
Citation: Quarta, A.A. Initial Costate

Approximation for Rapid Orbit

Raising with Very Low Propulsive

Acceleration. Appl. Sci. 2024, 14, 1124.

https://doi.org/10.3390/

app14031124

Academic Editor: Cristian De Santis

Received: 18 December 2023

Revised: 5 January 2024

Accepted: 26 January 2024

Published: 29 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Initial Costate Approximation for Rapid Orbit Raising with
Very Low Propulsive Acceleration
Alessandro A. Quarta

Department of Civil and Industrial Engineering, University of Pisa, I-56122 Pisa, Italy;
alessandro.antonio.quarta@unipi.it

Abstract: The transfer between two circular, coplanar Keplerian orbits of a spacecraft equipped with
a continuous thrust propulsion system is usually studied in an optimal framework by maximizing
a given performance index. Using an indirect approach, the optimal trajectory and the maximum
value of the performance index are obtained by numerically solving a two-point boundary value
problem (TPBVP). In this context, the computation time required by the numerical solution of the
TPBVP depends on the guess of unknown initial costates. The aim of this paper is to describe an
analytical procedure to accurately approximate the initial costate variables in a coplanar, circle-to-
circle, minimum-time transfer. In particular, this method considers a freely steerable propulsive
acceleration vector, whose magnitude varies over a finite range with a sufficiently low maximum
value. The effectiveness of the analytical method is tested in a set of both geocentric and heliocentric
(simplified) mission scenarios, which model the classical LEO-GEO or interplanetary transfers toward
Venus, Mars, Jupiter, and comet 29P/Schwassmann–Wachmann 1.

Keywords: continuous thrust propulsion system; circle-to-circle orbit transfer; trajectory optimization;
optimal control problem; costate estimation

1. Introduction

The transfer between two circular, coplanar Keplerian orbits of a spacecraft equipped
with a continuous thrust propulsion system is a classic astrodynamics problem [1] that is
typically solved in an optimal framework by maximizing (or minimizing) a given scalar
performance index as, for example, the propellant consumption or the total flight time. In
this context, the optimization procedure described in the fundamental textbook by Bryson
and Ho [2] is a typical example.

In fact, when the optimization problem is approached using the well-known indirect
method [3,4], i.e., a method based on the classical theory of the calculus of variations [5],
the solution requires the evaluation of the initial value of a set of costate variables, which is
usually obtained by numerically solving a two-point boundary value problem (TPBVP).
The computation time required by the numerical solution (and also by the convergence of
the entire procedure) of the TPBVP associated with the optimization procedure is strongly
dependent on the guess of unknown initial costates [6,7].

The purpose of this paper is to propose an analytical procedure to accurately approxi-
mate the initial costate variables in a coplanar, circle-to-circle minimum-time transfer, in
order to initialize the numerical procedure that solves the TPBVP with an initial guess
that is close to the actual solution. In particular, this paper considers a mission scenario in
which the thrust vector is freely steerable during flight, and the magnitude of the propul-
sive acceleration varies over a finite range. The proposed procedure, which is consistent
with the results from the classical literature [8–10], is suitable for the case of a propulsive
acceleration vector with a low (or very low) maximum magnitude. In this scenario, the
minimum-time transfer trajectory can be approximated through a tight spiral [11,12], and
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some characteristics of the spacecraft osculating orbit can be described in an analytical
(simple) form.

The proposed procedure is used here to analyze the optimal transfer in a set of both
heliocentric and geocentric mission scenarios, as a function of the propulsive acceleration
maximum magnitude. In particular, optimal circle-to-circle (rapid) spacecraft trajectories
are studied in a classical LEO-GEO transfer and in a rendezvous mission towards Venus,
Mars, Jupiter, and comet 29P/Schwassmann–Wachmann 1. Finally, the method discussed
in this paper can also be used to rapidly obtain a set of accurate information about the
optimal transfer trajectory in order to initialize more refined (trajectory) design procedures,
such as those recently proposed by Huang et al. [13].

A natural extension of the method proposed in this work is to consider the dynamics
of a spacecraft, which include the change in mass due to propellant consumption. This
important aspect of the thrust vector model introduces a further parameter in the (optimal)
design of the mission, namely the specific impulse, the value of which influences the overall
transfer performance. On the other hand, the proposed method can be adapted to a scenario
based on the use of a propellantless propulsion system such as, for example, a scenario
involving a photonic solar sail [14,15] or Janhunen’s Electric Solar Wind Sail [16,17].

2. Mathematical Preliminaries

Consider a two-dimensional scenario in which a spacecraft S initially (time instant
t = t0 ≜ 0) covers a circular, Keplerian orbit of assigned radius r0 around a primary body of
gravitational parameter µ. The spacecraft is equipped with a continuous-thrust propulsion
system which gives a freely steerable thrust vector and a propulsive acceleration ap whose
magnitude ap ranges in the interval [0, am], where am > 0 is the maximum (finite) value of
ap. The continuous propulsive acceleration induced by the primary propulsion system is
used to transfer the spacecraft to a circular, coplanar, target orbit of assigned radius r f ̸= r0
by minimizing the required flight time ∆t = t f − t0 ≡ t f , where t f > t0 is the final time
instant. In other terms, the spacecraft transfer mission coincides with a minimum-time,
circle-to-circle orbit raising if r f > r0, or orbit lowering when r f < r0. Bearing in mind the
symmetry of the transfer problem, introduce a classical polar reference frame T (O; r, θ)
with the origin in the primary body center-of-mass O, in which r is the O-S distance and θ
is the polar angle measured from the O-S line at the initial time instant. The polar reference
frame T is sketched in Figure 1, where îr (or îθ) is the radial (or transverse) unit vector.

