
Citation: Li, J.; Xu, X.; Jiang, Z.; Jiang,

B. Adaptive Kalman Filter for

Real-Time Visual Object Tracking

Based on Autocovariance Least

Square Estimation. Appl. Sci. 2024, 14,

1045. https://doi.org/10.3390/

app14031045

Academic Editor: Eui-Nam Huh

Received: 30 November 2023

Revised: 16 January 2024

Accepted: 24 January 2024

Published: 25 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Adaptive Kalman Filter for Real-Time Visual Object Tracking
Based on Autocovariance Least Square Estimation
Jiahong Li 1,2 , Xinkai Xu 1,2 , Zhuoying Jiang 2 and Beiyan Jiang 1,2,3,*

1 Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing 100101, China;
jqrjiahong@buu.edu.cn (J.L.); ldtxinkai@buu.edu.cn (X.X.)

2 College of Robotics, Beijing Union University, Beijing 100027, China; jiangzhuoying043@hotmail.com
3 State Key Lab of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University,

Beijing 100084, China
* Correspondence: jqrbeiyan@buu.edu.cn

Abstract: Real-time visual object tracking (VOT) may suffer from performance degradation and
even divergence owing to inaccurate noise statistics typically engendered by non-stationary video
sequences or alterations in the tracked object. This paper presents a novel adaptive Kalman filter (AKF)
algorithm, termed AKF-ALS, based on the autocovariance least square estimation (ALS) methodology
to improve the accuracy and robustness of VOT. The AKF-ALS algorithm involves object detection
via an adaptive thresholding-based background subtraction technique and object tracking through
real-time state estimation via the Kalman filter (KF) and noise covariance estimation using the ALS
method. The proposed algorithm offers a robust and efficient solution to adapting the system model
mismatches or invalid offline calibration, significantly improving the state estimation accuracy in
VOT. The computation complexity of the AKF-ALS algorithm is derived and a numerical analysis
is conducted to show its real-time efficiency. Experimental validations on tracking the centroid of
a moving ball subjected to projectile motion, free-fall bouncing motion, and back-and-forth linear
motion, reveal that the AKF-ALS algorithm outperforms a standard KF with fixed noise statistics.

Keywords: visual object tracking; Kalman filter; autocovariance least-squares estimation; background
subtraction; adaptive thresholding

1. Introduction

Visual object tracking (VOT) is a fundamental task in computer vision and has exten-
sive applications including autonomous vehicles [1], video surveillance [2], robot vision [3],
and human-computer interaction [4]. Specifically, in autonomous vehicle systems and
robotics, robust and efficient VOT algorithms that identify and track nearby vehicles and
pedestrians are essential for real-time navigation, obstacle avoidance, and environment
perception, ensuring safe and efficient operation in dynamic scenarios. The essence of VOT
is to accurately track the states (e.g., the centroid, the bounding box, or the contour) of an
object of interest through successive frames within a video stream. This involves two key
steps: object detection which identifies the presence and location of the object, and object
tracking which associates the object and generates the trajectory of the object throughout
the frame sequence.

The challenges faced in VOT are accentuated in the context of autonomous systems.
These systems must perform reliably amidst non-stationary conditions caused by variable
lighting, weather conditions, diverse terrains, and unstructured environments. Further-
more, in robotics, VOT is tested against robot motion, varying perspectives, and interactions
with objects that can introduce additional complexities. The object may change poses, de-
form, become occluded, or disappear temporarily from the field of view [5], resulting in
high model and measurement noise in the object tracking step. Regarding the uncertainty
(e.g., sudden or drastic changes in object appearance) as the noise, the approach to the
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two above challenges depends heavily on the real-time accurate estimation of the noise
statistics, especially the accurate noise covariance estimation. Therefore, the real-time VOT
under uncertain noise covariance problem is addressed in this paper, which can account
for the varying model and measurement noise covariance’s influence on object detection
and tracking.

1.1. Object Detection

The background subtraction (BS) technique is a widely used object detection technique
for extracting moving foreground objects from video against a static background. In an
autonomous vehicle or robot’s vision systems, the choice of BS technique can significantly
influence performance due to several factors, such as illumination variations, occlusion,
shape deformation, scale variation, and background clutter. According to the model and
computational complexity, the BS techniques can be classified into three broad categories:
simple BS, statistical BS, and neural networks (NN) based BS [6–9].

• The simple BS techniques including the frame differencing [10], average filtering [11,12],
median filtering [13,14], and histogram over time [15], model the background sim-
ply, often by just using the previous frames or an average/median of the recent
frames. These are fast and easy to implement but lack adaptability to changes in
the background.

• The statistical BS techniques including the mixture of Gaussians (MoG) [16,17], kernel
density estimation [18–20], support vector models [21,22], and principal component
analysis [23,24], build a statistical model of the background and classify pixels based
on the model. They model the background more robustly using the history of pixels
but are prone to the setting parameters and models.

