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Abstract: The regularization method has a direct impact on the accuracy of the reconstructed sound
field in the process of inverse calculation of near−field acoustic holography using the equivalent
source method. To expand the frequency range of sound field reconstruction and improve compu-
tational accuracy, a forward-backward splitting equivalent source method based on s−difference
was proposed, which uses the ratio of the output results of the broadband acoustic holography
algorithm as the regularization parameter. Numerical simulations of single source and coherent
source sound fields were conducted under different frequency conditions to analyze the performance
of the forward-backward splitting regularization algorithm based on s−difference, and experimental
verification was performed. The simulation results show that the proposed method can accurately
reconstruct the sound field in a wider frequency range, and has high accuracy in reconstructing the
sound field of low−frequency coherent sources. The experimental results demonstrate the accuracy
and effectiveness of this method in reconstructing mid−to−low−frequency sound fields.

Keywords: equivalent source method; forward−backward splitting algorithm; threshold shrinkage

1. Introduction

Near−field Acoustic Holography (NAH) technology [1] has been widely used for
source identification and visualization of spatial sound fields. NAH technology has multi-
ple solving methods [2–4], among which the Equivalent Source Method (ESM) [5] is widely
used and researched in the NAH field due to its simple model, adaptability to any shaped
sound source, and high reconstruction accuracy and computational efficiency.

Based on the ESM theory [6], a relationship formula between equivalent source
strength and measured sound pressure was established. By making the measured sound
pressure on the hologram surface equal to the sound pressure generated by the equivalent
source, the equivalent source strength can be solved. In practical engineering applications,
the sound pressure matrix between the equivalent source surface and the measurement
surface is always uncertain due to the limitation of the number of microphones and
measurement conditions. To solve this underdetermined problem, Tikhonov et al.’s [7]
regularization method is commonly used to find the optimal equivalent source strength.
When using this method, the regularization parameter needs to be determined first, and
the reconstruction result depends heavily on the accurate selection of the regularization
parameter. The commonly used regularization parameter selection methods mainly in-
clude the L−curve method and Generalized Cross Validation (GCV) [8,9]. In recent years,
compressed sensing technology based on sparse regularization has been widely used in
the field of image processing [10,11]. Sun et al. [12] solved the non−convex regularization
function by analyzing the difference between the penalty function and the truncation function
to solve the sparse recovery problem. Chardon et al. [13] combined sparsity and compressed
sensing theory with near−field acoustic holography, and used the CVX convex optimization
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toolbox in MATLAB to solve the norm problem. Suzuki et al. [14] proposed establishing a
monopole and dipole point source model and developed a specific iterative solver to achieve
sparsity by using “norm” for solution vectors. However, it was used for long-distance mea-
surement and focused on high−frequency signals. M Tebolle et al. [15] proposed the Iterative
Shrinking Threshold Algorithm (ISTA), which has a simple iterative format but a slow
convergence rate. Hald et al. [16] proposed the Wideband Acoustic Holography (WBH)
algorithm, which first defined the residual function, and then used a two−step iterative
method to solve the sparse solution of the equivalent source amplitude value, which has
high reconstruction accuracy only in the mid−to−high−frequency range. Huang et al. [17]
proposed combining high−order beamforming with an improved fast iterative shrinkage
threshold equivalent source method, which can identify smaller sound source main lobes.
After that, Hald [18] elaborated on the principles of five commonly used iterative algo-
rithms, including ISTA, derived their formulas, and compared their respective advantages
and applicable frequency ranges through numerical simulation analysis and experimental
verification. Based on the above content, a forward-backward splitting (FBS) algorithm
for the s−difference of equivalent source method near−field acoustic holography was
proposed. The optimal solution formula of Tikhonov regularization was used as the input
parameter for the FBS algorithm, and the step size was corrected in each iteration process.
The s−difference truncation adjustment strategy was introduced to make it approach the
optimal solution of the objective function. The FBS algorithm can expand the applicable
frequency range of the sound field reconstruction and ensure its reconstruction accuracy
and algorithm reliability.