parking 
orbit

target 
orbit

q

transfer
trajectory

start

ˆ
ri

arrival

ˆ
qi

O

S

0r

fr

primary
body

S

ˆ
ri

ˆ
qi

pa

a

spacecraft

Figure 1. Polar reference frame T (O; r, θ) with origin in the primary body center-of-mass and
spacecraft propulsive acceleration vector ap. Blue line → circular parking orbit; red line → circular
target orbit; black line → spacecraft optimal transfer trajectory.
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In Figure 1, the direction of the spacecraft propulsive acceleration vector is identified by
the thrust angle α ∈ [−π, π] rad, which is defined as the angle (measured counterclockwise
into the plane of the circular parking orbit) between the O-S line and the direction of ap.
Accordingly, the propulsive acceleration vector can be written as a function of the (control)
angle α as

ap = ap cos α îr + ap sin α îθ (1)

so that the polar form of the spacecraft equations of motion are the well-known

ṙ = u , θ̇ =
v
r

, u̇ = − µ

r2 +
v2

r
+ ap cos α , v̇ = −u v

r
+ ap sin α, (2)

where u (or v) is the radial (or transverse) component of the spacecraft velocity. The system
of differential Equation (2) is completed by the 4 initial conditions that model the spacecraft
traveling in the circular parking orbit, viz.

r(t0) = r0 , θ(t0) = 0 , u(t0) = 0 , v(t0) =

√
µ

r0
(3)

If the final value of the spacecraft polar angle θ(t f ) is unconstrained, the conditions for
a circle-to-circle orbit transfer give the following 3 scalar constraints at the final time instant

r(t f ) = r f , u(t f ) = 0 , v(t f ) =

√
µ

r f
(4)

The spacecraft equations of motion (2) and the boundary constraints given by
Equations (3) and (4) can be rewritten more conveniently in a dimensionless form by
introducing the (dimensionless) variables

r̃ ≜
r
r0

, ũ ≜
u√
µ/r0

, ṽ ≜
v√

µ/r0
, t̃ ≜

t√
r3

0/µ
, ãp ≜

ap

µ/r2
0

(5)

so that Equation (2) becomes

r̃′ = ũ , θ′ =
ṽ
r̃

, u′ = − 1
r̃2 +

ṽ2

r̃
+ ãp cos α , ṽ′ = − ũ ṽ

r̃
+ ãp sin α (6)

where the prime symbol indicates the derivative with respect to the dimensionless time t̃.
Accordingly, the boundary conditions written in Equations (3) and (4) become

r̃(t̃0) = 1 , θ(t̃0) = 0 , ũ(t̃0) = 0 , ṽ(t̃0) = 1 (7)

and
r̃(t̃ f ) = r̃ f , ũ(t̃ f ) = 0 , ṽ(t̃ f ) =

1√
r̃ f

(8)

in which r̃ f is the dimensionless target radius, and t̃ f is the dimensionless flight time to
be minimized through a suitable selection of the spacecraft controls {ãp, α}. Note that
Equations (6)–(8) are independent of both the actual value of the primary body gravitational
parameter and the radius of the circular parking orbit. The optimization of the spacecraft
transfer trajectory, i.e., the calculation of the time variation in both the thrust angle α and
the propulsive acceleration (dimensionless) magnitude ãp that minimizes the flight time, is
described in the next section.

3. Trajectory Optimization Using an Indirect Method

The circle-to-circle, minimum-time continuous-thrust orbit transfer optimization is
studied using an indirect method, that is, a method based on the classical calculus of
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variations. In this context, and keeping in mind the mathematical model described in
references [2,5], the dimensionless performance index J to be maximized is written as

J ≜ −∆t ≡ −t̃ f (9)

while the (dimensionless) Hamiltonian function H is given, according to Equation (6), by

H = λr̃ ũ + λθ
ṽ
r̃
+ λũ

(
ṽ2

r̃
− 1

r̃2

)
− λṽ

ũ ṽ
r̃

+Hc (10)

where {λr̃, λθ , λũ, λṽ} are the dimensionless costates, and Hc is the part of the Hamiltonian
function that explicitly depends on the two control terms {ãp, α}, viz.

Hc ≜ ãp (λũ cos α + λṽ sin α) (11)

The optimal value of the controls {ãp, α} is obtained by using Pontryagin’s maximum
principle [18], i.e., by maximizing (at any time instant) the function Hc defined in the
previous equation. More precisely, bearing in mind that Hc is linear in ãp and that the
thrust vector direction (i.e., the value of α) is unconstrained, the optimal control law is
simply given by

ãp = ãm ≜
am

µ/r2
0

, cos α =
λũ√

λ2
ũ + λ2

ṽ

, sin α =
λṽ√

λ2
ũ + λ2

ṽ

(12)

where ãm represents the dimensionless form of the maximum propulsive acceleration
magnitude am. Note that, as expected, the control law reassumed in Equation (12) is
consistent with the result presented in reference [2]. In particular, the first of Equation (12)
indicates that the rapid transfer is obtained by selecting the maximum value of ap (i.e.,
no coasting arcs appear in the optimal transfer trajectory), while the last two equations
indicate that the optimal thrust direction coincides with the classical Lawden’s primer
vector direction [19].

