 92.68 108.50 112.31

SCSF Cylindrical-Cylindrical 40.72 40.73 80.60 80.60 84.99 94.24 108.33 117.13
Spherical-Cylindrical 40.22 45.54 80.32 84.99 91.37 94.36 117.49 118.88
Conical-Cylindrical 38.03 41.31 72.61 84.63 89.80 92.30 108.39 111.61

SCSC Cylindrical-Cylindrical 40.73 40.73 80.60 80.63 85.00 94.24 117.13 118.97
Spherical-Cylindrical 40.26 46.28 80.29 84.91 91.50 94.17 117.48 118.83
Conical-Cylindrical 38.51 40.80 74.63 83.79 90.86 95.28 106.32 112.51

CCCC Cylindrical-Cylindrical 40.73 40.74 80.55 80.60 85.00 94.25 117.14 118.98
Spherical-Cylindrical 41.07 46.98 80.78 85.11 91.16 94.19 117.98 118.55
Conical-Cylindrical 38.57 45.26 67.83 80.51 87.18 92.83 108.57 112.34

E1E1E1E1 Cylindrical-Cylindrical 40.71 40.72 69.96 80.60 80.62 85.06 94.24 117.13
Spherical-Cylindrical 41.36 46.99 80.51 85.05 91.90 94.21 117.13 119.08
Conical-Cylindrical 38.96 44.47 72.59 86.07 89.47 90.95 104.14 111.78

E2E2E2E2 Cylindrical-Cylindrical 40.71 40.90 68.34 80.60 80.63 85.13 94.22 117.13
Spherical-Cylindrical 41.30 47.06 80.44 84.95 91.58 94.04 117.13 119.00
Conical-Cylindrical 37.39 44.33 72.77 85.70 87.06 92.05 108.37 111.80
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3.3. Steady-State Response Analysis

This section investigates the sound pressure response of the coupled system be-
tween the composite laminated rotationally stiffened plate and the cylindrical-cylindrical,
spherical-cylindrical, and conical-cylindrical acoustic cavities under the point source or
point force excitation. Figure 14 shows the sound pressure response curves at various
observation points for the coupling system between the composite laminated rotationally
stiffened plate and the cylindrical-cylindrical acoustic cavity under monopole point source
or point force excitation. The boundaries of the composite laminated rotationally stiffened
plate are SSSS, the number of stiffeners is n = 1, and the coupling system’s geometric
parameters are as follows: R1 = 0.4 m, R2 = 1.2 m, L1 = 0.5 m, L2 = 1 m, hp = 0.02 m, ϑ = 90◦,
Rb1 = 0.8 m, b1 = 0.06 m, and h1 = 0.04 m. The material of the laminated plate is graphite
epoxy resin, the layer angle is [0◦/90◦], the material of the laminated beam is steel, and the
medium in the acoustic cavity is air. The point source is located at (0.69 m, 0.50 m, 0.38 m)
within cylindrical cavity 1, and the point force is applied on the surface of the stiffened
plate at (0.29 m, 0.93 m). Observation point 1 is located at (1.05 m, 0.34 m, 0.30 m) within
cylindrical cavity 1, and observation point 2 is located at (0.96 m, 0.53 m, 0.55 m) within
cylindrical cavity 2. From Figure 14, it can be observed that the response curves obtained
by the present method are in good agreement with the finite element simulation results.
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Figure 14. (a) Sound pressure response of observation point 1 under the point sound source.
(b) Sound pressure response of observation point 2 under the point force. Sound pressure response
curves at various observation points for the coupled system between the composite laminated ro-
tationally stiffened plate and the cylindrical-cylindrical acoustic cavity under the monopole point
source or point force excitation.

