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Abstract: A novel three-equation turbulence model has been proposed as a potential solution to
overcome some of the issues related to the k–ε models of turbulence. A number of turbulence models
found in the literature designed for compressed turbulence within internal combustion engine
cylinders tend to exhibit limitations when applied to turbulent shear flows, such as those occurring
through intake or exhaust valves of the engine. In the event that the flow is out of equilibrium
where Pk deviates from ε, the turbulence models require a separate turbulence time-scale determiner
along with the dissipation, ε. In the current research, this is accomplished by resolving an additional
equation that accounts for turbulence time scale, τ. After presenting the rationale behind the model,
its application to three types of free shear flows were given. It has been shown that the three-equation
k–ε–τ model outperforms the standard k–ε model as well as a number of two-equation models in
these flows. Initially, the k–ε–τ model handles the issue of the plane jet/round jet anomaly in an
effective manner. Secondly, it outperforms the two-equation models in predicting the flow behavior
in the case of plane wake, one that is distinguished by its weak shear form.

Keywords: turbulence model; time scale; three-equation model; jets; wakes

1. Introduction

There are quite a number of turbulence models within the eddy-viscosity framework.
Recent advances on the numerical modelling of turbulent flows can be found in the papers
by Argyropoulos and Markatos [1], Klein et al. [2,3], and Nie et al. [4]. Despite its many
shortcomings, the k–ε model of turbulence is one of the most widely used turbulence
models and it is capable of simulating an extensive collection of flows. It necessitates the
solution of PDEs (partial differential equations) for the kinetic energy of turbulence, k, and
its dissipation rate, ε. The turbulence viscosity is calculated as νt = Cµk2/ε, where Cµ is an
empirical coefficient found from tests with thin shear layer flows, commonly given as a
constant equal to 0.09. The turbulence velocity scale is determined by turbulence kinetic
energy (TKE) in two-equation turbulence models. Dissipation, on the other hand, serves
two purposes in two-equation turbulence models: it establishes the turbulence length scale
(ℓt) and is the rate at which TKE is destroyed. Dissipation is incapable of performing both
functions concurrently in flows characterized by large strain rates and an out-of-equilibrium
flow structure. Recently, there has been a notable increase in ideas that employ multiple
scales of turbulence in order to address some limitations of a single transport equation
utilized in the differential stress models or k–ε models for the length scale.

Wu, Ferziger, and Chapman developed a two-time-scale, three-equation turbulence
model (the WFC model) to more accurately reflect the effects of the bulk compression/expansion
process as found in IC engines during compression and expansion [5]. However, the WFC
turbulence model, developed from DNS (direct numerical simulation) of compression
in rectangular parallelepipeds, is not applicable to practical engineering flows since no
shear effects were accounted for in their model. Simulation of a whole engine cycle

Appl. Sci. 2024, 14, 1133. https://doi.org/10.3390/app14031133 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14031133
https://doi.org/10.3390/app14031133
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5621-8779
https://doi.org/10.3390/app14031133
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14031133?type=check_update&version=2


Appl. Sci. 2024, 14, 1133 2 of 18

requires the prediction of not only the compression effects but also the behavior of shear
flows found especially during the intake stroke of an IC engine. An alternative three-
equation turbulence model (the k–εf–εd model) for compressed turbulence [6] has also been
developed in a deductive way from the standard k–ε model based on kinematic viscosity
variation during compression, and its performance was compared with the DNS data of
Wu et al. [5]. However, it also requires modification for shear flows and has not been tested
in real engine geometries. On the other hand, Hamlington and Ihme [7] employed various
closure models, namely equilibrium models, second-order Reynolds stress transport models
(RSTMs), and differential models. They also introduced a non-equilibrium model for
the anisotropic Reynolds stress tensor. This newly proposed model was found to be in
relatively good agreement with the results obtained from the integration of the full Reynolds
stress differential model (RDM). This agreement suggests that the approximations and
assumptions made to derive the new non-equilibrium model closure are reasonable for
internal combustion engines (ICEs) and reciprocating compressor models (RCMs).