In this context, the time variation in the optimal thrust angle is obtained, through
Equation (12), by (numerically) solving the Euler–Lagrange equations [2,5], which give the
t̃-derivative of the four costates {λr̃, λθ , λũ, λṽ} as

λ′
r̃ = −∂H

∂r̃
=

ṽ(λθ − λṽ ũ + λũ ṽ)
r̃2 − 2 λũ

r̃3 (13)

λ′
θ = −∂H

∂θ
= 0 (14)

λ′
ũ = −∂H

∂ũ
=

λṽ ṽ
r̃

− λr̃ (15)

λ′
ṽ = −∂H

∂ṽ
=

λṽ ũ − λθ − 2 λũ ṽ
r̃

(16)

The expression of the Hamiltonian function is also used to evaluate the transversality
condition [2], which in this case gives the following two scalar constraints at the final time

λθ(t̃ f ) = 0 , H(t̃ f ) = 1 (17)

In particular, taking Equation (14) into account, we obtain that

λθ = 0 (18)
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during the transfer, so Equations (13) and (16) are simplified as

λ′
r̃ =

ṽ(λũ ṽ − λṽ ũ)
r̃2 − 2 λũ

r̃3 (19)

λ′
ṽ =

λṽ ũ − 2 λũ ṽ
r̃

(20)

On the other hand, observing that the dimensionless time t̃ does not compare explicitly
in the expression of the Hamiltonian function given by Equation (10), one has that the
value of H is a constant of motion [2]. Accordingly, the second of Equation (17) can be
rewritten as

H(t̃0) = 1 (21)

Bearing in mind Equations (10) and (11), the optimal control law given by Equation (12),
the initial conditions reassumed in Equation (7), and the expression of λθ given by Equation (18),
the previous equation gives the following constraint at the initial time instant

ãm

√
λ2

ũ(t̃0) + λ2
ṽ(t̃0) = 1 (22)

where λũ(t̃0) (or λṽ(t̃0)) is the initial value of the dimensionless costate λũ (or λṽ), which is
one of the unknowns of the associated TPBVP. The previous equation states that the point
{λũ(t̃0), λṽ(t̃0)} lies on a circle of radius equal to 1/ãm, as sketched in Figure 2, where the
auxiliary angle δ ∈ [−π/2, π/2] rad is introduced.

0
0( )u tl %
%

0( )v tl %
%

1

ma%
d

Figure 2. Variation in λũ(t̃0) and λṽ(t̃0) with the auxiliary angle δ; see also Equation (22).

Accordingly, Equation (22) and Figure 2 allow the pair {λũ(t̃0), λṽ(t̃0)} to be calcu-
lated as a function of the single (geometric) dimensionless variable δ as

λũ(t̃0) =
cos δ

ãm
, λṽ(t̃0) =

sin δ

ãm
(23)

Note that the auxiliary angle δ coincides with the initial value of the thrust angle, that
is, δ ≡ α(t̃0); compare Equation (12) with Equation (23).

The TPBVP associated with the optimization problem is then formed by the 7 dif-
ferential equations, Equations (6), (15), (19) and (20), the 4 initial conditions (7), and the
3 final conditions (8). In particular, the solution of the TPBVP requires the final time t̃ f , the
auxiliary angle δ, and the initial costate λr̃(t̃0) to be numerically calculated by enforcing
the (final) boundary constraints of Equation (8). However, the convergence of the proce-
dure used to solve the TPBVP, which is usually based on standard numerical methods
as the single or multiple shooting procedure [20], depends on the appropriate selection
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of a guessed value of the triplet {t̃ f , δ, λr̃(t̃0)}. In this respect, the next section describes
an analytical method for selecting a triplet {t̃ f , δ, λr̃(t̃0)} sufficiently close to the effective
value that resolves the TPBVP.

4. Analytical Method for the Approximation of Flight Time and Initial Costates

In this section, an analytical approximation of the three unknowns {t̃ f , δ, λr̃(t̃0)},
that is, the flight time and the initial costates, is detailed. In particular, the proposed
procedure can be applied when ãm ≪ 1. This is the important case of a spacecraft equipped
with a low-performance (or a very low-performance) propulsion system, which gives a
propulsive acceleration whose maximum value is only a (small) fraction of the gravitational
acceleration µ/r2

0 along the circular parking orbit. In this scenario, the total flight time
is usually very high (a few dozen, or even hundreds, of parking orbit periods), and the
knowledge of an accurate guess of the triplet {t̃ f , δ, λr̃(t̃0)} is a crucial point in reducing
the computation time required to solve the associated TPBVP. In this context, the last part
of this section describes a method that can be used to rapidly estimate, as a function of the
mission scenario characteristics in terms of ãm and r̃ f , the maximum value of ãm compatible
with the proposed, analytical approximate procedure.

In fact, the proposed method is based on the observation that, when ãm ≪ 1, the
optimal transfer trajectory resembles a tight spiral, i.e., the value of the spacecraft (dimen-
sionless) radial acceleration u′ is nearly zero during the entire transfer between the two
(coplanar) circular orbits. In this case, the numerical simulations indicate that the direction
of the propulsive acceleration vector is substantially transverse (i.e., the radial component
of ap is very low when compared with the transverse component) so that the thrust angle α
is substantially a constant of motion with

α ≃


π

2
rad if r̃ f > 1

−π

2
rad if r̃ f < 1

for t ∈ [t0, t f ] (24)

Note that the latter equation can be rewritten in a compact form as

α ≃ sign
(

r̃ f − 1
) π

2
rad for t ∈ [t0, t f ] (25)

where sign(2) ∈ {−1, 1} is the signum function. Accordingly, the value of the first of the
three unknowns, i.e., the auxiliary angle δ which coincides with the initial value of the
thrust angle, is approximated through the simple equation

δ ≃ sign
(

r̃ f − 1
) π

2
rad (26)

Recall that the value of δ allows the two initial costates λũ(t̃0) and λṽ(t̃0) to be calcu-
lated using Equation (23) as a function of the maximum magnitude of the dimensionless
propulsive acceleration ãm.