• NN-based BS techniques including the radial basis function NN [25], self-organizing
NN [26,27], the convolutional NN [28,29], and the generative adversarial networks
(GAN) [30,31], learn the specialized NN architectures that can adapt to changes
in the background model to detect foreground over time. These can learn complex
representations of background appearance and maintain robust models of multi-modal
backgrounds, but they require large training datasets and have expensive computation
loads to train and run, which may not be available in a real-time environment.

Dynamic backgrounds with movement from objects can be erroneously marked as
foreground if the model cannot adapt swiftly enough, leading to noisy segmentation
and false detections. Therefore, the simple frame difference-based BS technique with the
adaptive threshold (AT) method is appealing in the real-time VOT application due to its
simplicity, efficiency, and robustness [32]. In this method, the threshold is adjusted based
on the pixel’s intensity variations over some time, e.g., the threshold should be smaller for
regions with low contrast.

1.2. Object Tracking

Recent developments of VOT have been witnessed to solve the VOT problem from the
representation (e.g., correlation filter) based tracker [33,34], discriminate and generative
tracker [35], to deep Siamese networks based tracker [36,37]. Conventional representation-
based VOT methods rely on target appearance models based on handcrafted visual features
and are prone to inaccuracies from background interference and occlusion. The discrimi-
native and deep Siamese networks-based VOT methods are more robust but may fail to
update adequately to sudden variations of the object in real-time applications due to high
computation complexity.

To achieve robust and real-time VOT, various recursive Bayesian filtering methods like
the mean-shift (MS) tracker [38,39], the Kalman filter (KF) tracker [40–42], and particle filter
(PF) tracker [43–45] are commonly developed. Among the above, the KF tracker has become
one of the most preferred tracking filters because of the high computational efficiency and
robustness to missed detections or occlusions, especially for linear and Gaussian systems.
The KF-based VOT method uses the background subtraction method for foreground object
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detection through background modeling and foreground segmentation and updates the
object’s state recursively by model prediction and measurement correlation.

For the linear time-invariant (LTI) system model with the LTI measurement system, KF
is proven to be the optimal linear minimum variance estimator [46]. However, in practice,
the model mismatches and inaccurate noise statistics result in sub-optimal filtering that
outputs unbiased and even divergent estimates [47]. The adaptive KF is one effective
approach and has been applied in many applications [48–50]. In the KF-based object
tracking task, the prior knowledge of the process and measurement noise covariance
matrices is hard to determine due to occlusions and changes in object appearance. Therefore,
designing adaptive KF focusing on noise covariance estimation is of vital importance.

Existing noise covariance estimation methods typically utilize historical open-
loop data, which can be categorized as Bayesian [51], maximum likelihood estimation
(MLE) [52,53], covariance matching (CM) [54,55], and subspace identification (SI) [56],
correlation [57–62]. Each of these methods has its strengths and weaknesses. For instance,
while the Bayesian method provides optimal posterior estimation using Bayes’ rule to
update the prior knowledge of the noise covariance, it suffers from computational com-
plexity and sensitivity to hyper-parameter choices [51]. Similarly, while the MLE method
maximizes the likelihood of innovations without prior knowledge, it is computationally in-
tensive and sensitive to model misspecification [53]. The CM method, although robust and
computationally efficient, is sensitive to outliers and unsuitable for online scenarios [63].
The correlation method, and especially the auto-covariance least-squares (ALS) method
has attracted quite considerable attention as it provides an unbiased estimate based on
the autocovariance of the innovations with acceptable computational complexity and no
specific noise model requirements [60].

Therefore, the autocovariance least square estimation (ALS) method is integrated
into the KF-based VOT method, and the AKF-ALS algorithm is proposed to address
the requirements of simplicity and robustness in real-time visual object tracking under
uncertain noise covariance. Our contributions are threefold:

1. The proposed AKF-ALS algorithm provides a robust and efficient solution for noise
covariance estimation in the visual object tracking problem.

2. A novel adaptive thresholding method based on the estimated process noise covari-
ance that can predict sudden variations without heavy computations is proposed to
improve the robustness of the BS method.

3. The experiments on tracking the centroid of a moving ball subjected to projectile
motion, free-fall bouncing motion, and back-and-forth linear motion are conducted to
show the efficiency and superiority of the proposed AKF-ALS algorithm.

The rest of the paper is organized as follows. Section 2 formulates the VOT problem
and introduces the KF and the ALS method. In Section 3, the AKF-ALS algorithm is
developed to deal with the visual object tracking task with uncertain noise covariance.
It utilizes the ALS method to achieve real-time noise covariance tuning and proposes a
novel adaptive thresholding method to improve the robustness of the BS method. The
computation complexity of the AKF-ALS algorithm is derived and a numerical analysis is
conducted to show its efficiency. In Section 4, the proposed AKF-ALS algorithm is validated
to outperform the Kalman filter given constant noise covariance through the experiments
on tracking the centroid of a moving ball subjected to projectile motion, free-fall bouncing
motion, and back-and-forth linear motion. Section 5 provides concluding remarks and a
discussion of future work.