In the coupling system among the composite laminated rotationally stiffened plate
and the cylindrical-cylindrical acoustic cavities, when the source excitation of the point
sound and observation points are not in the same cavity, the sound pressure response of
the coupled system will be influenced by the thickness (hp) of the composite stiffened plate
among the two cavities. To investigate how the thickness of the composite stiffened plate
affects the mechanism, Figure 15 provides sound pressure response curves at observation
points within the lower cylindrical acoustic cavity 2 for various thicknesses of the composite
stiffened plate when excited by the source of point sound in the upper cylindrical cavity
1. Here, hp = 0 m indicates that there is no composite stiffened plate between the two
cavities. The relevant factors of the composite laminated rotationally stiffened plate and
the cylindrical-cylindrical acoustic cavity are the same as in Figure 14. The point sound
source is located at (0.53 m, 0.51 m, 0.32 m) within cylindrical cavity 1, observation point 1
is located at (0.73 m, 0.45 m, 0.49 m) within cylindrical cavity 2, and observation point 2 is
located at (0.36 m, 0.65 m, 0.38 m) within cylindrical cavity 2.
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Figure 15. Sound pressure response curves at observation points within the lower cylindrical acoustic
cavity 2 for different thicknesses of the composite stiffened plate when excited by a point sound
source in upper cylindrical cavity 1.

From Figure 15, it can be observed that the sound pressure response curve’s amplitude
at the same observation location declines as the thickness of the composite stiffened plate
increases; there is a substantial difference in the sound pressure response with and without
the composite stiffened plate. This result indicates that the composite stiffened plate in the
coupling system has a specific influence on noise reduction, and this impact rises with the
increasing thickness of the stiffened plate.

Figure 16 provides sound pressure response curves at observation points in the cou-
pling system among the composite laminated rotationally stiffened plate and the spherical-
cylindrical cavities under the monopole point source or point force excitation. The bound-
aries of the composite laminated rotationally stiffened plate are SSSS, the number of stiff-
eners n is 1, and the coupling system’s geometric parameters are: R1 = 0.4 m, R2 = 1.2 m,
ϕ1 = 30◦, ϕ2 = 90◦, L = 1.8 m, hp = 0.02 m, ϑ = 90◦, Rb1 = 0.8 m, b1 = 0.06 m, and h1 = 0.04 m.
The material of the laminated plate is graphite epoxy resin, the layer angles are [0◦/90◦],
the material of the laminated beam is steel, and the acoustic cavity is filled with air. The
point sound source is located at (0.72 m, 0.26 m, 0.56 m) within spherical cavity 1, and the
point force is located on the surface of the stiffened plate at (0.34 m, 0.72 m). Observation
point 1 is located within the spherical cavity at (0.26 m, 0.99 m, 0.24 m), and observation
point 2 is located within the cylindrical cavity at (0.96 m, 0.53 m, 1.15 m). As shown in
Figure 16, the sound pressure response curves obtained using the present method are in
good agreement with the finite element method results.

In this section, using the example of the coupling system between the composite
laminated rotationally stiffened plate and the spherical-cylindrical cavity, we have studied
the impact of the amplitude of a point source or point force excitation on the sound pressure
response of the coupling system between the composite laminated rotationally stiffened
plate and the cavity. Figure 17 illustrates the sound pressure response curves at various
observation points of different amplitudes of the point source or the point force excitation.
In this example, the relevant parameters of the coupled system between the composite
laminated rotationally stiffened plate and spherical-cylindrical cavity are the same as in
Figure 16. The amplitudes (A) of the point source or the point force excitation are set
to 1 kg/s2, 2 kg/s2, and 3 kg/s2. The point source is located at (0.65 m, 0.32 m, 0.44 m)
within the spherical cavity, and the point force is applied on the surface of the stiffened
plate at (0.50 m, 0.50 m). Observation point 1 is within the spherical cavity at (0.45 m,
0.56 m, 0.40 m), and observation point 2 is within the cylindrical cavity at (0.75 m, 0.35 m,
0.60 m). As shown in Figure 17, variations in the amplitude of the point force or point
source excitation lead to vertical shifts in the sound pressure response amplitude, and this
effect increases with the increasing amplitude of the external point source excitation.
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Figure 16. (a) Sound pressure response of observation point 1 under the point sound source.
(b) Sound pressure response of observation point 2 under the point force. Sound pressure response
curves at observation points in the coupling system among the composite laminated rotationally
stiffened plate and the spherical-cylindrical cavities under the monopole point source or point
force excitation.

