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Abstract: Underwater object detection plays a significant role in marine ecosystem research and
marine species conservation. The improvement of related technologies holds practical significance.
Although existing object-detection algorithms have achieved an excellent performance on land, they
are not satisfactory in underwater scenarios due to two limitations: the underwater objects are often
small, densely distributed, and prone to occlusion characteristics, and underwater embedded devices
have limited storage and computational capabilities. In this paper, we propose a high-precision,
lightweight underwater detector specifically optimizing for underwater scenarios based on the You
Only Look Once Version 8 (YOLOv8) model. Firstly, we replace the Darknet-53 backbone of YOLOv8s
with FasterNet-T0, reducing model parameters by 22.52%, FLOPS by 23.59%, and model size by
22.73%, achieving model lightweighting. Secondly, we add a Prediction Head for Small Objects,
increase the number of channels for high-resolution feature map detection heads, and decrease
the number of channels for low-resolution feature map detection heads. This results in a 1.2%
improvement in small-object detection accuracy, while the remaining model parameters and memory
consumption are nearly unchanged. Thirdly, we use Deformable ConvNets and Coordinate Attention
in the neck part to enhance the accuracy in the detection of irregularly shaped and densely occluded
small targets. This is achieved by learning convolution offsets from feature maps and emphasizing the
regions of interest (RoIs). Our method achieves 52.12% AP on the underwater dataset UTDAC2020,
with only 8.5 M parameters, 25.5 B FLOPS, and 17 MB model size. It surpasses the performance of
large model YOLOv8l, at 51.69% AP, with 43.6 M parameters, 164.8 B FLOPS, and 84 MB model size.
Furthermore, by increasing the input image resolution to 1280 × 1280 pixels, our model achieves
53.18% AP, making it the state-of-the-art (SOTA) model for the UTDAC2020 underwater dataset.
Additionally, we achieve 84.4% mAP on the Pascal VOC dataset, with a substantial reduction in model
parameters compared to previous, well-established detectors. The experimental results demonstrate
that our proposed lightweight method retains effectiveness on underwater datasets and can be
generalized to common datasets.

Keywords: YOLO; lightweight detector; small-object detection; deep learning

1. Introduction

More than 70% of the Earth is covered by water, and our oceans play a vital role in the
survival of humans all around the globe. Compared to the level of development on land, the
oceans are still veiled in a layer of mystery, holding a vast amount of untapped resources.
The marine environment has also been continuously under threat in recent years, making
research on the marine environment meaningful. An increasing number of researchers are
focusing on the development of underwater technologies, such as underwater acoustics,
underwater magnetism [1], underwater vehicle systems, underwater sensing components,
and underwater unexploded ordnance detection [2], among others. With the advancement
of computer vision, exploring the oceans using computer vision technology has become
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a new avenue. Underwater optical images have a relatively high resolution and contain
rich information, making them particularly advantageous for short-range underwater
target detection tasks. Fueled by the winds of computer vision, object detection has
gradually become one of the hottest technologies in ocean exploration, making a significant
contribution to the development of marine resources.

The field of Generic Object Detection [3–5] has evolved for more than two decades,
progressing from traditional methods to the deep learning techniques used at present.
Over this time, there has been a notable increase in accuracy, coupled with an improved
processing speed. However, Generic Object Detection in the underwater domain still faces
significant challenges that need to be addressed. Firstly, underwater environments suffer
from issues such as uneven lighting, low contrast, blurriness, and bright spots, which
impact the quality of features extracted from underwater images. Secondly, underwater
organisms are typically small and densely distributed, often leading to overlapping and
occlusion. Detecting small objects is a challenging aspect of generic object detection. Thirdly,
underwater embedded devices often have limited computational and storage capabilities,
making it difficult to deploy large models on these devices. Therefore, finding solutions to
allow for the accurate and rapid detection of objects in complex underwater environments
is an urgent problem that needs to be addressed.

Existing underwater object detection methods have seen numerous improvements.
Most underwater objects are small and densely packed, making it challenging for general
detectors to detect these small and blurry objects. Song et al. [6] introduced a two-stage
underwater detector with three key components, addressing uncertainty modeling and
hard example mining. The RetinaRPN network, the first component, utilizes objectness
and IoU prediction to generate high-quality proposals. The second component, a Proba-
bilistic Inference Pipeline, combines prior uncertainty from the first stage with the second
stage’s classification score to obtain the final detection score. The third component employs
“Boosting Reweighting”, a novel hard example mining method that amplifies the classi-
fication loss of challenging examples while reducing the weight of easy examples. This
approach facilitates the acquisition of a robust detection head in the second stage. During
the inference stage, the integration of R-CNN rectifies errors from the first stage, resulting
in an overall performance improvement. Their work yielded positive results in the domain
of underwater images, but the composed backbones were characterized by a large number
of parameters, making them unsuitable for real-time applications. Zhang et al. [7] proposed
a lightweight underwater detector based on YOLOv4 [8], integrating MobileNetv2 [9]
and depth-wise separable convolution [10] to reduce the network parameters. This work
achieved real-time underwater target detection and performed well compared to tradi-
tional detectors. However, there is still room for performance improvements compared to
state-of-the-art detectors.