2. Problem Formulation and Preliminaries

The visual object tracking problem consists of two main stages: background subtrac-
tion for object detection and Kalman filter for object tracking.



Appl. Sci. 2024, 14, 1045 4 of 18

2.1. Background Subtraction

Background subtraction involves distinguishing the foreground (moving objects) from
the background in video frames. We can formulate this problem mathematically as follows.
The input video sequence is represented as a series of frames: F1, F2, . . . , Ft, . . . , FN , where
N is the total number of frames and t is the current time instance. Each frame Ft is a 2D
array of pixels denoted as Ft(i, j), where i and j represent the spatial coordinates of the
pixel in the frame. Denote the input image at time t as I(x, y, t) which is composed of a
static background B(x, y) and a moving foreground F(x, y, t), such that:

I(x, y, t) = B(x, y) + F(x, y, t) (1)

The goal of background subtraction is to create a binary mask M(x, y) for each frame
Ft(i, j), where pixels belonging to moving objects are labeled as 1 (foreground), and the rest
are labeled as 0 (background).

M(x, y) =

{
1, if |I(x, y, td)− I(x, y, t f )| > Tt

0, otherwise
(2)

where Tt is the user-defined threshold, td and t f represent the time instances of the dark
and bright frames, respectively.

2.2. Kalman Filter

Kalman filter is a recursive estimator that provides the optimal solution under the
assumptions of a linear system and Gaussian noise. The Kalman filter operates in a two-step
process recursively: prediction and correlation. In the prediction step, the filter predicts the
state and error covariance estimates to obtain the prior estimates for the next time step.

x̂k+1 = Fx̂k + Buk

Pk+1 = FPkFT + Q
(3)

where x̂k is the state estimate at time k, Pk is the state covariance matrix, and Q is the process
noise covariance.

In the correction step, the filter incorporates a new measurement into the prior estimate
to obtain an improved posterior estimate.

Kk+1 = Pk+1HT(HPk+1HT + R)−1

x̂k+1 = x̂k+1 + Kk+1(zk+1 − Hx̂k+1)

Pk+1 = (I − Kk+1H)Pk+1

(4)

where Kk+1 is the Kalman gain, R is the measurement noise covariance.

2.3. Auto-Covariance Least-Squares (ALS) Method

The auto-covariance least-squares (ALS) method is introduced to estimate the un-
known noise covariance in a linear state-space model in model-based estimation and
control, which is crucial for improving the performance of a visual object tracking task.

The ALS method is based on the innovation sequence, denoted as ek, which is defined
as the difference between the observed measurement and the estimated measurement
based on the predicted state in the prediction step:

ek = zk − Hx̂k|k−1, ∀k. (5)

Denote the residual, which is the difference between the actual state and the predicted
state as εk = xk − x̂k|k−1. Then the residual and the innovation follow ek = Hεk + vk, and
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εk+1 = (F − FKH)︸ ︷︷ ︸
F̄

εk + [Inx ,−FK]︸ ︷︷ ︸
G

[
wk
vk

]
︸ ︷︷ ︸

w̄k

. (6)

In the steady state, the Kalman gain converges to a constant value, which can be
computed offline. The steady-state residual covariance matrix, denoted by Pϵ, can be
solved via the following Lyapunov equation:

Pε = F̄Pε F̄T + GΣGT (7)

where Σ =

[
Q 0nx×nz

0nz×nx R

]
.

Then the auto-covariance of the innovation sequence is:

Ce,0 ≜ E[ekeT
k ] = HPε HT + R

Ce,j ≜ E[ek+jeT
k ] = HF̄jPϵHT − HF̄j−1FKR

(8)

where j = 1, 2, . . . , N − 1, and N is a user-defined parameter defining the window size.
Substitute the solution to (7) into (8), and the noise covariance matrix is derived as a linear
matrix equation by using the least-squares method:

Aθ = b (9)

where the matrix A is defined as

A =
[
D, D(FK ⊗ FK) + (Inz ⊗ Γ)

]
D =

(
H ⊗O

)(
In2

x
− F̄ ⊗ F̄

)−1

O =
[
HT, (HF̄)T, . . . , (HF̄N−1)

]T

Γ =
[
Inz ,−(HFK)T, . . . ,−(HF̄N−2FK)T]T

(10)

where the symbol ⊗ stands for the Kronecker product. Denote the dependent variables
as θ = [QT

s , RT
s ]

T and b = (Ce(N))s with Ce(N) = [Ce,0, CT
e,1, . . . , CT

e,N−1]
T. Qs means the

column-wise stacking of the matrix Q into a vector.
The ALS method estimates the covariance matrices by minimizing the difference be-

tween the sample and theoretical innovations’ autocovariance by minimizing the following
cost function:

θ̂ = arg min
θ

∥Aθ − b∥2
2

s.t., Q, Ri ≥ 0.
(11)

Then the parameter θ is estimated by solving the semi-definite constrained least
squares problem. The optimal solution can be found by setting the derivative of the cost
function to zero when the matrix inequality holds:

θ̂ = (ATA)−1ATb̂ = A† b̂ (12)

where b̂ denotes the unbiased estimate of the vector b, and is computed by using the ergodic
property of the N-innovations to estimate the auto-covariance matrix Ce(N):

b̂ =
(
Ĉe(N)

)
s

Ĉe(N) = [ĈT
e,0, ĈT

e,1, . . . , ĈT
e,N−1]

T

Ĉe,j =
1

τ − j

τ−j

∑
k=1

ek+jeT
k , j = 0, 1, . . . , N − 1

(13)
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where τ is denoted as the window size of the auto-covariances.
The steady-state solution Pε to the Lyapunov equation in (7) exists and the innovation

sequence is a stationary process if the prediction error transitional matrix F̄ is stable.

Pε = F(Pε − PεHT(HPεHT + RA)
−1HPε) + QA (14)

where QA and RA are positive user-defined matrices.

3. ALS-KF Based Visual Object Tracking Algorithm

The visual object tracking algorithm based on the Kalman filter combined with the
autocovariance least square estimation method called the AKF-ALS algorithm is proposed
in this paper. It consists of three procedures: object detection via background subtraction,
object tracking using the Kalman filter, and noise covariance estimation using the ALS
method, as shown in the flowchart in Figure 1.

Figure 1. Flowchart of the ALS-KF based VOT algorithm.

3.1. Object Detection Using Background Subtraction

The first step in the tracking process is to identify the object of interest. In our proposed
method, we utilize the background subtraction method to detect the moving object. The
background is initialized as the first frame of the video. For each subsequent frame, we
subtract the background from the current frame. By applying a threshold to the difference
image, we convert it into a binary image. The binary image is then processed using
morphological operations to reduce noise and fill gaps in the detected objects.

Object tracking in video sequences often requires adaptive thresholding techniques to
robustly handle changes in object appearance over time. The process noise covariance Q̂
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estimated by the Kalman filter provides a principled metric to adapt threshold levels based
on the dynamics of the tracked object. The process noise captures uncertainties in modeling
the motion of the object, thus larger values of Q̂ imply more aggressive maneuvers by the
target. This leads to greater shape deformation and scale variation as the object moves
rapidly through the scene. By leveraging Q̂, the threshold T can be adapted during tracking
according to:

Tt = αQ̂t + Tmin (15)

where α is a scaling parameter and Tmin is a minimum threshold level. The key idea is
that a larger process noise covariance Q̂t at time t indicates faster motion, which requires
relaxing the threshold to accommodate greater changes in appearance. This avoids losing
the target due to overly tight thresholds based on stale measurements.

Connected components in the resulting binary image are then identified, and a bound-
ing box is generated for each component. The centroid of each component, which is
computed as the geometric center of the bounding box, is then stored as the object’s loca-
tion. The process is repeated for each frame in the video, resulting in a series of centroids
representing the object’s trajectory.

3.2. Object Tracking Using Kalman Filter

Once the objects are detected via the background subtraction, the next step is to track
the detected object using the Kalman filter. Denote the object Oi is represented by its state
xi, which includes its position and velocity. In the visual object tracking task, the Kalman
filter is used to predict the state of each object in the next frame, given its current state
and the observations (detected positions). The Kalman filter is a recursive algorithm that
uses a series of measurements observed over time, containing statistical noise and other
inaccuracies, and produces estimates of unknown variables that tend to be more precise
than those based on a single measurement alone. It includes the prediction and update
steps: The prediction step projects forward the current state and error covariance estimates
to obtain the a priori estimates for the next time step; the update step incorporates a new
measurement into the a priori estimate to obtain an improved a posteriori estimate.

Given the current state of the object Oi at time t denoted as xi,t, and observation zt, we
want to estimate the state xi,t+1 at time t + 1. The observation zt can be seen as the detected
position of the object from the background subtraction. The dynamic model of the system
and the measurement model can be represented as:

xk+1 = Fxk + Buk + wk

zk = Hxk + vk
(16)

where xk is the state vector, uk is the control input, wk is the process noise, zk is the
measurement, and vk is the measurement noise. F, B, and H are system matrices.

Based on the Kalman filter introduced in (3) and (4); the KF derivation for the object
tracking problem is given below.

Prediction:
x̂k|k−1 = Fx̂k−1|k−1 + Buk

Pk|k−1 = FPk−1|k−1FT + Q
(17)

Correction:
Kk = Pk|k−1HT(HPk|k−1HT + R)−1

x̂k|k = x̂k|k−1 + Kk(zk − Hx̂k|k−1)

Pk|k = (I − Kk H)Pk|k−1

(18)

3.3. Noise Covariance Estimation Using ALS

An important part of the Kalman filter is the estimation of the noise covariance
matrices Q (process noise covariance) and R (measurement noise covariance). The accuracy
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of these estimates significantly affects the filter’s performance. In this work, we use the
ALS method to estimate Q and R. The ALS method is based on the autocovariance of
the innovation sequence (also known as the difference between the actual measurement
and the predicted measurement based on the predicted state) from the Kalman filter. The
ALS method computes the autocovariance of this sequence and formulates a least-squares
problem to solve for Q and R. By continuously updating the noise covariance estimates,
the ALS method allows the Kalman filter to adapt to changes in the system dynamics and
measurement noise, resulting in improved tracking accuracy.