In this paper, the near−field acoustic holography method of the sparse equivalent
source method is further investigated through a series of methods such as theoretical for-
mula derivation, simulation, and experimental verification. A forward-backward splitting
algorithm (FBS) based on s−differential is proposed in Section 2. The basic principle of the
algorithm is first introduced and the solution procedure is derived. In Section 3, several
common regularization algorithms for solving the equivalent source strength are intro-
duced and compared with the proposed algorithm by taking single and coherent sources
as the research objects, and the performance of sound field reconstruction is simulated
and analyzed, and in Section 4, we take the single source and the coherent source as the
experimental objects, collect the sound pressure signal of the single loudspeaker through
the microphone, respectively, and substitute the regularization algorithm of FBS with
s−difference to optimize the processing to obtain the optimal equivalent source strength
suitable for a wider range of frequency bands, so as to reconstruct the acoustic field and val-
idate the validity and stability of the algorithm through the reconstructed surface acoustic
pressure cloud diagram.

2. Forward-Backward Equivalent Source Method Based on S−Difference
2.1. Basic Principles of Equivalent Source Method

According to the basic principle of equivalent source method near-field acoustic holog-
raphy, the sound field arrangement is shown in Figure 1, which includes the arrangement of
the microphone array, sound source, equivalent source surface, and reconstructed surface.
The equivalent source surface can be either a plane or a surface surrounding the sound
source. In the equivalent source method, no a priori knowledge is required to use planar
equivalent source surfaces. Because the propagation direction of the sound waves on the
plane equivalent source surface is known, the equivalent source method can decompose
the real sound source on the plane equivalent source surface into a superposition of multi-
ple equivalent sound sources, and the positions and sound pressures of these equivalent
sources can be determined more easily. However, to adopt the spherical equivalent source
surface, it is necessary to know the location of the sound source in advance and set the
spherical equivalent surface at the location of the sound source. Compared with the spheri-
cal equivalent source surfaces, the use of planar equivalent source surfaces can make the
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simulation and modeling more flexible. In this paper, a plane equivalent source surface
consisting of a rectangular grid will be used.

Figure 1. Schematic diagram of the principle of the equivalent source method. (A represents the
distance from the equivalent source surface to the reconstruction surface, and G represents the
distance from the sound source surface to the holographic surface).

Assuming that N equivalent sources are distributed on the equivalent source plane
and M microphones are placed on the holographic plane, the sound pressure vector at the
m-th measuring point can be expressed as:

p(m) =
N

∑
n=1

g(rm | rn)qn (1)

where g(rm | rn) represents Green’s function in the free field. The transfer function from
the NTH equivalent source to the MTH measurement point can be expressed as:

g(rm|rn) =
e−jk∥⃗rmn∥

4π∥⃗rmn∥
(2)

where k = 2Π f /c is the wave number (unit: rad/m). f is frequency, c is velocity, j2 = −1, and
∥⃗rmn∥ is the distance from the equivalent source to the microphone and is the determining
factor in the relationship between holographic surface sound pressure, equivalent source
strength, and transfer matrix, which can be expressed in matrix form:

p = Gq (3)

where G(M × N) is the transfer matrix between the equivalent source plane and the
holographic plane, p(M × 1) is the complex sound pressure column vector measured by
four rows of microphone array, and q(N × 1) is the equivalent source strong column vector.

In practical engineering applications, the number of measurement points is often
limited by measurement conditions and costs, resulting in fewer measurement points than
equivalent sources, that is, M << N; this disparity leads to ill−posed problems when
solving Equation (3) for the inverse problem. This inverse problem is flawed because
it attempts to reconstruct the evanescent wave part that is away from the sound source
surface. The noise present in the measurement process can affect the accuracy of the results,
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so a regularization method was used to overcome this limitation during the solving process,
which helps to improve the accuracy of sound field reconstruction.

2.2. Forward and Backward Splitting (FBS) Regularization Method for S−Difference

The forward and backward splitting algorithm was initially applied in the domain
of image restoration. In this section, we modify the regularization parameter in the FBS
algorithm and introduce an s−difference adjustment strategy to solve the objective function
under the norm constraint. This modification was aimed at improving the accuracy of
the algorithm.