To address these issues, we introduce a lightweight detector for underwater images
based on YOLOv8, optimizing the detections on small and desensed underwater objects.
Our contributions are summarized as follows:

(1) To achieve model lightweighting, we use FasterNet-T0 [11] to replace the backbone of
YOLOv8, slightly reducing model accuracy in exchange for a faster training speed
and fewer model parameters.

(2) In order to enhance the accuracy of small-object detection, we first integrate a predic-
tion head for small objects into YOLOv8 because underwater images often contain
many small objects. The prediction head we add is generated from high-resolution
feature maps, making it more sensitive to small objects. We also perform specific
optimizations for the number of channels in different resolution feature maps. Second,
we enhance the performance of detecting small objects and handling occlusions in
dense underwater images by utilizing Deformable ConvNets v2 [12] and incorporat-
ing Coordinate Attention [13] to embed positional information into channel attention,
which incurs almost no computational overhead but helps the network find regions
of interest in images.
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(3) With our lightweight model, we achieve 52.12% AP on the UTDAC2020 underwater
dataset [6], surpassing the larger YOLOv8l model (AP 51.69%). When increasing the
input resolution to 1280, the AP reach 53.18%. Additionally, we obtain outstanding
results of mAP 84.4% on the Pascal VOC dataset, surpassing previous well-established
detectors. These results demonstrate the effectiveness of our method in underwater
environments and its generalization to common datasets.

2. Related Work
2.1. YOLOv8 Network

YOLO [3], introduced by Joseph Redmon et al. in CVPR 2016, revolutionized object
detection with a real-time end-to-end approach. The methodology involves a two-step
process, where the first step detects potential object regions, and the second step utilizes a
classifier for these proposals. Unlike Fast R-CNN [14], YOLO adopts a more straightforward
output approach, incorporating both probabilities for classification and box coordinates for
regression in a single output, enhancing its efficiency and simplicity in comparison to the
two separate outputs approach of Fast R-CNN.

YOLOv8, a cutting-edge state-of-the-art (SOTA) model, builds upon the success of its
predecessors by introducing new features and improvements. The primary objective is to
enhance overall performance and flexibility. Similar to YOLOv5, the architecture consists
of a backbone, head, and neck. The backbone and neck part draw inspiration from the
YOLOv7 [15] ELAN [16] design. They substituted the YOLOv5 C3 structure with a C2f
structure, which facilitates a more extensive gradient flow. Additionally, they finetuned the
number of channels for various scale models, leading to a substantial improvement in the
overall performance of the model. The head part contains significant changes compared to
YOLOv5. It adopts the currently mainstream decoupled head, separating the classification
and the regression tasks, and replaces anchor-based with anchor-free. In the loss part,
the task-aligned assigner [17] label-matching strategy is employed, and distribution focal
loss [18] is introduced. YOLOv8 employs mosaic augmentation during training but disables
it for the final 10 epochs to mitigate potential detrimental effects throughout the entire
training process.

YOLOv8 offers five scaled versions: YOLOv8n (nano), YOLOv8s (small), YOLOv8m
(medium), YOLOv8l (large), and YOLOv8x (extra-large). Notably, YOLOv8x, evaluated
with the MS COCO dataset test-dev 2017, achieved an impressive AP of 53.9% with an
image size containing a longer side of 640 pixels, surpassing YOLOv5’s performance of
50.7% on the same input size. Additionally, YOLOv8x demonstrated a remarkable speed of
280 FPS on an NVIDIA A100 and TensorRT during evaluation.

2.2. Lightweight Networks

Following AlexNet’s [19] triumph in the 2012 ImageNet [20] Challenge, the rapid ad-
vancement of graphics processing units (GPUs) has propelled deep neural networks (DNNs)
to show significant potential in various AI domains. Meanwhile, resource-constrained
devices such as mobile phones and edge devices have become increasingly common. These
devices often have limited computational power, as well as limited energy resources and a
limited storage capacity, which pose challenges when deploying DNNs. Therefore, reduc-
ing model parameters and computational complexity while maintaining model accuracy
has become an urgent task.