The adaptive Kalman filter (AKF) with the autocovariance least square estimation
(ALS) algorithm, termed AKF-ALS algorithm is outlined in Algorithm 1.

Algorithm 1 AKF-ALS

1: Initialize: x̂0, P0, F, H, Q, R
2: for k = 1, 2, . . . until convergence do
3: Prediction:
4: x̂k|k−1 = Fx̂k−1|k−1

5: Pk|k−1 = FPk−1|k−1FT + Q
6: Update:
7: ek = zk − Hx̂k|k−1

8: Kk = Pk|k−1HT(HPk|k−1HT + R)−1

9: x̂k|k = x̂k|k−1 + Kkek
10: Pk|k = (I − Kk H)Pk|k−1
11: if k ≥ τ + N then
12: Estimate Q, R via ALS:
13: Compute Ĉe,0, Ĉe,1, . . . , Ĉe,N−1 in Equation (13)
14: Stack Ĉe,0, Ĉe,1, . . . , Ĉe,N−1 into b̂
15: Compute A using Equation (10)
16: Solve for θ̂ using Equation (12)
17: Unstack θ̂ into Q̂ and R̂
18: end if
19: end for

The algorithm includes the following procedures.

1. Initialize the state estimate x̂0, the state covariance matrix P0, the system matrices F
and H, the Kalman gain matrix K, the window sizes N and τ, and the noise covariance
matrices Q and R.

2. The main loop of the algorithm iterates until the ALS method has converged. At each
iteration, The state estimate and covariance matrix are updated recursively using
the observed measurement zk, the measurement model defined by H, and the noise
covariance matrix R.

3. After a sufficient number of iterations k exceeds τ + N, the ALS method can be
applied to estimate the noise covariance matrices. We compute the autocovariance
of the innovations, stack them into a vector b̂, and compute the matrix A as per the
provided equations. A least-squares problem is then solved to get an estimate θ̂, which
we then unstack into the individual matrices Q̂ and R̂.

Process model owing to its computational simplicity and efficiency, which is essential
for adherence to real-time tracking constraints. The LTI model’s predictive strength in
capturing linear motion makes it particularly suitable for VOT scenarios, and its com-
patibility with Kalman filtering allows for optimal tracking in systems characterized by
Gaussian noise and linear dynamics. Concurrently, our measurement model is robustly
designed to withstand VOT-specific challenges such as occlusions and dynamic appearance
changes, employing autocovariance least square estimation (ALS) to dynamically adapt
to the non-stationary noise statistics typical of real-world environments. This adaptability
is augmented by an adaptive background subtraction pre-processing step that effectively
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differentiates the target from its backdrop, thus enhancing measurement accuracy and, by
extension, the reliability of object tracking.

The computation complexity of the proposed AKF-ALS algorithm is derived to show
the real-time performance in Theorem 1.

Theorem 1 (Computation complexity). The computational complexity of the proposed AKF-
ALS algorithm in (1) is O

(
N2n4

xn4
z
)
, where nx and nz are the dimensions of the state and measure-

ment, respectively.

Proof. In (10), the computation of F̄nx×nx matrix involves O(n2
x) for matrix addition,

O(n3
x) for matrix multiplication and O(n3

x) for solving the Lyapunov equation in (7).
Computing F̄ ⊗ F̄ involves O(n3

x) for fast Kronecker product computation, then the in-
verse matrix

(
In2

x
− F̄ ⊗ F̄

)
n2

x×n2
x

involves O(n6
x) using the fastest matrix inversion method.

ONnz×nx and the fourth term ΓNnz×nz involve concatenating matrices, with a complexity of
O(Nn2

xnz) and O(Nn2
xnz), respectively. ANn2

z×(n2
x+n2

z)
has a complexity of approximately

O
(
max(n6

x, Nn4
xn2

z)
)
. Then, the ALS estimate θ̂ involves O(N2n4

zn4
x) for computing AT

i Ai
and O(n6

x) for the matrix inversion (AT
i Ai)

−1. Given the computation complexity of KF
is O

(
(max(n3

x, n3
z)
)
, the proposed AKF-ALS algorithm has the computation complexity of

O
(
max(n6

x, N2n4
xn4

z , (τ − j)Nn2
z)
)
. Since nx and nz are near and (τ − j)N is smaller than

n4
xn2

z in most cases, the computation complexity is streamlined into O
(

N2n4
xn4

z
)
.

As indicated by the above theorem, incorporating the ALS into the KF does not
produce a significant rise in the computation complexity when nx and nz are small.