In the reconstruction process of image restoration and other practical applications, the
l0 non−convex regularization of the norm has more advantages than the l1 norm; therefore,
we introduce the l0 constraint problem, expressed as:

min
x

ϕ(x)subject to∥x∥0 ≤ s (4)

Firstly, we represent the l0 constraint problem as the difference between the function
R(x) and the corresponding s truncation function R(xs) ,where xs is the best S-term approx-
imation of x. Then, the regularization of S−difference R(x)− R(xs) type is used to solve
the unconstrained lowest slide problem. Finally, the closed-form solution is derived from
the proximal operator of R(x)− R(xs) and common R(xs).

The l0 constraint problem is expressed as the difference of convex functions as follows:

∥x∥0 ≤ s ⇔ ∥x∥1 − ∥|x|∥s = 0 (5)

where s ∈ {1, 2, . . . , N} ,∥|x|∥s represents the sum of the absolute values of the first s larger
elements in the vector, also known as the maximum s−norm (or CVaR−norm) [19].

∥|x|∥s :=
∣∣∣xπx(1)

∣∣∣+ ∣∣∣xπx(2)

∣∣∣+ · · ·+
∣∣∣xπx(s)

∣∣∣ (6)

where
∣∣∣xπx(1)

∣∣∣ ≥ the absolute value of the I th largest element in the vector x ∈ RN , so∣∣∣xπx(1)

∣∣∣ ≥ ∣∣∣xπx(2)

∣∣∣ ≥ · · · ≥
∣∣∣xπx(N)

∣∣∣. Define its set Γs
x = {πx(1), πx(2), . . . , πx(s)}, and

Γ1
x ⊆ Γ2

x ⊆ · · · ⊆ ΓN
x .

Define its set difference by using �\� ,ΓN
x \Γs

x = {πx(s + 1), πx(s + 2), . . . , πx(N)}.
Let xs be defined as the best S−term approximation of the vector x. By using the xπx(i)

definition, we have:

xs
i =

{
xi, i f i ∈ Γs

x
0, i f i ∈ ΓN

x \Γs
x

(7)

2.3. Forward-Backward Splitting (FBS) Algorithm

First, under the framework of sparse regularization theory, the l1 norm is used to
conduct sparse constraints on the equivalent source intensity vector, and the optimization
process can be expressed as:

min imize
q

∥q∥1subject to ∥P − Gq ∥2 ≤ δ (8)

The above equation can be converted into a function minimization problem:

min
x∈PN

{F(q) = ϕ(q) + ρP(q)} (9)

Based on this, we will use FBS to approximate the unconstrained minimization prob-
lem and derive the closed-form solution for the proximal operator of P(q) [20,21]; this
makes the FBS more effective.

Each iteration of forward−backward splitting applies gradient descent of ϕ(q).

q[k+1] = proxβρP(q[k] − β∇ϕ(q[k])) (10)
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β > 0 is the search step size.
Order x∗ is the optimal solution of the near−end operator, namely x∗ = proxρP(y),

when R(q) = ∥q∥1, P(q) = ∥q∥1 − ∥qs∥1. Then, solve q∗ as:

q∗i =

{
yi, i ∈ Γs

y
shrink(yi, ρβ) i ∈ ΓN

y \Γs
y

(11)

where shrink(yi, ρβ) represents a soft contraction operator. Γs
y =

{
πy(1), πy(2), . . . , πy(s)

}
and πy(j) is the jth maximum amplitude of y, namely

∣∣∣yπy(1)

∣∣∣ ≥ ∣∣∣yπy(2)

∣∣∣ ≥ · · · ≥
∣∣∣yπy(N)

∣∣∣.
shrink(yi, ρβ) = sign(yi)max{|yi| − ρβ, 0} (12)

The WBH algorithm utilizes an iterative solver to approximate a sparse solution for
the equivalent source strength vector. First of all, the residual value r is defined.

r(q) = p − Gq (13)

Secondly, the minimized residual quadratic function F is defined as:

F(q) =
1
2
∥r(q)∥2

2 (14)

Because function F is quadratic differentiable, the optimal solution of the residual
function F(q) is calculated by a two−step method, including the steepest descent step and
the threshold step in each iteration.