At present, lightweight research commonly utilizes two main approaches: network
architecture design and model compression. The former focuses on exploring and designing
efficient network structures that reduce model parameters and the number of floating-
point operations (FLOPs) while maintaining a good performance. Some notable examples
include SqueezeNet [21], ShuffleNet (V1, V2) [22,23], MobileNet (V1, V2, V3) [9,24,25],
EfficientNet [26], GhostNet [27], MobileViT [28], and the FasterNet [11] used in this paper.
These networks have significantly contributed to the development of deep learning on
mobile devices. The latter involves various techniques to reduce the size and computational
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complexity of deep neural networks. Recent popular methods include pruning, quantization,
knowledge distillation, and a neural architecture search. Achieving model compression while
meeting specific performance constraints (e.g., accuracy and latency) can be challenging.
Researchers are now looking into joint research on hardware, software, and algorithm
optimization as the next trend in model compression. This holistic approach considers not
only accuracy but also energy efficiency and hardware costs during the design phase, leading
to more efficient and effective optimizations for real-world applications.

In the field of object detection, a common approach to model lightweighting is to use
a lightweight backbone and replace the convolutional layers. Chen et al. [29] used the
ImageNet pre-trained FasterNet as a backbone and integrated it with the popular Mask
R-CNN detector [30], resulting in a faster and better backbone compared to others. Depth-
wise Separable Convolutions [10], Pconv [11], and similar convolutional techniques have
also shown significant effectiveness in reducing model parameters. Currently, lightweight
networks have found widespread applications in embedded systems, such as surface
scratch detection [31]. In this paper, we approach the design of a lightweight underwater
network by applying FasterNet as the backbone for YOLOv8. Although this leads to a
slight decrease in accuracy, subsequent targeted optimizations for underwater scenarios
have improved the model accuracy.

2.3. Small-Object Detection

Recent advancements in generic object detection have been achieved through the ap-
plication of deep learning techniques. However, detecting small objects in images remains
a complex challenge due to their limited size, subtle appearance, and intricate geometry
cues. Compounding this difficulty is the absence of extensive datasets dedicated to small
objects. Improving the ability to detect small objects holds great practical significance in
real-world applications, such as underwater robotics, autonomous driving for vehicles,
and drone-based detection, among others.

Current trends in small-object detection encompass key techniques such as multiscale
representation, contextual information, super-resolution, and region proposal. Multiscale
representation combines specific location details extracted from low-level feature maps with
abundant semantic information derived from high-level feature maps. For instance, the
Feature Pyramid Network (FPN) [32] algorithm simultaneously utilizes low-level features
with a high resolution and high-level features with high levels of sembantic information.
By fusing features from different layers, it achieves effective predictions. Experiments
suggest that simply increasing the depth of the network may not be an effective solution to
the challenge of detecting small objects. Small-object detection benefits from the fusion of
high-resolution and semantically rich feature maps. Leveraging the relationship between
an object and its surrounding environment is a novel approach to improving small-object
detection accuracy. Extracting additional contextual information as a supplement to the
original region of interest (ROI) features is crucial since the ROI features extracted from
small objects are often limited. Attention mechanisms are one example of a technique
inspired by cognitive attention in artificial neural networks. These mechanisms enhance
the importance of certain parts of the input data while reducing the importance of others
based on context. They are trained using gradient descent. Super-resolution techniques
aim to enhance or reconstruct low-resolution images to a higher resolution, allowing
for the recovery of more details, especially for small objects. For instance, SRGAN [33]
was the first paper to apply GANs to the super-resolution domain. It combined GANs
with SRResNet [34], introducing new loss functions such as content loss and adversarial
loss to address the challenge of recovering high-frequency information in super-resolution.
Region proposal is a strategy to design more suitable anchors for small objects. For example,
YOLOv2 [35] uses anchor boxes to predict bounding boxes, effectively improving the model
recall capability, which is particularly beneficial for small-object detection.

Currently, deep-learning-based small-object detection has found numerous applica-
tions, such as garbage waste management in smart cities [36]. In our work, we enhanced
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small-object detection by incorporating three key techniques: a prediction head for small
objects utilizing multiscale representation, coordinate attention [13] to improve seman-
tic information in feature maps without a significant increase in computational load,
and Deformable ConvNets v2 [12] convolution for adaptively learning feature point re-
ceptive fields, ultimately enhancing detection accuracy, particularly for small objects in
complex environments.

3. Approach

In this paper, we first replace the YOLOv8 Darknet-53 backbone with FasterNet-T0 [11]
to reduce model parameters and flops, speed up model training, and achieve model
lightweighting. Secondly, we add a prediction head for small objects, generating low-level,
high-resolution feature maps that are more sensitive to small-object detection. Thirdly,
we introduce Coordinate Attention [13] to help the network find the regions of interest
in the images. Finally, we replace tShe convolutions in the Neck with Deformable Con-
vNets v2 [12], and replace the 3 × 3 convolutions in the Bottleneck of the C2f structure with
Deformable ConvNets v2. This deformable convolution can automatically augment the
offsets of feature respective fields, leading to more accurate feature extraction and improved
detection accuracy. The improved YOLOv8 overall structure is shown in Figure 1, and the
details of the improvement modules are described in the following sections.
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3.1. Faster Neural Networks

Efforts to design faster neural networks have been centered on reducing floating-point
operations (FLOPs). However, it is important to note that a decrease in FLOPs does not
necessarily translate to a proportional reduction in latency. Chen et al. [11] emphasize that
the low FLOPS observed is primarily attributed to frequent memory access, particularly in
operators like DWConv [10].