4. Experiment Study
4.1. Numerical Analysis of Noise Covariance Estimation

A numerical simulation of noise covariance estimation for the LTI system with the LTI
measurement model in (16) is provided to show the performance of the ALS algorithm,
where the sampling time, the state, and measurement transitional matrices are set as Ts = 1,

F =

[
0.7Ts 0.3
−0.1 0.9Ts

]
and H = [0.5, 0.2].

In this simulation study, the ALS algorithm was operated with NMC = 500 Monte
Carlo simulations over Ntime = 150 time steps. The initial state for each simulation was
defined as x0 = [1.1, 1.1, 1.1, 1.1]T, expressed in meters (m). The true noise covariance

matrices were initialized with Qtrue =

[
0.5 0
0 1

]
and Rtrue = 0.8, where the units are square

meters (m2). The initial estimations for the noise covariance matrices were set to QA = 0.1I4
for the process noise and RA = I2 for the measurement noise.

The noise covariance estimates Q̂ALS, R̂ALS is estimated using the ALS method. Then
the steady-state state covariance is computed by solving the Lyapunov equation in (7) as

Pε =

[
0.32 0.14
0.14 0.35

]
, the steady-state Kalman gain is K = [0.17, 0.13].

By setting the window size Nw as 5, The empirical estimation of N-innovations au-
tocovariance is computed as b̂ = [2.019, 1.144, 1.177, 0.861, 0.794]T. Then according to the
Equation (12), the estimated noise covariance matrix with 500 MC initialization is com-
puted and stored as Q̂ALS,MC and R̂ALS,MC, and the mean value of Q̂ALS,MC and R̂ALS,MC

is Q̂ALS =

[
0.48 0.214
0.214 0.879

]
and R̂ALS = 0.801.

The effectiveness of the estimated noise covariance matrices, based on 500 Monte
Carlo simulations, is depicted in Figures 2 and 3. Figure 2 plots the diagonal elements
of the estimated model noise covariance matrix, Q̂11 and Q̂22, on the x-axis and y-axis,
respectively. Figure 3 presents the estimated measurement noise covariance matrix R on
the x-axis, with the density of the Monte Carlo simulations displayed on the y-axis.
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Figure 2. Performance of model noise covariance estimation QALS using ALS algorithm over
500 Monte Carlo simulations. The blue dots denote the estimated diagonal-form model noise
covariance matrix QMC = diag(Q̂11, Q̂22) over each Monte Carlo simulation, where the x-axis and
y-axis represent the first and second diagonal elements respectively. The black bold dot is the model
noise covariance estimate Q̂ALS via the ALS algorithm. The intersection of two red dotted lines
denotes the true noise covariance Qtrue.
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Figure 3. Performance of measurement noise covariance estimation RALS using ALS algorithm over
500 Monte Carlo simulations. The blue bars denote the estimated measurement noise covariance
value RMC over each Monte Carlo simulation, where the x-axis and y-axis respectively represent
the measurement noise covariance value and the probabilistic density. The black bold dot is the
measurement noise covariance estimate Q̂ALS via the ALS algorithm. The intersection of the red
dotted line and x-axis denotes the true noise covariance Qtrue.

As indicated above, the noise covariance estimates with 500 MC initialization follow
the Gaussian distribution where the mean value QALS and RALS are near the true value.
The results demonstrate that the ALS method can accurately estimate the noise covariance
for the KF, and the ALS-KF framework which combines the Kalman filter with the ALS
method is well-suited for real-world visual tracking applications where the underlying
noise distributions are unknown.

4.2. Centroid-Based Moving Ball Tracking Subjected to Three Motions

The experiment on the video of a moving ball separately subjected to projectile motion,
free-fall bouncing motion, and back-and-forth linear motion across the video is conducted
to assess the performance of the proposed AKF-ALS algorithm. The video consists of
100 frames, with a resolution of 480 × 640 pixels.



Appl. Sci. 2024, 14, 1045 11 of 18

• Projectile motion following a parabolic path refers to the motion of an object thrown
into the air and subject to downward acceleration due to gravity. The challenge in
tracking such motion is the constantly changing speed and direction of the object.

• Free-fall bouncing motion is the motion of an object falling under gravity and then
bouncing back upwards. The challenge is the object’s velocity changes rapidly at the
point of impact, which can be difficult for a tracking algorithm to handle.

• Back-and-forth linear motion refers to an object moving to and fro along a straight
line. The challenge is the abrupt change in velocity when the object changes direction.

For visual object tracking (VOT), these different types of motion pose unique chal-
lenges. Rapid changes in direction and velocity may affect the ability of a VOT system to
accurately track an object. Therefore, the proposed AKF-ALS algorithm is applied to show
the performance. In the algorithm, the background subtraction method is first applied to
each frame in the video to detect the ball. The background is initialized as the first frame of
the video, and an adaptive threshold is applied to the difference image to create a binary
image. The connected components in the binary image are identified as potential objects,
and the centroid of the largest component is stored as the location of the ball. Then the
Kalman filter is used to track the ball’s movement, i.e., the centroid of a series of video
frames. The ALS method is used to estimate the process and measurement noise covariance.
The performance of the proposed method was compared with a standard Kalman filter
with fixed noise covariance.