Previous multi-scale models proposed by Kim and Chen [8] and Hanjalic et al. [9] were
predicated on the notion of segmenting the energy spectrum of turbulence into regions
for production, energy transfer, and dissipation, and required the solution of four instead
of three PDEs, which is adopted by the recent studies carried out by Chitta et al. [10]
and Grunloh [11]. Zeierman and Wolfshtein obtained the turbulence time-scale equation
(kT) by integration of auto correlation in stationary flows [12]. Their kT-equation replaced
the ε-equation and they worked within a two-equation framework with only one scale to
represent turbulence. Catris and Aupoix [13] introduced a two-equation model that adopts
Boussinesq’s hypothesis together with novel formulations of the inhomogeneous terms
in the transport equations for velocity and length scales. However, they have employed
ε as their length-scale determiner. Chen and Singh [14] modified the ε-equation by em-
ploying the time scale as t =

√
υ/ε for energy-dissipating small eddies, without solving

an additional equation for time scale in their model. Jaw and Hwang [15] extended this
approach to low-Re-number modelling within a two-equation eddy–viscosity framework.
In their work, Morgan et al. [16] incorporated an additional length-scale equation into the
conventional k–L–a turbulence model. By introducing two length scales, the model was
designed to accommodate the intricate interactions and energy transfers taking place at
various spatial scales within turbulent flows. Additionally, their study showcased that the
two-length-scale model could successfully replicate anticipated growth parameters and
turbulence intensities for both buoyancy-driven and shear-driven mixing. This observation
suggests the efficacy of the model as a multi-scale turbulence model.

Lumley [17] proposed an additional equation for the ‘inverse time scale’ (S) together
with a modified form of the ε-equation and employed the same turbulence viscosity relation
as that of the k–ε model. It is predicated on the modelling of the time lag between the energy
cascade’s initiation and its micro-scale destruction. Goldberg [18] extended a two-equation
k–RT model [19], in which RT denotes the undamped eddy viscosity (R ≡ k2/ε) by writing
a transport equation for RT for low-Re-number flows. The model enforces that in the
immediate proximity of solid surfaces, the eddy time scale must not be lower than the
Kolmogorov scale. Cotton and Ismael [20] also introduced a third equation for the so called
‘transported strain parameter’, (S) in their model together with the k- and ε-equations and
employed a dumping function in the turbulence viscosity relation that is predominantly
influenced by Billard and Lawrence [21], who provide a twenty-year evolution of the k–ε–v2

type of three-equation models focusing on the variance of wall-normal fluctuating velocity
and its source “f” in their paper. Other proposals on multiple-scale closures are made by
Wilcox [22], Duranti and Pittaluga [23], Chen and Guo [24], Nagano and Hattori [25], and
at the second moment closure level by Ertesvag et al. [26]. Although the extensions of
eddy viscosity models are possible, the approaches at the second-moment-closure level are
still costly, especially for time-dependent realistic in-cylinder engine flow simulations or
complex flows involving bubbles and bubble induced turbulence [27]. Moreover, there are
models developed for specific problems. In order to estimate the aerodynamic performance
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of iced aerofoils, Li, Zhang, and Chen developed a modified three-equation turbulence
model in their research. As ice formation on a wing can severely degrade its aerodynamic
performance and represent a hazard to aircraft safety, this model was designed to precisely
predict the stalling behavior of frozen aerofoils. The original model that they started
working on was of Lopez and Walters’ k − v2 − ω [28]. The improvements Li et al. made
were intended to calibrate the transitional behavior and enhance the performance of the
non-equilibrium state. In Section 2, a brief account of the WFC model, which the modified
model is based on, is given before the model formulation presented in Section 3.

2. The WFC Model of Turbulence

The motivation behind the WFC three-equation turbulence model is to decouple
the dissipation and the time and length scales and introduce a minimum of additional
complexity. To this end, Wu, Ferziger, and Chapman [5] introduced a model equation for a
turbulence time scale τ to be solved together with the k- and ε-equations.