In response to these challenges, the authors introduce partial convolution (PConv)
as a solution. PConv aims to improve spatial feature extraction while simultaneously
minimizing redundant computation and memory access. This innovation is incorporated
into the FasterNet architecture, a new neural network family featuring four hierarchical
stages. Each stage integrates an embedding or merging layer for spatial downsampling
and channel expansion. The FasterNet block structure, which is present within each stage,
consists of a PConv layer, followed by two pointwise convolution [9] layers. PConv utilizes
specific consecutive channels as representatives for computation, with an increased number
of channels in the middle layer, and incorporates a shortcut connection to reuse input
features. The overall architecture of FasterNet and how PConv works is shown in Figure 2.
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FasterNet has many variants. In our experiments, we replaced the YOLOv8s’ Darknet-
53 backbone with FasterNet-T0. This replacement led to a 22.52% reduction in model
parameters (8.6 M vs. 11.1 M) and a 23.59% reduction in flops (21.7 B vs. 28.4 B), while
causing only a slight drop in AP and AP50, of 0.81% and 0.87%, respectively.

3.2. Prediction Head for Small Objects

We explored the underwater dataset UTDAC2020 and identified numerous instances
of extremely small objects. Zhang et al. [7] speculated that shallower features might
be effective when the targets are small and the features of the targets are not obvious.
Consequently, we introduced an additional prediction head specifically for detecting small
objects with shallower features. This four-head structure, in conjunction with the other
three prediction heads, mitigates the adverse impact of significant variations in object scale.
As illustrated in Figure 2, our added prediction head derives from a high-resolution feature
map, making it more sensitive to small objects. Through experimentation, we increased
the number of channels in the high-resolution feature map detection head while reducing
the channels in the low-resolution feature map detection head, maintaining model size
and memory usage. This resulted in a significant improvement in small-object detection
performance, increasing the AP by 1.2% overall and by 2.1% for small targets like scallops
on the UTDAC2020 underwater dataset.

3.3. Coordinate Attention

The Coordinate Attention [13] module addresses attention mechanisms for mobile
networks by embedding positional information into channel attention. It factorizes channel
attention into two 1D feature-encoding processes, aggregating features independently
along two spatial directions. This design captures long-range dependencies along one
spatial direction while preserving precise positional information along the other. The
module structure is depicted in Figure 3, showcasing a simple design that seamlessly
integrates into classic mobile networks with minimal computational overhead. Demon-
strating excellent performance, it excels in ImageNet classification, object detection, and
semantic segmentation.

In underwater images, various factors often result in poor image features. Using
coordinate attention not only extracts the attention area to help YOLOv8 cope with image
lighting imbalances, blurriness, and glare, but also incurs minimal computational costs and
minimal memory usage.
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3.4. Deformable ConvNets V2

The modeling of geometric transformations in convolutional neural networks (CNNs)
is inherently constrained by the fixed grid structures of the kernels. Dai et al. [37] have
introduced two innovative modules, namely deformable convolution and deformable RoI
pooling, which significantly augment the CNNs’ ability to model geometric transformations.

Deformable convolution innovates by incorporating 2D offsets into standard grid
sampling, enabling a flexible deformation of the sampling grid. To facilitate effective
learning, offsets are derived from preceding feature maps through additional convolutional
layers, ensuring deformation is adaptively conditioned on local input features. The above
process can be represented as follows:

Y(p0) = ∑
pn∈R

w(pn) · x(p0 + pn +△pn) (1)

R = {(−1,−1), (−1, 0), . . . , (0, 1), (1, 1)} (2)

where Y(p0) signifies the output feature map value at position p0, utilizing a 3 × 3 kernel
grid (R) with dilation 1. Here, x represents the input feature map, w denotes the sampled
values’ weights, pn enumerates the coordinates in R, and △pn represents the deformable
convolution augmented offsets.

Deformable RoI pooling introduces adaptive part localization in objects with varying
shapes by incorporating learned offsets into regular RoI pooling positions. These offsets are
derived from preceding feature maps and RoIs. In the RoI pooling process, given an input
feature map x and an RoI of size w × h with the top-left corner at p0, the RoI is divided
into k × k bins to generate a k × k feature map Y. The process described above can be
represented as follows:

Y(i, j) = ∑
p∈bin(i,j)

x(p0 + p + ∆pij)/nij (3)

where Y(i, j) denotes the values from deformable RoI pooling, and nij represents the
number of pixels in spatial binning positions. ∆pij is computed by a fully connected

layer, generating normalized offsets ∆
∧
pij. These offsets are then modulated by a scalar
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γ (empirically set to 0.1) and multiplied element-wise with RoI’s width and height, ex-

pressed as ∆pij = γ · ∆
∧
pij ◦ (w, h).