We will use a certain proportion of the output values from WBH as the regulariza-
tion parameter for threshold filtering in FBS. According to a large amount of simula-
tion data, when the value of the regularization parameter for threshold filtering in the
FBS is taken to be between 0.05 times and 0.5 times the maximum value of the WBH,
ρ ∈ [0.05 × max(

∣∣qw
∣∣), 0.5 × max(

∣∣qw
∣∣)], the effect of reconstruction is good and stable,

where max(
∣∣qw

∣∣), the regularization parameter, is chosen by taking the absolute maximum
value of the equivalent source amplitude vector calculated by WBH. The main reason for
using this parameter selection method is that the WBH algorithm is efficient and accurately
outputs the amplitude of the equivalent source strength over a wide frequency range.

When the prior sparse range parameter s is unknown, introduce a new adjustment
strategy to adapt to each iteration: s[k+1] = size( f ind(

∣∣∣q[k]∣∣∣ ≥ min
{∣∣∣q[k−1]

πx(s[k−1])

∣∣∣, δ
}
)), where

δ > 0.
In summary, the LMS algorithm consists of two main processes: filtering and adaptive

adjustment. The specific steps are as follows:
(1) Input transfer matrix G and A of equivalent source model;
(2) Measure the sound pressure column vector p(M × 1), and the equivalent source

intensity column vector q(N × 1);
(3) Through the L−curve method [22], select appropriate regularization parameters,

use Tikhonov to regularize the optimal solution formula: qTik =
[
GHG + λI

]−1
GHp,

calculate its equivalent source strength, recorded as qTik, and WBH calculates the equivalent
source intensity, which is recorded as qw;

(4) Set up qk = q0 = qTik , ∆D = 10 , ε = 10−6 , ρ = [0.05 × max(
∣∣qw

∣∣),
0.5 × max(

∣∣qw
∣∣)];

(5) Initial truncation condition: trun_x = max(
∣∣qTik

∣∣)/∆D; if it is greater than the
truncation value, qs

k = qk, and if it is less than the truncation value, qs
k = 0;

(6) Initialization: k = 1, negative gradient vector wk = GT(Gqk − p), step

τ = wT
k wk/

(
(Gwk)

T(Gwk)
)

; yk = qk − βwk;
(7) Calculate the median cutoff value trun_y = size( f ind(|yk| ≥ min(trun_x, δ))); if it

is greater than the truncation value, qk+1 = yk, and if it is less than the truncation value,
qk+1 = sign(yk) � max(|yk| − ρβ, 0);
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(8) Calculate output truncation value trun_z = size( f ind(
∣∣qk

∣∣ ≥ min(trun_y, δ))); if it
is greater than the truncation value, qs

k+1 = qk+1, and if it is less than the truncation value,
qs

k+1 = 0;
(9) If |F(qk+1)− F(qk)|/F(qk) ≥ ε or k > kmax, finish;
(10) qk = qk+1 , qs

k = qs
k+1 , trun_x = trun_z , k = k + 1; output the best equivalent

source intensity value and end the cycle;
(11) Output reconstructed surface sound pressure: PR = Aqk+1;
Input: transfer matrix G and A of equivalent source model.
Output: the best equivalent source intensity q value.