For homogeneous isotropic decay flow, the exact equation of the TKE reduces to:

dk
dt

= −ε (1)

The model equation for dissipation rate is modified to include the new turbulence
time scale:

dε

dt
= − ε

τ
(2)

This equation can also be seen as the definition of the new time scale τ. In isotropic
turbulence decay behind a grid, k decays according to power law (k = t−n). The turbulence–
kinetic-energy Equation (1) then yields ε = nt−n−1. These can be used together with
Equation (2) in order to close the set of model equations to yield dτ/dt = 1/(n + 1) in
differential form, which suggests a constant term associated with the τ-equation.

When strain is applied to the flow, all turbulence quantities are modified. In particular,
the turbulence time scale τ is pushed away from equilibrium. After the strain is removed,
the turbulence tends to return to an equilibrium state. The modification adopted by
Wu et al. [5] to accomplish this is:

dτ

dt
=

1
n + 1

+ C5(z − z0) (3)

where z = ετ/k and z0 is the value of z in isotropic decay flow (i.e., since the energy spec-
trum shape is preserved during decay, z0 = (ετ/k)0 is a constant, which gives τ = z0t/n).
By using the ε-transport equation, z0 = n/(n + 1) can be deduced, which shows that z0 is
the reciprocal of Cε2 in the k − ε model. Wu et al. [5] chose z0 to be 0.54.

By manipulating Equations (1)–(3), the following expression for z can be obtained:

dz
dt

=
ε

k
(1 + C5)(z − z0) (4)

In the (z, dz/dt) phase plane, (z0, 0) is an equilibrium point. For this to be a sta-
ble point—in other words, to assure return to equilibrium—1 + C5 must be negative or
C5 < −1.

The final form of the model equations of the WFC model for homogeneous incom-
pressible axisymmetric expansion flow is then given as (here, the WFC model is expressed
in a form more suitable for the context):

dk
dt

= Pk − ε (5)

dε

dt
= − ε

τ
+ C1

Pkε

k
(6)
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dτ

dt
=

1
n + 1

+ C5(z − z0) + C6Sτ (7)

where Pk is the production of TKE and S is the mean strain rate. On the basis that “produc-
tion of dissipation” estimated by the k–ε model is too weak (i.e., ε is under-predicted in high
strain rate flows), Wu et al. [5] tended to increase C1 and tuned the coefficients to C1 = 2
and C6 = −2. However, the choice of C1 = 2 does not satisfy spreading rate predictions for
shear flows, as this coefficient tuned here for a plane jet is found to be C1 = 1.44.

3. The k–ε–τ Model of Turbulence

The current methodology expands upon the existing model to incorporate shear
flows, subsequently employing the modified model to analyze the plane far wake, and
axisymmetric and planar jets. In this section, we will show that we can look at the WFC-
model from a slightly different viewpoint and derive the relations among the model
constants for the modified k–ε–τ turbulence model.

For homogeneous shear flow, the model equations with the proposed modifications
are as follows:

dk
dt

= Pk − ε (8)

dε

dt
= Cε1

Pk
τ

− Cε2
ε

τ
(9)

dτ

dt
= Cτ0 − Cτ1z − Cτ2

Pk
ε

z (10)

The modifications to the WFC model stem from the fact that:

1. The production and destruction terms of ε in Equation (6) cannot balance each other
properly with two different time scales (i.e., k/ε in the production term of ε and τ in
the other), and this imbalance causes the model to become instable and overshoot
the turbulence viscosity in shear flows, particularly in plane and round jets. This,
therefore, necessitated the use of the same time scale in both terms in the ε-equation
for shear flows.

2. The τ-equation in Equation (7), as it is, cannot account for shear flows, as was also
warned by Wu et al. [5]. Hence, a production related term associated with the
Cτ2 constant has been added to the τ-equation, and its coefficient has been tuned to
give the best result for free shear flows, provided that coefficients satisfy the relations
derived below.