While Deformable ConvNets v1 shows better spatial feature extraction capabilities
compared to regular ConvNets, it can sometimes introduce irrelevant context, which can
hurt the algorithm’s performance. To address this, Zhu et al. [12] introduced Deformable
ConvNets v2, which adds weights to the sampling points in Deformable ConvNets v1.
Figure 4 illustrates how Deformable ConvNets v2 works on underwater datasets. This can
be expressed as follows:

Y(p0) = ∑
pn∈R

w(pn) · x(p0 + pn +△pn) · ∆mpn (4)

Y(i, j) = ∑
p∈bin(i,j)

x(p0 + p + ∆pij) · ∆mij/nij (5)

where ∆mpn and ∆mij represent the modulation scalars for each position, with values
ranging from 0 to 1, adding input features to adjust their strength at offset positions. This
adjustment allows the module to change the spatial distribution of the samples and their
mutual influence.
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In our work, we improve YOLOv8 by incorporating Deformable ConvNets v2. We
replace the Conv layers in the YOLOv8 Neck, as well as the 3 × 3 convolution in the
bottleneck of the C2f, with Deformable ConvNets v2. The experimental results show a
significant improvement in accuracy, with an increase of 0.72% in AP on the underwater
dataset. Specifically, the AP for the irregular category ‘holothurian’ increased by 1.39%.

4. Experiments
4.1. Datasets

We experimented with two challenging object detection datasets to assess and validate
the generalization performance of our model.

4.1.1. UTDAC2020

UTDAC2020, originating from the 2020 Underwater Object Detection Algorithm Com-
petition, serves as an underwater dataset with four classes: echinus, starfish, holothurian,
and scallop. The dataset included 5168 training images and 1293 validation images, with
four resolutions: 3840 × 2160, 1920 × 1080, 720 × 405, and 586 × 480. Notably, it presented
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with significant imbalances in resolution and category samples, posing challenges for
model training.

4.1.2. Pascal VOC

PASCAL VOC provides a comprehensive and standardized dataset for image recogni-
tion and classification. It organized an annual image recognition challenge from 2005 to
2012. The main dataset included VOC 2007 and VOC 2012, which are divided into four
major categories and twenty subcategories, making them a benchmark for object detection
algorithms. In the VOC 2007 dataset, there were 5011 annotated images in the trainval set
and 4952 annotated images in the test set, totaling 9963 annotated pictures. In the VOC 2012
dataset, there were 11,540 annotated images in the trainval set. We trained our detector on
the combined trainval dataset and evaluated its performance on the VOC 2007 test set.

4.2. Implementation Details

Table 1 provides details on the hardware and software setup used in the experiment.

Table 1. The experimental setting.

Environment Versions or Model Number

CPU Intel(R) Xeon(R) Silver 4210R CPU @ 2.40 GHz
GPU GeForce RTX 2080 Ti, Two GPUs, Memory of 11 G
OS Ubuntu 18.04

CUDA
CUDNN

V 10.2
V 7.6.5

PyTorch V 1.12.1
Python V 3.8.16

During the training, consistent training parameters were applied to each experimental
group to ensure the precision of the experiments. The input resolution was configured
with the longer side set to 640 pixels, preserving the original aspect ratio of the images,
and the batch size was fixed at 32. In the training process, if the model did not show an
improvement within 50 epochs, the training was terminated early, with a maximum of
300 epochs allowed. Optimization of the loss function was achieved through the utilization
of the Stochastic gradient descent (SGD) algorithm, incorporating a momentum value
of 0.937 and a weight decay coefficient of 5 × 10−4. The initial learning rate was set at
0.01, and the confidence threshold was defined as 0.25. Mosaic data augmentation was
employed, while all other parameters were kept consistent with those in YOLOv8.

During the inference, a standardized input resolution with the longer side set to
640 pixels was used, while preserving the original aspect ratio of the images. The confidence
threshold was precisely defined at 0.001, and the intersection over union (IOU) threshold
was established at 0.7. In the context of speed testing, singular GPU utilization was
implemented, and the batch size was specifically set to 1, denoting the sequential processing
of individual images.

In this context, we utilized the widely accepted metrics for object detection, as outlined
in Table 2. The measurements for the parameters and FLOPs were evaluated with the
longer side set to 640 pixels.

Table 2. The metrics used in our experiments.

Metrics Description

AP50 The mean average precision (mAP) at an intersection over union (IoU) of 0.50.
AP The mAP at IoU of 0.50:0.05:0.95.

Parameters The overall count of parameters in the network.
FLOPs Floating-point operations per second.
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4.3. Comparisons with Other State-of-the-Art Methods
4.3.1. Results on UTDAC2020

The experiment results obtained from the UTDAC2020 dataset are presented in Table 3.
As this work focuses on model lightweighting research, we employed AP and AP50 to
assess the model accuracy and used parameters, FLOPS, and model size to compare the
model scale. The highest level is indicated by text in bold.