To validate whether the computed results obtained by the present method of the
coupled system between the composite laminated rotationally stiffened plate and the
conical-cylindrical cavity correspond to those obtained with the finite element method,
Figure 18 presents the sound pressure response curves at various observation points of the
single monopole point source or point force excitation. The boundaries of the composite
laminated rotationally stiffened plate are set to SSSS; the number of stiffeners n is 1. The
coupling system’s geometric parameters are: R1 = 0.6 m, R2 = 1.2 m, R3 = 1.8 m, α = 30◦,
L = 2 m, hp = 0.02 m, ϑ = 90◦, Rb1 = 1.5 m, b1 = 0.06 m, and h1 = 0.04 m. The material of the
laminated plate is graphite epoxy resin, with layer angles of [0◦/90◦], and the material of
the laminated beam is Q235 steel. The acoustic cavity is filled with air. The point source is
located at (1.13 m, 0.70 m, 0.61 m) within the conical cavity, and the point force is applied
on the surface of the stiffened plate at (0.64 m, 1.41 m). Observation point 1 is within the
conical cavity at (0.26 m, 1.53 m, 0.13 m), and observation point 2 is within the cylindrical
cavity at (1.47 m, 0.40 m, 0.95 m). As shown in Figure 18, the sound pressure response
curves obtained using the present method closely correspond to the results obtained using
the finite element method.

Figure 19 presents the sound pressure response of the coupling system among the
composite laminated rotationally stiffened plate and the conical-cylindrical cavity under
the excitation of a single monopole point source or a point force with different acoustic
wall impedance values. In this coupled system, the acoustic wall surfaces have different
impedance values; specifically, they are rigid: Z1 = ρcc0 (100 – j), and Z2 = ρcc0 (30 – j).
The boundaries, the parameters of the geometric, the materials, and the layer angles are
consistent with those in Figure 18. The point source is located in the cylindrical cavity at
(0.75 m, 0.88 m, 0.45 m), and the point force is applied on the stiffened plate surface at
(0.80 m, 1.05 m). Observation point 1 is situated in the conical cavity at (1.25 m, 0.45 m,
0.25 m), while observation point 2 is in the cylindrical cavity at (0.95 m, 0.50 m, 0.75 m).

As shown in Figure 19, changing the acoustic wall surfaces from rigid to impedance
surfaces results in a reduction in the sound pressure response amplitude, achieving a
resonance suppression effect. The influence on the sound pressure response decreases as
the impedance value increases. However, the change in the acoustic wall impedance in the
coupled system has no effect on the shape of the sound pressure response curves.
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Figure 17. (a) Sound pressure response of observation point 1 under the point sound source.
(b) Sound pressure response of observation point 2 under point sound source. (c) Sound pressure
response of observation point 1 under the point force. (d) Sound pressure response of observation
point 2 under the point force. Sound pressure response curves of the coupling system between
the composite laminated rotationally stiffened plate and the spherical-cylindrical cavity at various
observation points of different amplitudes of the point source or point force excitation.
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Figure 18. (a) Sound pressure response of observation point 1 under the point sound source.
(b) Sound pressure response of observation point 2 under the point force. Sound pressure response
curves of the coupling system between the composite laminated rotationally stiffened plate and the
conical-cylindrical cavity at various observation points of the single monopole point source or point
force excitation.