The second unknown, i.e., the value of the dimensionless flight time t̃ f , can be approx-
imated using a simplified form of the spacecraft dynamics. In fact, bearing in mind that
ãp = ãm during the entire transfer (see first of Equation (12)), the last of Equation (6) gives

h̃′ = ãm sign
(

r̃ f − 1
)

r̃ (27)

where h̃ = r̃ ṽ is the dimensionless magnitude of the spacecraft-specific angular momentum
vector h, i.e., h̃ = ∥h∥/

√
µ r0. Furthermore, according to the third of Equation (6), when

cos α ≃ 0 and u′ ≃ 0, the dimensionless magnitude h̃ can be approximated as

h̃ = r̃ ṽ ≃
√

r̃ (28)
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so that, with the aid of the previous equation, one has r̃ ≃ h̃2, and Equation (27) can be easily
solved to give an analytical approximation of the dimensionless (minimum) flight time

t̃ f =
1

ãm sign
(

r̃ f − 1
) (1 − 1√

r̃ f

)
(29)

Note that the expression of the minimum flight time given by Equation (29) is consis-
tent with the classical result obtained by Alfano et al. [8–10] using the elegant concept of
the accumulated velocity change. The same concept has also been used by the author to
evaluate the optimal performance of a solar-sail-based spacecraft in a typical heliocentric
mission scenario [21,22].

The last of the three unknowns required to initialize the associated TPBVP, i.e., the
value of the initial costate λr̃(t̃0), can be approximated by firstly enforcing in Equation (15)
the initial conditions given by Equation (7), viz.

λ′
ũ(t̃0) = λṽ(t̃0)− λr̃(t̃0) (30)

Now, according to Equations (23) and (26), the value of λṽ(t̃0) is given by

λṽ(t̃0) =
sign

(
r̃ f − 1

)
ãm

(31)

while λũ ≃ 0 is substantially constant during the transfer (remember that the direction of
the propulsive acceleration vector is essentially transverse during the transfer) so that

λ′
ũ(t̃0) = 0 (32)

The value of the last unknown λr̃(t̃0) is then obtained by substituting
Equations (31) and (32) in Equation (30), and the result is

λr̃(t̃0) =
sign

(
r̃ f − 1

)
ãm

(33)

or, equivalently, λr̃(t̃0) = λṽ(t̃0).

Maximum Value of ãm Compatible with the Proposed Method

The approximation of the triplet {t̃ f , δ, λr̃(t̃0)} given by Equations (26), (29) and (33) is
accurate when the optimal transfer trajectory resembles a tight spiral so that the osculating
orbit is substantially circular and the radial component of the spacecraft acceleration ũ′

is nearly zero. The latter is, in fact, a scenario analyzed in detail by Alfano et al. [8]. In
particular, reference [8] discusses that the accumulated velocity change ∆V defined as

∆V =
∫ t f

t0

ap dt (34)

in this specific case (i.e., when the osculating orbit is nearly circular) can be approximated
through a very simple equation that depends on the radius of both the parking and the
target orbit, viz.

∆V = am t f ≃


√

µ

r0
−
√

µ

r f
if r f > r0√

µ

r f
−
√

µ

r0
if r f < r0

(35)

In particular, the latter equation indicates that the accumulated velocity change ∆V
coincides with the difference between the spacecraft velocity along the target and the
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parking orbit. Note also that Equation (35) is consistent with the model proposed in this
paper; see, for instance, Equation (29).

Using the results detailed in reference [8] in terms of plots of the accumulated velocity
change ∆V as a function of the characteristics of the propulsion system am and the radius
of the target circular orbit, we obtain that Equation (35) holds (i.e., the approximation of
an osculating nearly circular orbit is valid) when the spacecraft completes, during the
transfer, a number n of revolutions around the primary body at least equal to 5. However,
extensive numerical simulations indicate that the method proposed in this work still gives
an accurate approximation of the initial costates when n ≥ 2. In fact, as underlined
by Alfano et al. [8], when n < 2, the intensity of the propulsive acceleration becomes
comparable to the gravitational acceleration of the primary body, and the shape of the
transfer trajectory (i.e., the characteristics of the spacecraft osculating orbit) is substantially
influenced by the thrust vector magnitude and direction.

The value of n can be estimated using an analytical expression obtained through the
combination of Equations (6), (25), and (28). Indeed, assuming ãp sin α ≃ ãm sign

(
r̃ f − 1

)
during the transfer, with the aid of Equation (28), the second and the last of Equation (6) give

dθ

dh̃
=

h̃

ãm sign
(

r̃ f − 1
)

r̃3
≡ 1

ãm sign
(

r̃ f − 1
)

h̃5
(36)

which can be easily solved to obtain the final value of the spacecraft polar angle θ(t̃ f ) as a
function of both the (dimensionless) maximum propulsive acceleration magnitude ãm and
the target orbit radius r̃ f , viz.