Specifically, we consider the state of the ball as its position and velocity, and the
observation as the detected position of the ball from the background subtraction. Based on
the kinematic equation, the relation between the position x and velocity ẋ can be written
as follows:

xk =

[
xk
ẋk

]
=

[
xk−1 + ẋk−1∆t + 1/2ẍk−1∆t2

ẋk−1 + ẍk−1∆t

]
(19)

where ∆t is the sampling time and can be set as 0.2. The 2-D kinetic equation can be shown
for state xk as:

xk =


xk
yk
ẋk
ẏk

 =


xk−1 + ẋk−1∆t + 1/2ẍk−1∆t2

yk−1 + ẏk−1∆t + 1/2ÿk−1∆t2

ẋk−1 + ẍk−1∆t
ẏk−1 + ÿk−1∆t

 (20)

which can be simplified as:

xk =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

xk−1 +


1/2∆t2 0

0 1/2∆t2

∆t 0
0 ∆t

ak−1 (21)

where the transitional matrices F, Γ and H are defined as

F =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1



Γ =


1/2∆t2 0

0 1/2∆t2

∆t 0
0 ∆t


H =

[
1 0 0 0
0 1 0 0

]
.

(22)

The performance of the proposed AKF-ALS-based VOT algorithm is compared to that
of the traditional KF-based VOT algorithm, as introduced in [64], across three types of
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motion: projectile motion, free-fall with a bouncing trajectory, and linear back-and-forth
motion. The KF-based VOT algorithm uses the same kinematic equation in (19), but the
noise covariance is initially determined as a constant value, i.e., Q = 1 and R = 0.5. The
comparative results are illustrated in Figure 4.

a. Projectile b. Free-fall bouncing c. Back-and-forth linear

Figure 4. VOT using the proposed AKF-ALS algorithm and traditional KF algorithm. The green,
blue, and red circles, respectively, represent the circle of the ball with true centroid, with estimated
centroid using AKF-ALS algorithm, and with estimated centroid using KF algorithm.

As indicated from the above figure, the proposed AKF-ALS algorithm shows improved
robustness in handling constantly changing speed and direction, rapidly changing velocity,
and the abrupt change in velocity when the object changes direction, while continuing
tracking accurately after the change ends. As the tracking progresses, the performance
of KF-based VOT approaches that of AKF-ALS-based VOT because the state covariance
matrix approximates the steady-state value. This highlights the advantage of the proposed
AKF-ALS-based VOT method in handling challenging conditions in visual object tracking.

The performance of the proposed ALS-KF-based VOT algorithm is evaluated using
the root mean square error (RMSE) (in pixels) between the estimated position x̂1:2,t (the first
two elements) and the true position x1:2,t of the moving ball subjected to projectile motion,
free-fall bouncing motion, and back-and-forth linear motion across the video, as shown in
Table 1.

RMSE =

√√√√ 1
N

N

∑
t=1

(x1:2,t − x̂1:2,t)2 (23)
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Table 1. Comparisons of RMSE (in pixels) between AKF-ALS-based and KF-based VOT subjected to
projectile motion, free-fall bouncing motion, and back-and-forth linear motion.

RMSE (in Pixels) Projectile Free-Fall Bouncing Back-and-Forth Linear

AKF-ALS 1.05 2.76 0.89
KF 4.67 8.35 2.31

The quantitative analysis of the table above reveals that AKF-ALS consistently achieves
lower root mean square error (RMSE) values across various motion patterns. The RMSE for
AKF-ALS is 1.05 pixels for projectile motion, significantly better than the 4.67 pixels of the
standard KF. For free-fall bouncing motion, AKF-ALS records an RMSE of 2.76 pixels, in
contrast to 8.35 pixels for the KF. Additionally, in back-and-forth linear motion scenarios,
AKF-ALS demonstrates an RMSE of 0.89 pixels, outperforming the KF’s 2.31 pixels. The
results show that the proposed AKF-ALS algorithm achieves a lower RMSE compared to
a standard KF VOT algorithm with fixed noise covariance, demonstrating the proposed
method outperformed the standard Kalman filter in terms of RMSE.

4.3. Bounding Box-Based Pedestrian Tracking with Occlusions

The simulation was also conducted on the PETS09-S2L1 dataset [65] within the MOT-
15 challenge, a complex scenario with up to eight pedestrians engaging in unusual patterns.
The IOU matching utilized the detection box from the previous frame to compute the
IOU with the current frame detections. A threshold of IOUThreshold = 0.3 was set for a
match to be considered valid. If the IOU matching failed to find a maximum value due to
occlusion, the Kalman filter’s prediction was used to estimate the target’s new position
and continue tracking. However, the KF-based VOT algorithm failed to maintain tracking
under occlusion conditions.