Appl. Sci. 2024, 14, 1002 30 of 35

Appl. Sci. 2024, 14, x FOR PEER REVIEW 34 of 41 
 

curves of the coupling system between the composite laminated rotationally stiffened plate and the 
conical-cylindrical cavity at various observation points of the single monopole point source or point 
force excitation. 

Figure 19 presents the sound pressure response of the coupling system among the 
composite laminated rotationally stiffened plate and the conical-cylindrical cavity under 
the excitation of a single monopole point source or a point force with different acoustic 
wall impedance values. In this coupled system, the acoustic wall surfaces have different 
impedance values; specifically, they are rigid: Z1 = ρcc0 (100 – j), and Z2 = ρcc0 (30 – j). The 
boundaries, the parameters of the geometric, the materials, and the layer angles are con-
sistent with those in Figure 18. The point source is located in the cylindrical cavity at (0.75 
m, 0.88 m, 0.45 m), and the point force is applied on the stiffened plate surface at (0.80 m, 
1.05 m). Observation point 1 is situated in the conical cavity at (1.25 m, 0.45 m, 0.25 m), 
while observation point 2 is in the cylindrical cavity at (0.95 m, 0.50 m, 0.75 m). 

As shown in Figure 19, changing the acoustic wall surfaces from rigid to impedance 
surfaces results in a reduction in the sound pressure response amplitude, achieving a res-
onance suppression effect. The influence on the sound pressure response decreases as the 
impedance value increases. However, the change in the acoustic wall impedance in the 
coupled system has no effect on the shape of the sound pressure response curves. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 19. (a) Sound pressure response of observation point 1 under the point sound source. (b) 
Sound pressure response of observation point 1 under the point sound source. (c) Sound pressure 
response of observation point 1 under the point force. (d) Sound pressure response of observation 
point 2 under the point force. Sound pressure response of the coupling system among the composite 
laminated rotationally stiffened plate and the conical-cylindrical cavity under the excitation of a 
single monopole point source or a point force with different acoustic wall impedance values. 

0 50 100 150 200
-50

0

50

100

150

So
un

d 
pr

es
su

re
 le

ve
l (

dB
 re

f=
2e

-5
Pa

)

Frequency (Hz)

 Rigid wall
 Impedance value Z1

 Impedance value Z2

0 50 100 150 200
50

100

150

200

So
un

d 
pr

es
su

re
 le

ve
l (

dB
 re

f=
2e

-5
Pa

)

Frequency (Hz)

 Rigid wall
 Impedance value Z1

 Impedance value Z2

0 50 100 150 200
-40

0

40

80

120

So
un

d 
pr

es
su

re
 le

ve
l (

dB
 re

f=
2e

-5
Pa

)

Frequency (Hz)

 Rigid wall
 Impedance value Z1

 Impedance value Z2

0 50 100 150 200
-40

0

40

80

120

So
un

d 
pr

es
su

re
 le

ve
l (

dB
 re

f=
2e

-5
Pa

)

Frequency (Hz)

 Rigid wall
 Impedance value Z1

 Impedance value Z2

Figure 19. (a) Sound pressure response of observation point 1 under the point sound source.
(b) Sound pressure response of observation point 1 under the point sound source. (c) Sound pressure
response of observation point 1 under the point force. (d) Sound pressure response of observation
point 2 under the point force. Sound pressure response of the coupling system among the composite
laminated rotationally stiffened plate and the conical-cylindrical cavity under the excitation of a
single monopole point source or a point force with different acoustic wall impedance values.