θ(t̃ f ) =
1

4 ãm sign
(

r̃ f − 1
)(1 − 1

r̃2
f

)
(37)

Accordingly, the value of n is obtained from the previous equation as

n = floor

[
θ(t̃ f )

2π

]
= floor

 1

8 π ãm sign
(

r̃ f − 1
)(1 − 1

r̃2
f

) (38)

where floor[2] is the floor function [20].
Therefore, the procedure can be summarized as follows. For a given (dimensionless)

value of the target orbit radius r̃ f and the maximum propulsive acceleration magnitude ãm,
the estimated number of complete revolutions during the transfer n is calculated through
Equation (38). If the obtained value is n ≥ 2, the proposed analytical method is valid, and
the expression of the triplet {t̃ f , δ, λr̃(t̃0)} given by Equations (26), (29), and (33) can be
used to obtain a reasonable approximation of the actual values that resolve the associated
TPBVP. Otherwise, the actual value of the unknown initial costates can be very different
from those determined analytically. On the other hand, Equations (26), (29), and (33) can
still be used to rapidly obtain a (very rough) guess to initialize the TPBVP numerical
solution through standard methods [20].

5. Model Validation and Numerical Simulations

The proposed procedure was tested in a set of circle-to-circle orbit, two-dimensional
transfers that model some typical heliocentric (in which the primary body is the Sun and
µ = µ⊙ = 132,712,439,935.5 km3/s2) and geocentric (in which the primary body is Earth and
µ = µ⊕ = 398,600 km3/s2) mission scenarios.

In particular, regarding a potential heliocentric mission scenario, the initial parking
orbit radius was set equal to 1 AU. In fact, the case of r0 = 1 AU models the situation
in which the spacecraft begins the heliocentric phase of a typical interplanetary transfer
after escaping from Earth using a parabolic (escape) orbit. In this context, three different
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(circular) target obits were considered; that is, three different values of r f were used
in the numerical simulations, namely (i) r f = r♀ = 0.723 AU, which models an Earth–
Venus transfer; (ii) r f = r♂ = 1.524 AU, which models an Earth–Mars transfer; and
(iii) r f = rX = 5.203 AU, which models an Earth–Jupiter transfer. Accordingly, in this
selected set of heliocentric mission scenarios, the dimensionless value of the target orbit
radius is r̃ f = r f /r0 = {r̃♀, r̃♂, r̃X} = {0.723, 1.524, 5.203}. As regards the geocentric
mission scenario, a classical (two-dimensional) LEO-GEO transfer is considered, in which
the radius of the circular parking orbit is r0 = rLEO = 6578 km (i.e., a circular LEO of
200 km of altitude is assumed) and the target orbit has a radius r f = rGEO = 42,164 km.
Therefore, in the geocentric case, the dimensionless value of the target orbit radius is
r̃ f = rGEO/rLEO ≜ r̃G ≃ 6.41.

The number n of completed revolutions around the primary body, in the four proposed
mission scenarios, can be calculated using Equation (38) as a function of the value of ãm.
The function n = n(ãm) is shown in Figure 3 when ãm < 0.05 and r̃ f = {r̃♀, r̃♂, r̃X, r̃G}.
In particular, the stepped curves in Figure 3 allow us to quickly estimate the maximum
value of ãm for which the proposed analytical approximation can be used to initialize
the associated TPBVP. In fact, according to Figure 3, the condition n ≥ 2 is met when
(i) ãm ≤ 0.018 in the Earth–Venus scenario; (ii) ãm ≤ 0.011 in the Earth–Mars scenario;
(iii) ãm ≤ 0.018 in the Earth–Jupiter scenario; and (iv) ãm ≤ 0.019 in the LEO-GEO scenario.
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Figure 3. Number n of completed revolutions around the primary body in the four analyzed mission
scenarios. The value of n is calculated using Equation (38).

As a result, the validity of the proposed method was tested by considering, for each
mission scenario, about 20 values of ãm ranging between 0.001 and 0.02 (with a step of 0.001).
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For each value of ãm, the optimal (i.e., the rapid) transfer trajectory was calculated by solving
the associated TPBVP using a single shooting method [20], which was initialized according
to the expressions given by Equations (26), (29), and (33). In that context, the equations of
motion (6) and the Euler–Lagrange equations (15), (19), and (20) were integrated in double
precision using the Adams–Bashforth method [23] with an absolute and relative tolerance
of 1 × 10−10, while the tolerance on the convergence of the TPBVP was set to 1 × 10−8.
The solution of the numerical procedure gives the actual value of the triplet {t̃ f , δ, λr̃(t̃0)},
which was compared with the analytical approximation given by Equations (26), (29),
and (33) by introducing the ratio {Rt, Rδ, Rλ} defined as

Rt ≜
t̃ f

∣∣∣
an

t̃ f

∣∣∣
num

, Rδ ≜
δ|an

δ|num
, Rλ ≜

λr̃(t̃0)|an
λr̃(t̃0)|num

(39)

where 2|an indicates the value of 2 calculated through the analytical approximation, while
2|num is the actual value of 2 (calculated numerically) that solves the TPBVP.

The results of the numerical simulations for the four exemplary mission scenarios
are summarized in Tables 1–4 in terms of {t̃ f , θ(t̃ f ), n, Rt, Rδ, Rλ} as a function of ãm. In
particular, as also explicitly indicated in the table captions, the values of {t̃ f , θ(t̃ f )} are
the results of the numerical solutions of the associated TPBVP, the value of n is obtained
analytically from Equation (38), and the three ratios {Rt, Rδ, Rλ} are calculated according
to Equation (39). The last three columns in Tables 1–4 confirm that the analytical approx-
imations proposed in this work are consistent with the actual (numerical) values of the
unknown costates. Furthermore, the expression of n given by Equation (38) gives a very
good approximation of the actual number of completed revolutions around the primary
body during the transfer. Finally, the value of Rt ≃ 1 in all the transfers analyzed indicates
that the expression of the flight time given by Equation (29) is well suited to rapidly calcu-
late the minimum transfer time without solving (numerically) the optimization problem,
especially for low propulsive acceleration magnitude.