To validate the effectiveness of our proposed method, we compared it with the
YOLOv8n, YOLOv8s, YOLOv8m, and YOLOv8l models, and other well-established detec-
tors results from the paper [6]. As shown in Table 3, our method reduces the parameters,
FLOPS, and model size of the YOLOv8s model by 23.42% (8.5 M vs. 11.1 M), 10.21%
(25.5 B vs. 28.4 B), and 22.73% (17 MB vs. 22 MB), respectively. However, because our
model is specifically optimized for underwater scenarios, its accuracy surpasses even that of
the larger YOLOv8l model, achieving an AP of 52.12% and AP50 of 85.49%. This represents
an improvement of 1.62% (52.12% vs. 50.50%) and 0.76% (85.49% vs. 84.73%) compared to
YOLOv8s, respectively. The experimental results confirm the effectiveness of our method in
underwater scenarios and its high precision. To further enhance the model accuracy, espe-
cially considering the prevalence of small objects in underwater scenarios, we increased the
image input of the longer side to 1280 pixels. This led to a further improvement in model
accuracy, with an AP of 53.18% and an AP50 of 86.21%. We conducted processing speed
tests using a single GeForce RTX 2080 Ti, testing over 1000 images from the UTDAC2020
dataset and averaging the results. Our method, at 640, achieved a processing speed of
68.03 frames per second (FPS), while at 1280, our method achieved 41.49 FPS. Despite a
decrease in processing speed when increasing the input image size, both methods maintain
real-time performance (30 FPS or better) [38]. Users can choose the most appropriate
method based on the specific underwater scenario. To the best of our knowledge, our
method achieves state-of-the-art (SOTA) performance on the UTDAC2020 dataset.

Table 3. Comparisons with different object detectors on UTDAC2020 dataset (The symbol * signifies
enhanced version of the model.).

Method Backbone AP AP50
Parameters

(M)
FLOPs

(G)
Model Size

(MB)

Faster R-CNN w/FPN [29] ResNet50 44.50 80.90 41.14 63.26 ~
Cascade R-CNN [39] ResNet50 46.60 81.50 68.94 91.06 ~
RetinaNet [40] ResNet50 43.90 80.40 36.17 52.62 ~
FCOS [41] ResNet50 43.90 81.10 31.84 50.36 ~
Deformable DETR [42] ResNet50 46.60 84.10 ~ ~ ~
Libra R-CNN [43] ResNet50 45.80 82.00 41.40 63.53 ~
Dynamic R-CNN [44] ResNet50 45.60 80.10 41.14 63.26 ~
ATSS [45] ResNet50 46.20 82.50 31.89 51.58 ~
Boosting R-CNN [6] ResNet50 48.50 82.40 43.55 53.17 ~
Boosting R-CNN * [6] ResNet50 51.40 85.50 45.91 54.67 ~

YOLOv8n Darknet-53 49.07 82.73 3.0 8.1 6
YOLOv8s Darknet-53 50.50 84.73 11.1 28.4 22
YOLOv8m Darknet-53 51.74 85.11 25.8 78.7 50
YOLOv8l Darknet-53 51.69 84.85 43.6 164.8 84

Ours FasterNet-T0 52.12 85.49 8.5 25.5 17
Ours (1280) FasterNet-T0 53.18 86.21 8.5 25.5 18

Thanks to the prediction head for small objects, DCNv2, and coordinate attention, false
positives and false negatives in the Echinus and Starfish categories significantly decreased.
To accurately illustrate the differences, the baseline YOLOv8s used the image with a longer
side of 640 pixels as the input, while our method used input images with longer sides
of 640 pixels and 1280 pixels, respectively. We visualized the detection results for the
underwater UTDAC2020 dataset. As shown in Figure 5, the YOLOv8s model exhibits some
instances of false positives (yellow boxes) and false negatives (blue boxes), especially with
small objects.
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Figure 5. Comparison of the detection results of the URPC2020 underwater dataset with YOLOv8s
using visualization (Column Left: YOLOv8s sets the longer side of the image input to 640 pixels,
Column Middle: Ours method sets the longer side of the image input to 640 pixels, Column Right:
Ours method sets the longer side of the image input to 1280 pixels). Additionally, false positives are
indicated by yellow boxes, and false negatives are represented by blue boxes.
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4.3.2. Results on Pascal VOC

To validate the generalization of our proposed method, we conducted experiments on
the Pascal VOC dataset and compared the performance with two-stage detectors, one-stage
detectors, and lightweight detectors. The experimental results are shown in Table 4, in
which the performance indicators of the compared detectors were obtained from their
original articles. As the results demonstrate, our method achieves high accuracy (mAP
84.4%) while maintaining lightweight parameters (8.5 M). Compared to YOLOv8s, it not
only improves mAP by 0.5% (84.4% vs. 83.9%) but also reduces the parameter count by
23.42% (8.5 M vs. 11.1 M). Compared to YOLOv8m, our method significantly reduces these
parameters by 67.18% (8.5 M vs. 25.9 M), while only experiencing a slight decrease in mAP,
of 1.7% (84.4% vs. 86.1%). The results indicate that our method significantly improves
performance in terms of lightweighting and model accuracy compared to previous mature
detectors, demonstrating its generalization on the common dataset.