3. Numerical Simulations

In this section, simulation analysis is conducted for two types of sound sources: single
source and coherent source. Firstly, the Tikhonov regularization method, WBH, ISTA, and
FBS are used to reconstruct the sound field, and reconstruction error analysis is performed.
A pulsating sphere source with a radius of 0.01 m is used as the target sound source, with
a vibration velocity of 2.5 × 10−2 m/s, a sound speed of 340 m/s, and an air density of
1.29 kg/m3. For all subsequent simulations, the holographic plane is located 0.1 m away
from the sound source plane to meet the near-field measurement requirement. The recon-
struction plane is located 0.02 m away from the sound source plane to better restore the
radiation sound field of the target sound source. The equivalent source plane is located
0.001 m away from the sound source plane to optimally represent the actual sound source.
The four planes mentioned in the simulation are all in the same coordinate system. The
equivalent source plane adopts a 21 × 21 grid with a grid spacing of 0.05 m. The recon-
struction plane adopts a 41 × 41 grid with a grid spacing of 0.02 m. A rectangular array of
36 channels is used for near−field sound pressure measurement, and the arrangement of
microphones and sound source positions is shown in Figure 2, which is the most suitable
configuration for collecting noise generated by automotive components using a wheel
array in practical engineering applications. The reconstruction error is calculated using
Equation (15). A 36−channel rectangular microphone array was arranged on the holo-
graphic surface, and the simulations were all performed in matlab2018 on a computer with
Windows 10 (AMD Ryzen 5 2600X processor, 3.60 GHz, 16.00 GB RAM).

In order to quantitatively analyze the reconstruction accuracy of the sound field, the
reconstruction error calculation formula is used. Accuracy, the reconstruction error, is
calculated as follows:

err =

√√√√ N

∑
i=1

(|pi| − | p̄i|)2/

√√√√ N

∑
i=1

| p̄i|2 × 100 (15)

where p̄i and pi are the theoretical and reconstructed sound pressure values on the recon-
structed surface. The smaller the err value, the higher the reconstruction accuracy.

3.1. Single Source Simulation

The purpose of the single-source simulation is to compare four algorithms—Tikhonov
regularization, WBH, ISTA and FBS—for sound field reconstruction analysis under a single
source. The coordinates of the sound source were (0, 0, 0,) m, and the distance from the
holographic surface was set to 0.1 m. Random noise was added to the microphone sound
pressure data at a level of 15 dB below the average sound pressure of the microphone,
while the dynamic display range was set to 15 dB.

Figure 3 shows the sound pressure level diagrams of the theoretical values on the
reconstruction plane, as well as the results calculated by Tikhonov regularization, WBH,
ISTA, and FBS algorithms for a single sound source at 200 Hz and 2500 Hz. At 200 Hz,
Tikhonov regularization produces a larger hot zone at the sound source location, while
WBH, ISTA, and FBS algorithms gradually produce a hot zone that tends toward the center
of the sound source, with good recognition performance. At 2500 Hz, all four algorithms
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produce a concentrated hot zone, and can accurately identify the sound source. The sound
pressure cloud maps of several algorithms show that the range of the hot zone is reduced
compared with that of 200 Hz, and the sound source identification resolution is improved.

(a) Single sound source (b) Coherent sound source

(c) Measurement point coordinates

Figure 2. Schematic diagram of sound source layout.
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(a) Theoretical value, 200 Hz (b) Theoretical value, 2500 Hz

(c) Tikhonov, 200 Hz (d) Tikhonov, 2500 Hz

(e) WBH, 200 Hz (f) WBH, 2500 Hz

(g) ISTA, 200 Hz (h) ISTA, 2500 Hz

(i) FBS, 200 Hz (j) FBS, 2500 Hz

Figure 3. The calculated sound pressure level of single sound source at 200 Hz and 2500 Hz.

Figure 4 shows the reconstructed sound pressure amplitude of a single sound source
in the middle row of the reconstruction plane. At 200 Hz, all algorithms except for FBS have
a reconstructed sound pressure amplitude far from the theoretical value, but FBS maintains
its high reconstruction accuracy at low frequencies. At 2500 Hz, the amplitude curve of
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the reconstructed sound pressure in the middle plane calculated by WBH, ISTA, and FBS
algorithms matches the theoretical curve, and all algorithms can achieve high−precision
sound field reconstruction. The amplitude plot shows that the reconstructed sound pressure
peaks of the FBS algorithm are closer to the theoretical sound pressure values, and the
reconstruction accuracy is higher than that of the FBS algorithm. The amplitude plot
shows that the reconstructed sound pressure peaks of the FBS algorithm are closer to
the theoretical sound pressure values, which maintains a high reconstruction accuracy.
When the source frequency is 2500 Hz, except for the traditional Tikhonov regularization,
which still fails to reconstruct the sound field, the other four algorithms can reconstruct the
sound field.