Table 1. Earth–Venus transfer scenario: Simulations results and comparison with the analytical
approximations. The values of {t̃ f , θ(t̃ f )} are obtained through the numerical solution of the TPBVP,
while the values of {n, Rt, Rδ, Rλ} are calculated using Equations (38) and (39).

ãm t̃ f
θ(t̃ f )

2π rad
n Rt Rδ Rλ

0.0200 9.0891 1.8714 1 0.9685 1.0581 1.1168
0.0190 9.4517 1.9465 1 0.9804 1.0585 1.0574
0.0180 9.9729 2.0532 2 0.9808 1.0758 0.9234
0.0170 10.8329 2.2235 2 0.9560 1.1265 0.8450
0.0160 11.7170 2.4040 2 0.9391 1.1142 0.9875
0.0150 12.4297 2.5563 2 0.9443 1.0858 1.0846
0.0140 13.0835 2.6953 2 0.9612 1.0631 1.1242
0.0130 13.7920 2.8431 2 0.9820 1.0467 1.1058
0.0120 14.8073 3.0526 3 0.9909 1.0523 0.9464
0.0110 16.5729 3.4115 3 0.9658 1.0930 0.9863
0.0100 17.9887 3.7088 3 0.9787 1.0516 1.1049
0.0090 19.6685 4.0565 4 0.9946 1.0398 0.9561
0.0080 22.4148 4.6218 4 0.9818 1.0542 1.0761
0.0070 25.3971 5.2372 5 0.9903 1.0567 0.9097
0.0060 29.4209 6.0694 6 0.9974 1.0271 0.9640
0.0050 35.4514 7.3124 7 0.9933 1.0458 0.9449
0.0040 44.0759 9.0937 9 0.9986 1.0190 0.9683
0.0030 58.7415 12.1199 12 0.9991 1.0152 0.9707
0.0020 88.0827 18.1742 18 0.9994 1.0117 0.9749
0.0010 176.1164 36.3391 36 0.9997 1.0087 0.9886
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Table 2. Earth–Mars transfer scenario: Simulations results and comparison with the analytical
approximations. The values of {t̃ f , θ(t̃ f )} are obtained through the numerical solution of the TPBVP,
while the values of {n, Rt, Rδ, Rλ} are calculated using Equations (38) and (39).

ãm t̃ f
θ(t̃ f )

2π rad
n Rt Rδ Rλ

0.0200 10.9517 1.2682 1 0.8673 1.1910 0.7537
0.0190 11.6424 1.3496 1 0.8587 1.2644 0.8702
0.0180 12.2842 1.4296 1 0.8591 1.2667 0.9959
0.0170 12.8860 1.5080 1 0.8671 1.2234 1.1081
0.0160 13.4678 1.5853 1 0.8815 1.1600 1.1941
0.0150 14.0555 1.6621 1 0.9010 1.0919 1.2475
0.0140 14.6830 1.7410 1 0.9241 1.0246 1.2647
0.0130 15.4023 1.8285 1 0.9487 0.9571 1.2329
0.0120 16.3349 1.9403 1 0.9691 0.8903 1.0959
0.0110 17.9448 2.1263 2 0.9623 0.9419 0.7580
0.0100 20.3405 2.4028 2 0.9339 1.2309 0.9414
0.0090 22.2409 2.6424 2 0.9490 1.1018 1.1919
0.0080 24.2123 2.8826 2 0.9807 0.9390 1.1466
0.0070 28.1388 3.3410 3 0.9644 1.1712 0.8674
0.0060 32.1339 3.8285 3 0.9852 0.9766 1.1567
0.0050 38.7875 4.6203 4 0.9795 1.0925 1.1234
0.0040 48.0039 5.7220 5 0.9893 1.0323 1.1320
0.0030 63.8465 7.6117 7 0.9917 1.0687 1.0770
0.0020 95.3378 11.3685 11 0.9962 1.0565 0.9492
0.0010 190.1195 22.6756 22 0.9992 1.0180 1.0346

Table 3. Earth–Jupiter transfer scenario: Simulations results and comparison with the analytical
approximations. The values of {t̃ f , θ(t̃ f )} are obtained through the numerical solution of the TPBVP,
while the values of {n, Rt, Rδ, Rλ} are calculated using Equations (38) and (39).

ãm t̃ f
θ(t̃ f )

2π rad
n Rt Rδ Rλ

0.0200 36.7978 2.1084 1 0.7631 0.9835 0.8611
0.0190 38.5040 2.2135 2 0.7677 1.0476 0.8846
0.0180 40.3135 2.3341 2 0.7739 1.0934 0.9699
0.0170 42.1620 2.4689 2 0.7835 1.0772 1.0898
0.0160 44.0699 2.6120 2 0.7965 1.0062 1.1607
0.0150 46.1890 2.7608 2 0.8106 0.9361 1.1156
0.0140 48.7870 2.9285 2 0.8222 0.9152 0.9748
0.0130 52.1409 3.1349 2 0.8285 0.9915 0.8766
0.0120 56.0312 3.3943 3 0.8352 1.0867 1.0070
0.0110 59.9808 3.6892 3 0.8512 0.9770 1.1402
0.0100 64.9083 4.0151 3 0.8652 0.9377 0.9266
0.0090 71.5448 4.4562 4 0.8722 1.0758 1.0440
0.0080 78.8197 4.9711 4 0.8906 0.9305 0.9639
0.0070 88.9817 5.6716 5 0.9016 0.9964 1.1259
0.0060 102.3114 6.5813 6 0.9149 1.0374 1.1005
0.0050 120.4783 7.8453 7 0.9323 0.9445 1.0610
0.0040 148.2645 9.7628 9 0.9470 0.9719 1.0965
0.0030 194.3215 12.9393 12 0.9633 0.9441 1.0087
0.0020 287.0700 19.3137 19 0.9782 1.0326 0.9412
0.0010 565.6686 38.4400 38 0.9928 1.0356 0.9898
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Table 4. LEO-GEO transfer scenario: Simulations results and comparison with the analytical approxi-
mations. The values of {t̃ f , θ(t̃ f )} are obtained through the numerical solution of the TPBVP, while
the values of {n, Rt, Rδ, Rλ} are calculated using Equations (38) and (39).