3.1. Grid Turbulence Decay

In the above equations, the τ-equation (Equation (10)) gives a relation between Cτ0
and Cτ1 in isotropic turbulence decay behind a grid.

dτ

dt
= Cτ0 − Cτ1z0 =

z0

n
(11)

By rearranging, we obtain Cτ0 = 1 − z0(1 − Cτ1).

3.2. Return to Equilibrium

Differentiation of z = ετ/k yields:

dz
dt

=
ε

k
dτ

dt
+

τ

k
dε

dt
− ετ

k2
dk
dt

(12)

Then, inserting the k-, ε-, and τ-transport equations, we can obtain a transport equation
for z. In the absence of TKE production, the transport equation for z, in grid decay,
reduces to:

dz
dt

=
ε

k
[z(1 − Cτ1) + (Cτ0 − 1)] (13)
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When turbulence is in equilibrium state (i.e., z = z0), the RHS of this equation (what
we call H) must be zero. Thus,

H =
ε

k
(z − z0)(1 − Cτ1) (14)

If z is perturbed from its equilibrium point in the direction of larger z, (z > z0), after
removing strain, as can be seen qualitatively from Figure 1, z tends to return to z0 in such a
way that we require H ≤ 0. For the displacement of z in the opposite direction, z will again
return to z = z0, after removing strain. In this case, we require H > 0; therefore, Cτ1 > 1.
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3.3. Constraint for the Coefficient of Mean Strain Term

In the presence of mean strain, our basic assumption is that if, in a homogeneous flow,
the ratio Pk/ε is held at a fixed value, the turbulence spectrum will evolve to an equilibrium
form, i.e., z approaches a fixed value. The general transport equation for z is:

dz
dt

=
ε

k

[
(z − z0)(1 − Cτ1) +

Pk
k
(Cε1 − z(1 + Cτ2))

]
(15)

For any given Pk/ε, z will always approach its equilibrium value ze, which is presum-
ably a function of (Pk/ε). If z = ze in equilibrium, then Dz/Dt ≡ 0. Therefore,

(ze − z0)(1 − Cτ1) = −Pk
ε
(Cε1 − ze(1 + Cτ2)) (16)

or,
z0

ze
= 1 +

Pk
ε

Cε1 − ze(1 + Cτ2)

(1 − Cτ1)ze
(17)
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Since 1 − Cτ1 < 0, we must require Cε1 − ze(1 + Cτ2) ≤ 0 to avoid the risk of z
becoming negative. In other words, Cτ2 ≥ Cε1/zε − 1. In the event of ze = z0 for all Pk/ε,
we obtain:

Cτ2 ≥ Cε1

z0
− 1 (18)

3.4. Local Equilibrium

In the case of local equilibrium where Pk ≡ ε, the z-transport equation becomes
z1 = (ετ/k)1: (

dz
dt

)
1
=

τ

k
dε

dt
+

ε

k
dτ

dt
= 0 (19)

Together with the ε- and τ-transport equations:

dε

dt
= (Cε1 − 1)

Pk
τ

(20)

dτ

dt
= Cτ0 − Cτ1z1 − Cτ2z1 (21)

we obtain another relation between the coefficients. (Note that the RHS of τ-equation is
constant.)

1 − Cε1 = Cτ0 − z1(Cτ1 + Cτ2) (22)

Here, one must note that we have the freedom of choosing z0, provided that we
initially adjust the coefficients in the ε-equation accordingly. Comparison of ε-equations for
the k–ε and k–ε–τ models yields that for z0 = 6/11, Cε1 becomes Cε1

∼= 0.75, which is a good
choice. This also implies that Cε2 can be taken as Cε2 = 1.0, and Cτ0 = 1.054, and Cτ1 = 1.1
are taken in parallel with the WFC model, and Cτ2 is established quite well at Cτ2 = 0.59
for the jet flow computations presented in the next section. This is also in agreement with
the previous constraint (Equation (18)) on Cτ2, which suggested that Cτ2 > 0.375. A rough
estimation of z1 from Equation (22) yields that it is in the range of 0.47 < z1 < 0.54 for
Pk/ε < 1.3. Equation (16) can be re-organized to yield:

ze =
z0 + Cz1Pk/ε

1 + Cz2Pk/ε
(23)

where Cz1 = Cε1/(Cτ1 − 1) and Cz2 = (Cτ2 + 1)/(Cτ1 − 1). Equation (23) has an asymp-
totic value of 0.472 for ze vs. Pk/ε, with the values of coefficients given in Table 1, which
indicates that the assumption of ze ∼= z0 = 0.54 is well within the 13% error range.