4. Conclusions

In this paper, a unified analysis model of the vibro-acoustic characteristics of the
coupled system between the composite laminated rotationally stiffened plate and cavities
is developed, encompassing three distinct system types. This model was established
using a combination of the finite element method, the modified Fourier series, and the
Rayleigh-Ritz method. First, utilizing the modified Fourier series method, we determined
the allowable functions of sound pressure and displacement associated with rotationally
cavities, laminated plates, and laminated beams. Second, we introduced the potential
energy of coupling among the plate-cavity and plate-beam interfaces, thereby formulating
the functional of the total energy of the entire coupling system. Third, to solve the energy
equation that was formulated, the Rayleigh-Ritz method was employed. After conducting
numerical analyses on various examples, a study was conducted on the vibro-acoustical
characteristics of the coupled system between composite laminated rotationally stiffened
plate and cylindrical-cylindrical, spherical-cylindrical, and conical-cylindrical cavities. The
selection of the truncation value and convergence was discussed and the correctness of
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the unified analysis model was confirmed. The effects of various parameters on natural
frequency and steady-state response were studied. The specific conclusions are as follows:

(1) When the truncation value of the allowable functions is set to MC × NC × QC =
4 × 4 × 4 and MS × NS = 18 × 18, the analytical model developed in this paper of the
coupling system between the composite laminated rotationally stiffened plate and cavities
demonstrates excellent convergence. The maximum error in natural frequencies compared
to the finite element method results in the examples of this paper is 3.51%. Additionally,
the spring stiffness values also converge when they reach 1012.

(2) In the validation of the model’s correctness through the pressure response test, the
error between the experimental results of specific frequency sound pressure values and the
results of the present method is 7.49%, confirming the correctness of the unified analysis
model established in this paper.

(3) Under free vibration conditions, the natural frequencies of the coupling system
among the composite laminated rotationally stiffened plate and cavities decrease with
increasing rotation angle, decrease with increasing height of the cylindrical cavity, decrease
with increasing height of the cylindrical cavity and the apex angle of the spherical cavity,
decrease with increasing height of the cylindrical cavity and decreasing cone-apex angle of
the conical cavity, and increase with increasing boundary spring stiffness values.

(4) In the coupled system between the composite laminated rotationally stiffened plate
and cavities, the composite laminated rotationally stiffened plate has a certain impact on
noise reduction, and this impact increases with the thickness of the stiffened plate. The
sound pressure response amplitude increases with the increase in the amplitude of point
sound sources and point force excitation. The sound pressure response amplitude decreases
with decreasing impedance values, but it does not affect the response waveform.
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Nomenclature

Rp Radius of laminated plate hp Thickness of laminated plate
Rbn Radius of the NTH laminated curved beam bn Width of the NTH laminated curved beam

hn
Thickness of the NTH laminated
curved beam ϑ Rotation angle

ku, kv, kw
Boundary linear spring stiffness value
coupled in the beam Kr, Kθ Boundary torsional spring stiffness value

kp
uc, kp

vc, kp
wc

The stiffness value of linear spring coupled
in the beam Kp

rc, Kp
θc

The stiffness value of torsional spring
coupled in the beam

kcp
uc , kcp

vc , kcp
wc

The stiffness value of the linear spring
coupled with plate and beam Kcp

xc , Kcp
yc

The stiffness value of the torsional spring
coupled with plate and beam

Up, Vp, Wp Displacement component of laminated plate Ubn, Vbn, Wbn
Displacement component of laminated
curved beam
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Qk
ij

Correlation stiffness coefficient T Transformation matrix

θk
The Angle between the principal direction
and the r direction Qk

ij Material coefficient of the k layer

E1, E2 Young’s modulus G12, G13, G23 Shear modulus
µ12, µ21 Poisson’s ratio κs Shear correction factor
NL Number of floors Zk The base thickness of the k layer
Zk+1 Upper surface thickness coordinates TP Total kinetic energy of the laminated plate

TBn

Total kinetic energy of the NTH laminated
curved beam UP Total potential energy of the laminated plate

UBn

Total potential energy of the NTH laminated
curved beam UP-coupling Coupling potential energy of laminated plate

UBn-coupling
Coupling potential energy of the NTH
laminated curved beam USP Potential energy of boundary spring

WP&Bn

Potential energy coupling between the plate
and the NTH beam WF Work done by the harmonic point force F