ãm t̃ f
θ(t̃ f )

2π rad
n Rt Rδ Rλ

0.0200 41.6750 2.1459 1 0.7255 1.0164 0.8756
0.0190 43.5002 2.2535 2 0.7317 1.0694 0.9258
0.0180 45.4088 2.3757 2 0.7398 1.0868 1.0236
0.0170 47.3755 2.5098 2 0.7508 1.0456 1.1223
0.0160 49.4705 2.6504 2 0.7640 0.9756 1.1454
0.0150 51.8737 2.8005 2 0.7772 0.9245 1.0635
0.0140 54.8463 2.9741 2 0.7875 0.9333 0.9311
0.0130 58.5463 3.1874 2 0.7945 1.0272 0.8961
0.0120 62.6263 3.4505 3 0.8047 1.0680 1.0621
0.0110 66.9178 3.7412 3 0.8215 0.9508 1.1021
0.0100 72.5172 4.0775 3 0.8339 0.9706 0.9016
0.0090 79.5200 4.5259 4 0.8450 1.0443 1.0925
0.0080 87.6519 5.0452 4 0.8624 0.9579 0.9201
0.0070 98.4573 5.7500 5 0.8774 0.9610 1.0929
0.0060 112.8880 6.6749 6 0.8928 0.9912 1.1075
0.0050 132.7177 7.9526 7 0.9113 0.9427 0.9820
0.0040 162.6657 9.8933 9 0.9294 0.9459 1.0210
0.0030 212.5907 13.1174 12 0.9482 0.9780 0.9292
0.0020 312.3595 19.5955 19 0.9680 1.0278 1.0631
0.0010 611.7156 38.9691 38 0.9886 0.9652 1.0002

Case Study: Transfer towards Comet 29P/Schwassmann–Wachmann 1

The proposed method is now used to rapidly solve the TPBVP associated with the (he-
liocentric) minimum-time transfer towards comet 29P/Schwassmann–Wachmann 1 [24–27].
The latter was very recently considered by the author [28] as a potential target for a solar-
sail-based (rendezvous) interplanetary mission. The interested reader can refer to the
Introduction section of reference [28] to obtain a snapshot of the recent research concerning
comet 29P/Schwassmann–Wachmann 1 (indicated as “comet SW1” in the rest of this paper).
The current, heliocentric orbit of comet SW1 is nearly circular (the actual eccentricity is
4.4526 × 10−2), with an inclination of about 9 deg. The comet orbit is between Jupiter and
Saturn [29]. The numerical results discussed in reference [28] indicate that a simplified
circle-to-circle, two-dimensional transfer scenario can be used to approximate the real,
three-dimensional Earth–comet SW1 trajectory in a classical interplanetary rendezvous
mission. In this context, the comet orbit around the Sun is considered circular, with ra-
dius rSW1 = 6.0499 AU, and coplanar to the heliocentric (assumed circular with radius
r0 = 1 AU) orbit of Earth.

Therefore, in this heliocentric scenario (in which µ = µ⊙), the dimensionless target radius
is r̃ f = rSW1/r0 = r̃SW1 = 6.0499, and Equation (38) gives the function n = n(ãm), sketched
in Figure 4. According to Figure 4, the condition n ≥ 2 is approximately satisfied when
ãm ≤ 0.02, so the optimal Earth–comet SW1 transfer is studied parametrically considering
(again) a dimensionless maximum propulsive acceleration in the range ãm ∈ [0.001, 0.02].
Note that, in this case, one has µ⊙/r2

0 ≃ 5.93 mm/s2 so that a value ãm = 0.02 (or ãm = 0.001)
corresponds to a dimensional propulsive acceleration of 0.1186 mm/s2 (or 0.00593 mm/s2).
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Figure 4. Earth–comet SW1 scenario: number n of completed revolutions around the Sun as a function
of ãm; see also Equation (38).

The TPBVP associated with the optimization problem was solved using the procedure
previously described, and the results of the numerical simulations are summarized in Table 5,
which can be considered as an extension (to this scenario) of the results of Tables 1–4. As
expected, the values in Table 5 confirm the accuracy of the proposed analytical model based
on Equations (26), (29), and (33).

Table 5. Results of the numerical simulations in the Earth–comet SW1 transfer mission scenario.