Table 1. Coefficients of the k–ε–τ model.

Cε1 Cε2 Cε3 Cτ0 Cτ1 Cτ2 Cτ3 σk σε στ

0.75 1.05 0.67 1.054 1.1 0.59 0.83 1.0 1.2 1.1

The near-wall equilibrium layer can help in providing a relation for σε, as in the k − ε
turbulence model. The ε-equation can be expressed as follows by neglecting convection,
diffusion of energy, and convective transport of ε:

0 =
∂

∂y

(
µT
σε

∂ε

∂y

)
+ Cε1ρ

Pk
τ

− Cε2ρ
ε

τ
(24)
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With the assumption of constant wall shear stress and logarithmic law of the wall
theory, Equation (24) can be conveyed as (here τ = z1 κy/C1/2

µ Uτ was also employed since
τ = z1k/ε is in local equilibrium):

σe =
z1κ2

C1/2
µ (Cε2 − Cε1)

(25)

σe and στ , together with other coefficients, are then optimized by numerical experi-
ments to give the best results in simple shear flows.

4. Model Validation

The current section presents free shear flow implementations of the k–ε–τ model.
These computations are discussed here initially to test and validate the novel model
in well-documented experimental flow classes. The analysis of comparisons between
estimations and measurements will provide direct evidence of flaws in turbulence models.
Furthermore, free shear flows are regarded as computationally cheaper to model because
of their parabolic form. As a result, numerical errors have less of an impact on predictions.

Comparisons of predictions and experiments for three turbulent shear layers are
performed as a validity test. These are axisymmetric and plane jets discharging into still air
and plane wakes in the absence of pressure gradients.

The fundamental equations that characterize the examined flows can be formulated as
follows:

• U-momentum

∂ρU2

∂x
+

1
r

∂

∂y
(ρrUV) =

1
r

∂

∂y
(
rσxy

)
(26)

• Continuity

∂ρU
∂x

+
1
r

∂

∂y
(ρrV) = 0 (27)

• Scalar entity

∂ρUφ

∂x
+

1
r

∂

∂y
(ρrVφ) = −1

r
∂

∂y
(
rJφ,y

)
+ Sφ (28)

where the flux is given by Jφ,y = −Γφ∂φ/∂y, the secondary source term is symbolized
by Sφ, and “r” equals 1 for planar cases and for radial co-ordinate of axisymmetric cases,
y ≡ r. The stress σxy is given as σxy = µ(∂U/∂y)− ρuv in plane geometry and σxy = σxr =
µ(∂U/∂r)− ρuv in axisymmetric geometry.

Equations for turbulence models used for comparison can also be written in a similar
manner and can be found in the relevant literature given at the end of the manuscript (for
k–ε [29], for RNG k–ε [30], for SST k–ω [31], for Realizable k–ε [32]).

The discretized versions of the above equations were solved by using OpenFOAM
CFD software (v8) [33]. A fully conservative finite-volume method with an implicit for-
mulation is the basis of discretization. A second order discretization scheme requiring
gradient information (linearUpwind) is used for the advection of momentum and a cen-
tral differencing scheme (linear) is used for the rest of the entities to approximate the
cross-flow transport.

The following benchmark cases have been selected in the context of this study: plane
jet, round (axisymmetric) jet, and plane far wake. A plane jet involves the continuous
discharge of a fluid (usually air or water) from a rectangular nozzle featuring a signifi-
cant aspect ratio into a quiescent environment. The jet emerges as a continuous, planar
flow with a velocity greater than the surrounding fluid. Round jets, often referred to as
axisymmetric jets, represent a fundamental and extensively studied configuration in fluid
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mechanics. They are characterized by the flow of fluid discharged from a circular orifice
into a surrounding medium, exhibiting rotational symmetry around the jet’s axis. The flows
are often axisymmetric and uniform in the jet core region, simplifying the flow geometry
for numerical simulations [34]. Thus, only half of the shear layer was considered.