Table 4. Comparisons with different object detectors on PASCAL VOC dataset (The symbol * signifies
enhanced version of the model.).

Method Backbone Input Size mAP Parameters (M)

Two-Stage Detector:
Faster RCNN [46] VGGNet 1000 × 600 73.2 134.7
Faster RCNN [5] ResNet-101 1000 × 600 76.4 60.13
MR-CNN [47] VGG16 1000 × 600 78.2 ~
R-FCN [48] ResNet50 1000 × 600 77.4 31.9
CoupleNet [49] ResNet101 1000 × 600 82.7 ~
DSOD300 [50] DS/64-192-48-1 300 × 300 77.7 14.8
Boosting R-CNN [6] ResNet50 1000 × 600 81.9 43.6
Boosting R-CNN* [6] ResNet50 1000 × 600 83.0 45.9

One-Stage Detector:
SSD512 [51] VGG16 512 × 512 76.8 ~
STDN513 [52] DenseNet169 513 × 513 80.9 ~
RefineDet512 [53] VGG16 512 × 512 81.8 ~
DSSD513 [54] ResNet101 513 × 513 81.5 ~
RetinaNet [40] ResNet50 1000 × 600 77.3 36.2
FERNet [55] VGG16 + ResNet50 512 × 512 81.0 ~
DES512 [56] VGG16 512 × 512 81.7 ~
DFPR512 [57] VGG16 512 × 512 81.1 ~
EFIPNet512 [58] VGG16 512 × 512 81.8 ~
RFBNet512 [59] VGG16 512 × 512 82.1 ~

Lightweight detectors:
SqueezeNet-SSD [60] SqueezeNet 300 × 300 64.3 5.5
MobileNet-SSD [60] MobileNet 300 × 300 68.0 5.5
Pelee [61] PeleeNet 300 × 300 70.9 6.0
Tiny-DSOD [60] G/32-48-64-80 300 × 300 72.1 1.0

YOLO detectors:
YOLOv8n Darknet-53 640 × 640 80.4 3.0
YOLOv8s Darknet-53 640 × 640 83.9 11.1
YOLOv8m Darknet-53 640 × 640 86.1 25.9
Ours FasterNet-T0 640 × 640 84.4 8.5

4.4. Ablation Study

To assess the effectiveness of different modules, we conducted ablation experiments
on the underwater UTDAC2020 dataset, and the results are shown in Table 5. We compared
our proposed method with the baseline YOLOv8s. When we replaced the YOLOv8’s
backbone Darknet-53 with FasterNet-T0, the model parameters, FLOPS, and model size
decreased by 22.52% (8.6 M vs. 11.1 M), 23.59% (21.7 B vs. 28.4 B), and 22.73% (17 MB
vs. 22 MB), respectively. However, AP only decreased by 0.81% (49.69% vs. 50.50%),
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demonstrating the effectiveness of FasterNet in lightweighting YOLOv8 for underwater
environments. After adding the prediction head for small objects, AP increased by 1.2%
(50.89% vs. 49.69%). Through experiments, we found that the low-resolution feature map
detection head had an insignificant effect on the UTDAC2020 dataset and reduced its
channel number, so the model size underwent a slight decrease instead of an increase.

Table 5. Ablation study on UTDAC2020.

Setting AP Echinus Starfish Holothurian Scallop Parameters
(M)

FLOPs
(B)

Model Size
(MB)

Baseline-YOLOv8s 50.50 52.46 55.38 40.36 53.80 11.1 28.4 22

+FasterNet-T0 49.69 52.04 54.33 39.34 53.05 8.6 21.7 17

+FasterNet-T0,
+Phead 50.89 53.28 55.21 39.94 55.15 8.0 30.7 16

+FasterNet-T0,
+Phead, +CA 51.40 53.11 56.54 41.12 54.82 8.0 30.8 16

+FasterNet-T0,
+Phead, +CA,
+DCNv2 (640)

52.12 53.92 56.85 42.51 55.22 8.5 25.5 17

+FasterNet-T0,
+Phead, +CA,

+DCNv2 (1280)
53.18 53.08 57.64 44.87 57.13 8.5 25.5 18

Finally, based on our experience, increasing the input image resolution had a signif-
icant effect on small-object detection. By increasing the image input’s longer side from
640 pixels to 1280 pixels, we achieved a 1.06% (53.18% vs. 52.12%) improvement in AP.
This enhances the model’s underwater detection capabilities and meets various speed and
accuracy requirements in different scenarios.