(a) 200 Hz (b) 2500 Hz

Figure 4. Reconstructed sound pressure amplitude of a single sound source along the middle row of
the reconstructed surface.

According to Equation (15), Figure 5 shows the reconstruction error curves for a single
source in the entire analyzed frequency band from 200 to 2500 Hz, with the frequency
sampling points of each curve spaced 50 Hz apart, and the error values averaged over
10 calculations. Overall, WBH, ISTA, and FBS algorithms can reconstruct the sound field
more stably than the Tikhonov regularization method. Except for the traditional Tikhonov
regularization, the remaining three algorithms maintain more satisfactory reconstruction
performance throughout the analyzed frequency band. The three algorithms, WBH, ISTA,
and FBS, have good reconstruction accuracy in the middle−frequency and high−frequency
bands from 1000 Hz to 2500 Hz, and the reconstruction errors are kept below 20%. Com-
pared with WBH and ISTA, the FBS algorithm maintains higher reconstruction accuracy in
the low−frequency band from 200 to 500 Hz, and the reconstruction errors in the whole
frequency range are kept below 10%, which broadens the frequency range and ensures the
best sound field reconstruction performance.

Figure 5. Single source reconstruction errors between Tikhonov, WBH, ISTA, and FBS.
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3.2. Coherent Sound Source Simulation

This section analyzes the reconstruction performance of the four regularization meth-
ods mentioned above for coherent sound sources. The simulation settings for both coherent
and single sound sources are the same. Sound sources are symmetrically distributed about
the Y−axis and are separated by 0.4m along the X−axis, then the sources are located at the
following coordinates: (0.2, 0, 0) m and (−0.2, 0, 0) m.

Figure 6 shows the reconstructed sound pressure amplitude of the coherent sources in
the middle row of the reconstruction plane. At the source frequency of 200 Hz, the peak
value of the sound pressure amplitude of the coherent sound source of the intermediate
row is close to the theoretical value, which can accurately reconstruct the sound field. At
the frequency of 2500 Hz, the sound pressure amplitude calculated by WBH, ISTA, and FBS
is almost identical to the theoretical value, which can achieve sound field reconstruction.

(a) 200 Hz (b) 2500 Hz

Figure 6. Reconstructed sound pressure amplitude of a single sound source along the middle row of
the reconstructed surface.

The sound field reconstruction results of coherent sound sources at 200 Hz and
2500 Hz are shown in Figure 7. At the coherent source frequency of 200 Hz, the two
real sources in the Tikhonov regularization method are covered by larger hot zones and
cannot be accurately identified; WBH identifies the number and position of the sources
incorrectly. In contrast, ISTA and FBS can clearly identify the two sources, and the hot zone
generated by FBS is more concentrated at the source position. At a frequency of 2500 Hz,
the hot zones of these five algorithms can clearly indicate the positions of the given sources
and perform sound field reconstruction. The identification effects of ISTA and FBS are
relatively close, and the sound pressure level graph fits well with the theoretical sound
pressure level graph in hot zone size.

The reconstruction error of the coherent sources is shown in Figure 8. It can be seen
that the reconstruction error value of Tikhonov regularization in the full frequency band is
mainly concentrated in the range of 40−50%; the reconstruction fails and the algorithm
is no longer applicable. There exists a conversion frequency for the WBH algorithm, and
according to the analysis of the curve direction, it is concluded that the conversion frequency
is close to 1000 Hz; when the computation frequency is higher than the critical value, the
overall error is kept under 15%, showing good reconstruction performance. In contrast, the
frequency range of the ISTA and FBS algorithms is widened, and FBS is able to reconstruct
the sound field in the whole frequency band from 200 to 2500 Hz. The frequency range
is broadened, and the error value of FBS in reconstructing the sound field in the whole
frequency band from 200 to 2500 Hz is kept below 10%, which shows that the algorithm
can reconstruct the sound field stably and accurately. This shows that the algorithm can
reconstruct the sound field stably and accurately.
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(a) Theoretical value, 200 Hz (b) Theoretical value, 2500 Hz