The 2D wake flow is characterized by the formation of vortices or eddies trailing an
object moving steadily in a fluid. The flow near the obstacle is generally complex and
strongly depends on the shape of the obstacle. In the far wake region, where the flow has
sufficiently developed away from the object, the wake exhibits a two-dimensional nature,
allowing for simplified analysis and modeling.

This section presents the results of computations that were conducted with the cell
counts of the 480,000 for plane jet, 525,000 for axisymmetric jet, and 71,516 for plane far
wake, which provide grid independent solutions.

Two types of boundaries are found in the cases presented here: symmetry and entrain-
ment boundary. The presence of a symmetric plane or axis implies that both convective
and diffusive fluxes are zero at this boundary. In the latter case, fluxes disappear due to
vanishing area as the axis of symmetry is approached. For the entrainment boundary, the
boundary condition would be to assume the value of a particular variable to be equal to its
free stream value.

4.1. Plane Jet Results

Some of the early studies, by use of a hot wire anemometry, were performed by various
researchers [35–40]. Simulation parameters such as boundary conditions (e.g., Re = 16,500)
are similar to the work of Salerno [41]. According to the findings, jets that are released into
stagnant environments eventually form self-similar states in which their time-averaged
quantities may be expressed by only one length scale and one velocity. In other words,
Reynolds stress and the mean velocity distribution must not depend on the streamwise
coordinate “x”, as these scales are used to normalize them. A turbulent flow is said to be
self-similar when some or all of its normalized statistical properties, such as half-width
of the jet (spreading rate = ∂yh/∂x), become constant. Mean axial velocity distribution
achieves self-similarity before the turbulence entities. However, there is no consensus on
where this state is reached; it varies from x/d = 40 to 100. The calculated spreading rates
exhibit a high degree of concordance with a value of ∂yh/∂x of 0.109. TKE in the vicinity of
the nozzle tip increases depending on its high production rate in regions characterized by a
large velocity gradient. This high TKE produced in the high shear area diffuses towards
the jet’s center and edge as it expands.

The turbulence quantity measurements are widely dispersed. The LDA measurement
of Ramaprian and Chandrasekhara [42] gave the second lowest maximum shear stress
level of uvmax/U2

cl =0.02, with the highest spreading rate of 0.112 (Table 2). For jets in
stagnant environments, the self-similar form is regarded as universal and independent
of the jet’s initial conditions. Consequently, a uniform TKE level (k j = 1/2(U0 I)2) and
a flat velocity profile at the jet nozzle are selected as initial conditions, where I denotes
turbulence intensity.

Table 2. Comparison of experimental and model results for incompressible plane jet.

Investigator Spreading Rate uvmax/U2
cl Remarks

Bradbury [35] 0.109 0.024 HWA
Gutmark and Wygnanski [36] 0.11 0.024 HWA

Miller and Comings [37] 0.097 0.025 CTA
Van der Hegge Zijnen [39] 0.095 - HWA

Heskestad [40] 0.11 0.020 HWA
Everitt and Robins [43] 0.09–0.11 0.019 CTA

Ramaprian and Chandrasekhara [42] 0.112 0.02 LDA
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Table 2. Cont.