ρk
p Material density of the k layer of laminates ρk

bn
Material density of the k layer of laminated
curved beams

Ustretch Tensile potential energy Ubend Bending potential energy
Us-b Bending coupled potential energy fi Function of external load distribution

Pmn
Two-dimensional unknown Fourier
coefficient matrix Ql

One-dimensional unknown Fourier
coefficient matrix

KP Stiffness matrix of laminated plate KBn

Stiffness matrix of the NTH laminated
curved beam

MP Mass matrix of laminated plate MBn

Mass matrix of the NTH laminated
curved beam

CBn&P
The coupling matrix between the NTH beam
and the plate ω Natural frequency

Ω Frequency parameter Mp, Np Truncation value of the laminated plate

Mb Truncation value of laminated curved beam Rα
Mean radius of curvature in the α direction
of the middle surface

Rβ
Mean radius of curvature in the β direction
of the middle surface Lα

Medium surface α direction length
dimension

Lβ
Medium surface β direction length
dimension Lz Middle surface z direction length dimension

ζ Damping value H Thickness of cavity
ϕ Apex angle of Spherical cavity L Length of cavity
α Cone apex Angle of cone sound cavity UCn Total potential energy of cavity n

TCn Total kinetic energy of cavity n Wn
wall

The energy consumed by the cavity n
impedance wall

Wn
coupling The coupled potential energy of cavity n Wn

sound The work done by a point source in cavity n

WC1−C2

Potential energy coupling between cavities 1
and 2 ρCn The density of acoustic media in cavity n

cn
The speed at which sound waves travel in
cavity n j Pure imaginary number

Sr Area of the r-th acoustic wall Zr Impedance value of the r-th acoustic wall

Qn
s

Distribution function of point sound source
in cavity n A The amplitude of the point sound source

k The wave number of sound δc Three-dimensional Dirac function
Kn Stiffness matrix of sound cavity n Mn Mass matrix of cavity n
Cn Coupling matrix of sound cavity n Qn Sound field source vector of cavity n

Zn
Impedance matrix of the acoustic wall of
cavity n C12, C21 Coupling matrix between cavities 1 and 2

Mc, Nc, Lc The truncation value of the cavity

Appendix A

Fourier coefficients vectors, concrete expression of strain component, matrix CP&B and
MB, and CB&P and KB:
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Amn, Bmn, Cmn, Dmn, and Emn represent the unknown, two-dimensional Fourier co-
efficient vectors of the allowable displacement functions of the laminated plate. These
parameters can be expressed as:

Amn =

{
A1

0,0, · · ·, A1
0,n, · · ·, A1

m,n, · · ·, A1
M,N , A2

−2,0, · · ·, A2
−2,n, · · ·,

A2
−2,N , · · ·, A2

−1,N , A3
0,−2, A3

0,−1, · · ·, A3
m,−2, · · ·, A3

M,−1

}T

Bmn =

{
B1

0,0, · · ·, B1
0,n, · · ·, B1

m,n, · · ·, B1
M,N , B2

−2,0, · · ·, B2
−2,n, · · ·,

B2
−2,N , · · ·, B2

−1,N , B3
0,−2, B3

0,−1, · · ·, B3
m,−2, · · ·, B3

M,−1

}T

Cmn =

{
C1

0,0, · · ·, C1
0,n, · · ·, C1

m,n, · · ·, C1
M,N , C2

−2,0, · · ·, C2
−2,n, · · ·,

C2
−2,N , · · ·, C2

−1,N , C3
0,−2, C3

0,−1, · · ·, C3
m,−2, · · ·, C3

M,−1

}T

Dmn =

{
D1

0,0, · · ·, D1
0,n, · · ·, D1

m,n, · · ·, D1
M,N , D2

−2,0, · · ·, D2
−2,n, · · ·,

D2
−2,N , · · ·, D2

−1,N , D3
0,−2, D3

0,−1, · · ·, D3
m,−2, · · ·, D3

M,−1

}T

Emn =

{
E1

0,0, · · ·, E1
0,n, · · ·, E1

m,n, · · ·, E1
M,N , E2

−2,0, · · ·, E2
−2,n, · · ·,

E2
−2,N , · · ·, E2

−1,N , E3
0,−2, E3

0,−1, · · ·, E3
m,−2, · · ·, E3

M,−1

}T

(A1)