ãm t̃ f
θ(t̃ f )

2π rad
n Rt Rδ Rλ

0.0200 40.3294 2.1369 1 0.7357 1.0087 0.8705
0.0190 42.1231 2.2439 2 0.7415 1.0652 0.9147
0.0180 44.0030 2.3658 2 0.7492 1.0899 1.0108
0.0170 45.9338 2.5002 2 0.7600 1.0538 1.1162
0.0160 47.9743 2.6413 2 0.7731 0.9825 1.1510
0.0150 50.2988 2.7910 2 0.7866 0.9263 1.0768
0.0140 53.1727 2.9631 2 0.7972 0.9279 0.9401
0.0130 56.7861 3.1749 2 0.8039 1.0191 0.8893
0.0120 60.8125 3.4373 3 0.8132 1.0741 1.0500
0.0110 65.0024 3.7288 3 0.8300 0.9561 1.1133
0.0100 70.4270 4.0626 3 0.8426 0.9618 0.9048
0.0090 77.3320 4.5097 4 0.8527 1.0531 1.0836
0.0080 85.2293 5.0274 4 0.8704 0.9498 0.9276
0.0070 95.8565 5.7316 5 0.8844 0.9679 1.1042
0.0060 109.9957 6.6533 6 0.8992 1.0015 1.1110
0.0050 129.3736 7.9270 7 0.9174 0.9398 0.9999
0.0040 158.7425 9.8625 9 0.9346 0.9480 1.0416
0.0030 207.6458 13.0749 12 0.9526 0.9647 0.9397
0.0020 305.6158 19.5310 19 0.9709 1.0429 1.0400
0.0010 599.4593 38.8484 38 0.9900 0.9746 1.0404

The time variation in the thrust angle and the corresponding optimal transfer trajectory are
two outputs of the optimization process. Assuming, for example, ãm = {0.001, 0.005, 0.01, 0.02},
the polar form of the optimal transfer trajectory is sketched in Figure 5, while the (dimensionless)
time variation in the thrust angle α is shown in Figure 6. Note that, according to Figure 6, when
the magnitude of the propulsive acceleration is sufficiently low (as in the case of ãm = 0.001),
the value of the thrust angle during the entire transfer is close to π/2 rad, as modeled by
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Equation (25). However, when the value of ãm increases (or the primary body–spacecraft
distance is high, as at the end of the transfer), the thrust angle diverges from the value predicted
by Equation (25). In any case, the initial value of α, which coincides with the auxiliary angle δ, is
roughly equal to π/2 rad, as expected.
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Figure 5. Optimal transfer trajectory in an Earth–comet SW1 mission scenario, as a function of
ãm = {0.001, 0.005, 0.01, 0.02}. Black line → transfer trajectory; blue line → Earth (parking) orbit; red
line → comet SW1 (target) orbit; green circle → start point; green square → arrival point; orange
circle → Sun. Radial distances are in astronomical units.

0 5 10 15 20 25 30 35 40 45
0

30
60
90

120
150
180

0 10 20 30 40 50 60 70 80
0

30
60
90

120
150
180

0 20 40 60 80 100 120 140
0

30
60
90

120
150
180

0 100 200 300 400 500 600
0

30
60
90

120
150
180

Figure 6. Optimal time variation in the thrust angle α in an Earth–comet SW1 mission scenario, as a
function of ãm = {0.001, 0.005, 0.01, 0.02}. Green circle → start point; green square → arrival point.
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6. Conclusions

In this paper, we studied the transfer between two circular, coplanar orbits of assigned
characteristics, considering a spacecraft operated with a continuous thrust propulsion
system that provides a magnitude of propulsive acceleration vector within an assigned
range. The problem is addressed in an optimal framework using a classical indirect
approach, minimizing the total flight time as a function of the target orbit radius and the
characteristics of the propulsion system. The main contribution of this work is to use a
simplified version of the spacecraft dynamics, not to approximate the (optimal) transfer
trajectory but to accurately estimate the initial value of the unknown costates needed to
solve the TPBVP associated with the optimization process.

The proposed procedure allows the initialization of the TPBVP with a guessed solution
reasonably close to the actual one determined through a numerical approach based on the
classic single shooting method. The method is designed to work well when the maximum
magnitude of the propulsive acceleration vector is sufficiently small when compared
with the gravitational acceleration of the primary body along the circular parking orbit.
However, the procedure can still be used when the value of the propulsive acceleration
is medium–high, in order to obtain a rough estimate of the initial costates. In this regard,
the availability of a set of analytical equations, such as the one presented in this paper, is a
useful (and important) tool in the preliminary phase of mission design.
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Abbreviations
The following abbreviations are used in this manuscript:

ap propulsive acceleration vector, with ap = ∥ap∥
am maximum value of the propulsive acceleration magnitude ap
H Hamiltonian function
Hc part of the Hamiltonian which depends on the controls
îr radial unit vector
îθ transverse unit vector
J performance index to be maximized
n number of complete revolutions around the primary body
O primary body center-of-mass
{Rt, Rδ, Rλ} dimensionless ratio; see Equation (39)
r radial distance
S spacecraft center-of-mass
t time
T polar reference frame
u radial component of the spacecraft velocity
v transverse component of the spacecraft velocity
α thrust angle
δ auxiliary angle
∆t flight time
∆V accumulated velocity change
θ spacecraft polar angle
λr̃ costate of r̃
λũ costate of ũ
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λṽ costate of ṽ
λθ costate of θ

µ primary body gravitational parameter
Subscripts
0 initial, circular parking orbit
an evaluated through analytical approximation
f final, circular target orbit
G geocentric mission scenario
GEO geostationary orbit
LEO low-Earth orbit
num numerically evaluated
⊕ Earth
X Jupiter, Jupiter-based scenario
♂ Mars, Mars-based scenario
⊙ Sun
♀ Venus, Venus-based scenario
Superscripts
· derivative with respect to t
′ derivative with respect to t̃
∼ dimensionless form
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