Investigator Spreading Rate uvmax/U2
cl Remarks

k–ε model 0.108 0.022
SST k–ω model 0.113 0.0215
RNG k–ε model 0.117 0.029

k–ε–τ model 0.109 0.0216

The computed mean velocity distribution for plane jets in the area of self-similarity
is displayed in Figure 2 in the axial direction. It is assessed in comparison with the
experimental results of Robins [38], and predictions of the other two-equation models
considered in the current manuscript. Figure 2 presents a comparison of the shear stress
“uv” and TKE data from Gutmark and Wygnanski [36] and Bradbury [35], respectively. The
modified k–ε–τ model provides better agreement for shear stress and complies with TKE
patterns observed in both experimental findings documented in the scientific literature
closer to the centre of the jet, and slightly underestimates shear stress towards the distance
of 2yh.
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Table 2 displays the spreading-rates as well as the maximum shear stress levels
achieved for the plane jet in comparison to different experimental results and values
determined using various two-equation models. It is evident that the k–ε–τ model predicts
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spreading-rate far more accurately with a value of 0.109, and the maximum shear stress
levels are also consistent with the revised model. This is not unexpected considering that
the coefficients are modified in order to achieve optimal agreement among the turbulence
quantities, spreading rate, and mean velocity.

The time scale τ can be normalized in two ways, either by τ∗ = τUCL/yh or z = ετ/k.
The latter can also be expressed as the ratio of two different time scales and, it should be
comparable to the reciprocal of Cε2 of the standard k–ε model (1/1.92). Figure 3 shows
time scales τ∗ and z, respectively. τ∗ is compared with values of k/ε (times 1/Cε2 of the
k–ε model) predicted from both the k–ε and k–ε–τ models. Time scales of k/ε from both
models go in parallel, the one predicted from the k–ε–τ model being 4% higher, across the
jet. Time scale τ∗ starts with the same value of k/ε of the k–ε model in the centre of the
jet and slightly increases until about 1.5 yh, yielding, at the maximum, a 7% higher value
between 0.9 yh to 1.4 yh. Although the k–ε model suggests that its Cε2 coefficient depends
only on decay exponent, variation in “z” across the jet implies that the coefficient Cε2 of the
k–ε model would not be a true constant. The TKE budget, as found by the modified k–ε–τ
model is compared in Figure 4 with the Bradbury’s energy balance, which is found to be
more consistent than Gutmark’s, according to Rodi [44]. Agreement is again very good and
consistent with the above findings.
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4.2. Round Jet Results

Table 3 gives a summary of experiments and simulation outcomes of the turbulence
properties in the self-similar area. Compared to a plane jet, a round jet spreads slower,
according to these observations, and takes between 50 and 70 diameters to achieve its
self-similar form. Hussein and George [45] reported a peak value of about uv/U2

cl = 0.021
at 70 x/d and gave a value of 0.094 for the spreading rate, although early research indicates
a spreading rate of dyh/dx = 0.086. The work by Hussein et al. [46] contains the simulation
parameters for round jet simulations, specifically Re = 95,500 and Ui = 56.2 m/s.

The traditional models consistently anticipate higher spreading rates for the axisym-
metric case, also known as the “plane jet/round jet” anomaly, which was initially docu-
mented by Rodi and Spalding [47] in their analysis using the k–kl model. However, the
round jet spreading rates predicted by the SST k–ω and k–ε models are around 28% too
high, while the k–ε–τ model (applying the identical model parameters to the plane jet)
provides a considerably closer value of 0.089. A realizable k–ε model is close behind the
k–ε–τ model in terms of spreading rates, with a value of 0.088.

Table 3. Comparison of experimental and model results for incompressible axisymmetric jet.

Investigator Spreading Rate uvmax/U2
cl Remarks

Hussein and George [45] 0.094 0.021 moving HW
Wygnanski and Fiedler [48] 0.086 0.0165 HWA

Rodi [49] 0.086 0.0186 HWA
Capp [50] 0.095 - LDA

Panchapakesan and Lumley [51] 0.096 0.021 moving HW
Taulbee et al. [52] 0.094–0.102 0.021 LDA-HWA

k–ε model 0.120 0.025
SST k–ω model 0.121 0.028

Realizable k–ε model 0.088 0.023
k–ε–τ model 0.089 0.027

The predicted mean axial velocity, shear stress, and TKE profiles for axisymmetric jets
are compared to the work of Rodi [49] at the self-similar region in Figure 5. It is evident
that consistency of the k–ε–τ model outputs are quite satisfactory. The maximum shear
stress profiles are projected to be 22% higher by the k–ε model; that is compatible with the
prediction of its spreading rate. The k–ε–τ model, after making a slight hump which is not
consistent with experiments at about 0.5 yh, levels with the data from the measurements of
Rodi [49], and Hussein et al. [46]; thereafter, the agreement with it is quite good.