(c) Tikhonov, 200 Hz (d) Tikhonov, 2500 Hz

(e) WBH, 200 Hz (f) WBH, 2500 Hz

(g) ISTA, 200 Hz (h) ISTA, 2500 Hz

(i) FBS, 200 Hz (j) FBS, 2500 Hz

Figure 7. Calculated sound pressure level diagram of 200 Hz and 2500 Hz coherent sound sources.
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Figure 8. Coherent source reconstruction errors between Tikhonov, WBH, ISTA, and FBS.

4. Experimental Verifications
4.1. Experimental Procedure

In this section, experiments were conducted to verify the sound field reconstruction
effect of the four near−field acoustic holography algorithms mentioned above. This
will facilitate further improvement of near−field acoustic holography technology. The
improved sparse equivalent source method is more accurate for the identification and
location of automobile noise sources, and also provides a reference for suppressing the
noise of automobile parts. In the experiment, an 18−channel wheel array with a diameter of
0.38 m from HBK was used for measurement. Data collector and PLUSE Lab Shop Version
acquisition software were used to process the time domain sound pressure signal. The
microphone position distribution is shown in Figure 9.

Figure 9. Microphone array coordinates.

The experimental conditions are shown in Figure 10. A single loudspeaker was placed
at the origin of the coordinates, taking the center axis of the measurement surface of the
microphone array as the reference. The single loudspeaker is arranged on the center axis,
with the corresponding coordinates of s0 (0, 0, 0) m, and the distance from the loudspeaker
to the measurement surface of the microphone array is 0.1m; the spatial coordinates of the
coherent sound sources are s1 (0.2, 0, 0) m and s2 (−0.2, 0, 0) m, respectively. During the
experiment, the first step was to ensure that the two speakers were of the same model. The
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loudspeakers were firstly used to emit sounds with frequencies of 200 Hz and 2500 Hz,
respectively, based on the assurance that the two loudspeakers were of the same model, and
2500 Hz, respectively. The sampling frequency was set to 16,384 Hz, and the sampling time
was 5s to ensure that the measurement data were stable and valid, and we added 20 dB of
random noise during the experiment to ensure the measurement conditions. Through the
holographic surface, we collected the time domain signal and exported it to a table data file,
and then used the software to process the data of acoustic information. The sound pressure
level was used as the output parameter and the display range of the cloud was set to 15 dB
with a gradient of 3 dB.

(a) The Single-source case (b) Two Single-source case

Figure 10. Experimental conditions.

4.2. Experimental Treatment

In the experiment, let the time-domain signal measured by the microphones in the
measurement array be Ph(t). The data processing process starts with obtaining the complex
sound pressure at each microphone position in the measurement array. The equation for
solving the complex sound pressure is as follows:

A(ω) =
√

sh,h(ω) (16)

In Equation (16), sh,h(ω) is the self-spectrum of the time-domain data Ph(t) at the array
measurement points.

The phase is solved as follows:

θ(ω) = arg(sh,h(ω)) (17)

In Equation (17), arg is the function that takes the phase. According to Equations (16) and (17), the
complex sound pressure at the location of the microphone measurement point corresponding
to the location of each microphone measurement point in the array can be found.

According to the amplitude and phase of the sound pressure at each measurement
point location on the holographic surface, the complex sound pressure at the corresponding
location of each microphone can be derived. The reconstruction of the sound field formed
by single and coherent sources is performed using the equivalent source method and the
s−differential forward−backward splitting (FBS) algorithm, and the reconstructed sound
field is shown in Figures 11 and 12. The sound field formed by the single source and
coherent sources is reconstructed using the equivalent source method and the s−differential
forward−backward split (FBS) algorithm.