Al, Bl, Cl, Dl, and El represent the unknown, one-dimensional Fourier coefficient vec-
tors of the displacement allowance function of the laminated beam and can be expressed as:

Al = {A0, A1, · · ·, Al , · · ·, AL, a1, a2}T

Bl = {B0, B1, · · ·, Bl , · · ·, AL, b1, b2}T

Cl = {C0, C1, · · ·, Cl , · · ·, CL, c1, c2}T

Dl = {D0, D1, · · ·, Dl , · · ·, DL, d1, d2}T

El = {E0, E1, · · ·, El , · · ·, EL, e1, e2}T

(A2)

Amtnt lt and Bmtnt lt represent the unknown, three-dimensional Fourier coefficient vec-
tors of the pressure, and these parameters can be expressed as:

Amtnt lt =



A1
0,0,0, · · ·, A1

0,0,lt
, · · ·, A1

0,0,Lt
, · · ·, A1

0,Nt ,Lt
, · · ·, A1

mt ,nt ,lt
, · · ·, A1

Mt ,Nt ,Lt
,

A2
−2,0,0, · · ·, A2

−2,0,lt
, · · ·, A2

−2,0,Lt
, · · ·, A2

−2,nt ,lt
, · · ·, A2

−1,nt ,lt
, · · ·, A2

−1,Nt ,Lt
,

A3
0,−2,0, · · ·, A3

0,−2,lt
, · · ·, A3

0,−2,Lt
, · · ·, A3

mt ,−2,lt
, · · ·, A3

mt ,−1,lt
, · · ·, A3

Mt ,−1,Lt
,

A4
0,0,−2, A4

0,0,−1, · · ·, A4
0,Nt ,−2, · · ·, A4

mt ,nt ,−2, · · ·, A4
mt ,nt ,−1, · · ·, A4

Mt ,Nt ,−1,
A5
−2,−2,0, · · ·, A5

−2,−2,lt
, · · ·, A5

−2,−2,Lt
, · · ·, A5

−2,−1,lt
, · · ·, A5

−2,−1,Lt
, · · ·, A5

−1,−1,Lt
,

A6
−2,0,−2, A6

−2,0,−1, · · ·, A6
−2,nt ,−2, · · ·, A6

−2,Nt ,−2, · · ·, A6
−1,nt ,Lt

, · · ·, A6
−1,Nt ,−1,

A7
0,−2,−2, A7

0,−2,−1, · · ·, A7
mt ,−2,−2, · · ·, A7

mt ,−1,−1, · · ·, A7
Mt ,−2,−2, · · ·, A7

Mt ,−1,−1



T

Bmtnt lt =



B1
0,0,0, · · ·, B1

0,0,lt
, · · ·, B1

0,0,Lt
, · · ·, B1

0,Nt ,Lt
, · · ·, B1

mt ,nt ,lt
, · · ·, B1

Mt ,Nt ,Lt
,

B2
−2,0,0, · · ·, B2

−2,0,lt
, · · ·, B2

−2,0,Lt
, · · ·, B2

−2,nt ,lt
, · · ·, B2

−1,nt ,lt
, · · ·, B2

−1,Nt ,Lt
,

B3
0,−2,0, · · ·, B3

0,−2,lt
, · · ·, B3

0,−2,Lt
, · · ·, B3

mt ,−2,lt
, · · ·, B3

mt ,−1,lt
, · · ·, B3

Mt ,−1,Lt
,

B4
0,0,−2, B4

0,0,−1, · · ·, B4
0,Nt ,−2, · · ·, B4

mt ,nt ,−2, · · ·, B4
mt ,nt ,−1, · · ·, B4

Mt ,Nt ,−1,
B5
−2,−2,0, · · ·, B5

−2,−2,lt
, · · ·, B5

−2,−2,Lt
, · · ·, B5

−2,−1,lt
, · · ·, B5