The AKF-ALS VOT algorithm demonstrated robustness in maintaining the identity
of the pedestrian target even when the IOU matching failed due to occlusion due to its
dynamic covariance estimation, which allows the filter to adapt its parameters in response to
the evolving state of the system. This adaptive mechanism is crucial for handling occlusions
and erratic pedestrian movements. The AKF-ALS VOT algorithm improves upon the
standard KF VOT by dynamically adjusting the process and measurement noise covariances.
The state vector remains consistent with the classic AKF, with the following representation:

X = [x, y, h, w, ẋ, ẏ]T (24)

where x and y denote the horizontal and vertical position of the pedestrian in the video
frame (in pixels), respectively, and ẋ and ẏ denote the horizontal and vertical velocity of
the pedestrian (in pixels per frame). h and w denote the height and width of the bounding
box around the pedestrian (in pixels), respectively.

The ALS algorithm updates the process noise covariance matrix Q and the observation
noise covariance matrix R iteratively. The innovation sequence is used to calculate the
autocovariance, which in turn adjusts Q and R to respond to abrupt changes in the tracked
object’s motion. The trajectory is shown in Figure 5.

As indicated by the figure, the tracking of pedestrians in scenarios obstructed by
objects such as a light pole, can present challenges for bounding box detection methods.
However, the implementation of the adaptive Kalman filter with adaptive least squares
(AKF-ALS) algorithm demonstrates robustness in tracking despite failures in bounding
box detection under such conditions.
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Figure 5. Bounding box-based pedestrian tracking with occlusions using AKF-ALS algorithm.

To demonstrate the comparative performance of the accuracy and robustness, we use
the RMSE in (23), the identity switches, and the track fragmentation as the metrics. The
identity switches metric measures the number of times the tracking algorithm incorrectly
switches the identity of the tracked object. Fewer identity switches indicate a more robust
tracking performance. The track fragmentation evaluates the continuity of the tracking
throughout the sequence. Lower numbers imply fewer instances where tracks are broken
and later reacquired. We compare the proposed ALS-AKF algorithm with the classic
adaptive KF algorithm using Otsu’s method in [66], as shown in Table 2.

Table 2. Comparisons of RMSE (in pixels), between AKF-ALS-based and KF-based VOT algorithm in
pedestrian tracking with occlusions.

Metric AKF ALS VOT Classic AKF VOT [66]

RMSE 5.5 pixels 10.7 pixels
Identity switches 1 8

Track fragmentation 2 8

As is indicated from the table above, the AKF-ALS VOT algorithm demonstrated
a markedly higher precision with a root mean square error (RMSE) of only 5.5 pixels,
compared to the classic AKF VOT’s 10.7 pixels. Robustness in maintaining pedestrian
identity was also significantly improved in the AKF-ALS VOT, which had a mere single
identity switch, whereas the classic AKF VOT recorded eight. Additionally, the AKF-ALS
VOT showed greater continuity in tracking with only two instances of track fragmentation,



Appl. Sci. 2024, 14, 1045 15 of 18

in contrast to the classic AKF VOT’s eight, indicating a more stable tracking performance
throughout the sequences. These enhancements are likely due to the AKF-ALS’s iterative
updates to the process and observation noise covariance matrices, enabling it to adeptly
adjust to sudden changes in the tracked object’s motion.

5. Conclusions

In conclusion, the AKF-ALS algorithm introduced in this paper represents a significant
advancement in the field of real-time visual object tracking. By integrating the autocovari-
ance least squares estimation method with an adaptive Kalman filter, we have demonstrated
a robust approach to tracking that compensates for system model mismatches and invalid
offline calibration, which are critical in dynamic environments. The computational complex-
ity analysis indicates that AKF-ALS is efficient enough for real-time applications, striking
an optimal balance between computational load and tracking accuracy. Our experimental
results have shown that the AKF-ALS algorithm exhibits superior performance over tradi-
tional Kalman filter methods that rely on fixed noise statistics. The algorithm’s capability
to adapt to changing noise covariances in real-time ensures greater accuracy in tracking the
centroid of a moving object under various motion patterns, including projectile motion,
free-falling with bounces, and linear back-and-forth motion. Experimental results on the
complex PETS09-S2L1 dataset from the MOT-15 challenge demonstrate that the AKF-ALS
VOT algorithm is capable of tracking pedestrians with occlusion where traditional meth-
ods fail. The algorithm’s dynamic adaptation to changing noise covariances in real-time
significantly enhances accuracy and reliability in tracking various motion patterns. Overall,
the AKF-ALS algorithm’s ability to iteratively refine noise covariances and adjust to abrupt
motion changes makes it an excellent candidate for autonomous vehicles or mobile robotics.

Future work should focus on expanding the validation of the AKF-ALS algorithm
across a broader range of applications, including those with more complex and non-
linear object dynamics. Additionally, further research could explore the integration of
this algorithm with deep learning techniques to enhance tracking performance in highly
cluttered and dynamic visual scenes.
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