Figure 11 is the reconstructed sound pressure level diagram of the single sound source
experiment. At the single sound source frequency of 200 Hz, the Tikhonov regularization
method produced a large hot zone around the center, resulting in poor reconstruction
performance. Although the WBH and ISTA algorithms accurately identified the single
source location, a significant hot zone was still visible around the origin coordinates.
Only the FBS algorithm produced a smaller hot zone and achieved accurate sound field
reconstruction. At the single sound source frequency of 2500 Hz, the hot zones produced
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by these four regularization algorithms were concentrated at the sound source location,
which was consistent with the simulation results, and the reconstruction effect of FBS was
the best.

(a) Tikhonov, 200 Hz (b) Tikhonov, 2500 Hz

(c) WBH, 200 Hz (d) WBH, 2500 Hz

(e) ISTA, 200 Hz (f) ISTA, 2500 Hz

(g) FBS, 200 Hz (h) FBS, 2500 Hz

Figure 11. Reconstructed sound pressure level diagram of 200 Hz and 2500 Hz single sound source.

Figure 12 shows the reconstructed sound pressure level diagram of the coherent sound
source experiment. It can be seen from the figure below that when the frequency of the
coherent sound source is 200 Hz, the sound pressure level cloud map is consistent with the
theoretical sound pressure level cloud map, and the hot zone displayed by FBS accurately
identified the source location, although the sound pressure amplitude was affected by
external experimental conditions. When the frequency of the coherent sound source is
2500 Hz, although the hot zones produced by all four algorithms could deduce the approx-
imate source location, only the FBS two−source hot zone image was close, maintaining
high reconstruction accuracy.
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(a) Tikhonov, 200 Hz (b) Tikhonov, 2500 Hz

(c) WBH, 200 Hz (d) WBH, 2500 Hz

(e) ISTA, 200 Hz (f) ISTA, 2500 Hz

(g) FBS, 200 Hz (h) FBS, 2500 Hz

Figure 12. Reconstructed sound pressure level diagram of 200 Hz and 2500 Hz coherent sound
sources.

5. Conclusions

The near−field acoustic holography based on the equivalent source method is ill−posed,
which requires the use of regularization methods to reduce the influence of input errors on
the reconstruction accuracy. Due to the limitations of traditional regularization methods,
a forward−backward splitting (FBS) algorithm based on s−differential approximation
is proposed to approximate the solution, and a closed form solution of s−differential
regularization is derived. Numerical simulations show that FBS is superior to Tikhonov
regularization in terms of reconstruction accuracy and resolution. Additionally, compared
to the ISTA and WBH regularization methods, FBS maintains higher reconstruction accuracy
across the entire frequency range of 200–2500 Hz, and produces reconstructed sound
pressure peaks that are closer to the theoretical values. The experimental verification of
single and coherent sound sources shows that the sound field reconstruction within a
wide frequency range of 200–2500 Hz is highly consistent with simulation results and
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accurately identifies the sound source location while maintaining high reconstruction
accuracy, thus validating the effectiveness and stability of this method for reconstructing
mid−to−low−frequency sound sources.

Although the s−differential FBS algorithm proposed in this paper is able to accurately
locate and identify the position of a single or coherent source in the near field, when the
distance between the source plane and the holographic plane becomes large, the algorithm
is limited in its ability to accurately reconstruct the radiated sound field at any position.
However, when the distance between the source plane and the holographic plane becomes
very large, the algorithm is limited in its ability to accurately reconstruct the radiated sound
field at any location, and the algorithm should be further optimized for reconstructing the
sound field of a long distance source to be better adapted to the holographic distance in
subsequent work.

To address the problem that the s−differential FBS algorithm needs to rethreshold the
initial iteration when reconstructing the sound field in the low−frequency band, based on
numerical simulation, the thresholds in the initial iteration are selected again. Based on
numerical simulation and the two−step iterative shrinkage thresholding algorithm, the
range of values is roughly determined, while in actual engineering applications, how to
accurately select the initial threshold needs to be further explored.
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