−2,−1,Lt
, · · ·, B5

−1,−1,Lt
,

B6
−2,0,−2, B6

−2,0,−1, · · ·, B6
−2,nt ,−2, · · ·, B6

−2,Nt ,−2, · · ·, B6
−1,nt ,Lt

, · · ·, B6
−1,Nt ,−1,

B7
0,−2,−2, B7

0,−2,−1, · · ·, B7
mt ,−2,−2, · · ·, B7

mt ,−1,−1, · · ·, B7
Mt ,−2,−2, · · ·, B7

Mt ,−1,−1



T (A3)

ε
p0
r , ε

p0
θ , γ

p0
rθ , γ

p0
rz , and γ

p0
θz represent the strain components on the mid-surface of the

laminated plate, while χ
p
r , χ

p
θ , and χ

p
rθ represent the curvature change component of the

surface of the laminated plate; εbn0
θ , γbn0

θx , γbn0
θz , and γbn0

xz represent the strain component
on the surface of the nth laminated curved beam. χbn

θ and χbn
θx represent the component of
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curvature change in the surface of the laminated curved beam. The specific expressions are
as follows:

ε
p0
r =

∂up
∂r ε

p0
θ =

∂vp
r∂θ +

up
r

γ
p0
rθ =

∂vp
∂r +

∂up
r∂θ − vp

r γ
p0
rz =

∂wp
∂r + ϕrp γ

p0
θz = ϕθp

χ
p
r =

∂ϕrp
∂r χ

p
r =

∂ϕrp
∂r χ

p
rθ =

∂ϕθp
∂r +

∂ϕrp
r∂θ − ϕθp

r

(A4)

εbn0
θ = ∂vbn

Rn∂θn
+ wbn

Rn

γbn0
θx = ∂ubn

Rn∂θn
γ

p0
θz = ∂wbn

Rn∂θn
− vbn

Rn
+ ϕθbn γbn0

xz = ϕxbn

χbn
θ = ∂ϕθbn

Rn∂θn
χbn

θx = ∂ϕxbn
Rn∂θn

(A5)

CP&B =
(
CP&B1 CP&B2 CP&B3 · · · CP&Bn · · · CP&BN−1 CP&BN

)
(A6)

MB =



MB1 0 · · · · · · · · · · · · · · · · · ·
0 MB2 0 · · · · · · · · · · · · · · ·
· · · 0 · · · 0 · · · · · · · · · · · ·
· · · · · · 0 · · · 0 · · · · · · · · ·
· · · · · · · · · 0 MBn 0 · · · · · ·
· · · · · · · · · · · · 0 · · · 0 0
· · · · · · · · · · · · · · · 0 MBN−1 0
· · · · · · · · · · · · · · · 0 0 MBN


(A7)

CB&P =



CB1&P
CB2&P
CB3&P
· · ·

CBn&P
· · ·

CBN−1&P
CBN&P


(A8)

KB =



KB1 0 0 0 0 0 0 0
0 KB2 0 · · · · · · · · · · · · · · ·
0 0 KB3 0 · · · · · · · · · · · ·
0 · · · 0 · · · 0 · · · · · · · · ·
0 · · · · · · 0 KBn 0 · · · · · ·
0 · · · · · · · · · 0 · · · 0 0
0 · · · · · · · · · · · · 0 KBN−1 0
0 · · · · · · · · · · · · 0 0 KBN


(A9)
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