5. Discussion
5.1. The Impact of High-Resolution Feature Maps (Prediction Head for Small Objects)

In order to validate the role of the prediction head for the small objects module
in small-object detection, we visualized it using a small-object sample image from the
UTDAC2020 dataset. As shown in Figure 6, the top image displays the detection results of
YOLOv8s + FasterNet-T0, while the bottom image shows the detection results of the
YOLOv8s + FasterNet-T0 + prediction head for small objects (Phead). By comparing these
two images, we can observe the significant improvements when using the prediction head
for the small objects module in small-object detection.

To further demonstrate the effectiveness of the prediction head for small objects
module, we conducted an analysis from the perspective of feature maps using Figure 7.
YOLOv8s has three detection heads, and we visualized nine examples of feature maps for
each detection head, as shown in the left three columns in Figure 7. Our proposed method
introduces an additional high-resolution feature map detection head (prediction head for
small objects), totaling four detection heads. Similarly, we visualized nine examples of
feature maps for each detection head, as shown in the middle three columns in Figure 7.
Additionally, based on empirical knowledge, using large-sized input images increases
the overall scale of feature maps in the network, which is advantageous for small-object
detection. According to our experimental results, this indeed brings about substantial
improvements. We also performed a feature map visualization for our method with the
image input’s longer side set to 1280 pixels as a comparison, as shown in the right three
columns in Figure 7.
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Figure 7. The feature maps of corresponding detection heads using different methods (YOLOv8s 640,
ours 640 and ours 1280) for the underwater image of Figure 6.

Through observation, the object outlines in the first row of feature maps in Figure 7
are proven to be clearer (highlighted by yellow-green bright spots), while those in the
second row are somewhat blurry, and the outlines are completely blurred from the third
row onwards. The first row of Figure 7 represents the high-resolution feature map detection
head that we added, further highlighting the effectiveness of the prediction head for small
objects module. This also suggests that high-resolution feature maps are more conducive
to detecting small objects.

5.2. The Impact of Low-Resolution Feature Maps on Large Object Detection

Similarly, we also analyzed the advantage of low-resolution feature maps for detecting
large objects. Figure 8 shows the large object sample image from UTDAC2020 dataset
with the detection results using our method (1280). We analyzed the three different scale
feature maps (320 × 184, 160 × 92, 80 × 46) with our method (1280), using Grad-CAM [62]
attention maps. As shown in Figure 9, there is a more concentrated attention on the large
object in the 80 × 46 feature map, while it appears more dispersed in the 320 × 184 and
160 × 92 feature maps. This suggests that a low-resolution feature map is more favorable
for detecting large objects.
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5.3. Applicable in Various Underwater Marine Scenarios

To assess the generalization of our method on the underwater dataset, we tested the
performance of the model trained on the UTDAC2020 dataset using an unseen underwater
dataset, UODD [63], which includes underwater cultured products such as sea cucumbers,
sea urchins, and scallops. We selected cases with occlusion, dense small objects, and
complex backgrounds to simulate real underwater scenarios, and the results are shown in
Figure 10. The results demonstrate that our model performs well and generalizes effectively
in real underwater scenarios.
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However, in underwater environments with poor visibility and a high degree of
target overlap, our detector may miss certain targets. We speculate that incorporating an
underwater image enhancement network during the preprocessing of model data may
improve this phenomenon, albeit at the cost of increased model parameters, FLOPs, and a
slower inference speed. It is worth considering whether integrating an underwater image
enhancement network into the model would be beneficial.

6. Conclusions

Underwater object detection faces complex challenges, such as uneven lighting, low
contrast, dense object distributions, occlusions, and constraints on computational resources
and storage in underwater embedded devices, leading to limitations in the performance of
conventional object detectors. This work enhances the YOLOv8 algorithm, a cutting-edge
object detection approach, with four modules aimed at lightweighting and enhancing small-
object detection accuracy. According to experiments, adding the prediction head for small
objects module is the most direct and effective method to improve the accuracy of detecting
small objects. The use of Deformable ConvNets also significantly enhances the detection of
small objects. The results demonstrate that our approach achieves a state-of-the-art (SOTA)
performance on the UTDAC2020 underwater dataset, maintaining lightweight parameters
(8.5 M), low flops (25.5 B), and a small model size (18 MB), while achieving an accuracy
of AP 53.18% and AP50 86.21%. Notably, it even surpasses the larger YOLOv8l model
with an AP of 51.69%. Additionally, parallel experiments on the Pascal VOC dataset show
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the generalization of our approach, outperforming many well-established detectors while
maintaining a lightweight model.

In future work, we will continue to explore models that balance model size and
detection accuracy to further advance the field of underwater object detection. Additionally,
the scarcity of underwater datasets remains a challenge, requiring more high-quality data
to effectively improve model performance in underwater environments.
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