Interestingly, the aforementioned “plane jet/round jet” anomaly does not appear in
the k–ε–τ model. Unlike the close error margin considering the plane jet, TKE profiles are
overestimated by about 9% from the jet axis in the first quarter.

On the other hand, TKE predictions of the SST k–ω model are much higher than
the rest of the models considered in the manuscript, in terms of both shear stress and
TKE distributions.

Turbulence time scale τ∗ level is consistently higher than the k–ε level in the k–ε–τ
model, up to the outer edge of the jet, by about 5% at the jet centre and 12% at 1.4 yh
(Figure 6), but agrees with k/ε from the k–ε model. It can also be observed in the same
figure that the z-level is increased slightly (7–8%) compared to plane jet (Figure 3). This
could be due to an increased energy dissipation rate predicted in the round jet as can be
seen in the energy budget in Figure 7. It can also be seen that the convection and production
terms in the energy budget are predicted reasonably well compared with the measurements.
The change in sign in the diffusion term, close to the centre of the jet, is consistent with
the predictions of TKE. However, this is not supported by the experiments as seen in
Figures 5 and 7.
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4.3. Plane Far Wake Results

It is possible to define a normalized spreading parameter for the wake as
Sw = (UE/Uo)dyh/dx, where UE is the outer stream velocity and Uo is the velocity deficit
at the centerline of the wake [53,54]. The simulation parameters for plane far wake sim-
ulations are specified in the paper by Zhou et al. [54] as Re = 2800 and Ui = 6.7 m/s.
Simulation results proved that the measurements of Wygnanski et al. [55] seemed to be
the most reliable. They state that the Reynolds number calculated by using the cylinder
diameter is equal to 1360 and that the similarity zone begins at x/D > 400 in the wake
of the cylinder that has a certain diameter (D = 6.35 mm) [54]. Their similarity research
suggests that the parameter for spreading must have a specific value, irrespective of the
wake generator type. Furthermore, Louchez et al. [56] asserted that the plane wake reaches
a universal, self-sustaining form that is independent of the initial body when it is suf-
ficiently far downstream, depending on the self-preserving properties demonstrated by
second order moments. However, measurements of Wygnanski et al. [55] suggested that
the developing behavior and asymptotic structure of plane wake can be impacted by the
form of the wake generator, and this was one of the causes of the disagreement observed
by different workers.

It is particularly challenging to estimate both weak and strong shear flows using a
pair of coefficients, particularly when employing eddy-viscosity models. The phenomenon
known as “weak–strong shear flow” is thought to be induced by the dissipation rate equa-
tion in its simulated form. Table 4 presents a compilation of experimental and projected
values for the wake spreading parameters in the aftermath of the wake generator, as deter-
mined by the typical two-equation models and k–ε–τ model. Regarding the experiments
of Wygnanski et al. [55], the modified k–ε–τ model underestimates this spread parame-
ter by less than 2%, suggesting a considerably better result compared to the significant
underestimation by the k–ε and SST k–ω models.
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Table 4. Comparison of experimental and model results for plane far wake.

Investigator Spreading Parameter −uvmax/U2
cl

Everitt and Robins [43] 0.096 0.037
Ermshaus (from Ramaprian and

Chandrasekhara [42]) 0.089 -

Wygnanski et al. [55] 0.082 0.048
Townsend [57] 0.098 0.051

Sreenivasan and Narasimha [58] 0.092 -
k–ε model 0.077 0.036

SST k–ω model 0.079 0.042
RNG k–ε model 0.099 0.046

k–ε–τ model 0.081 0.039

As can be seen in Figure 8, the mean axial velocity profile for the far wake is well
predicted, and the result obtained is very similar to that of other models. Despite a 23%
lower estimation of maximum shear stress level compared to experimental values [55], the
modified k–ε–τ model yielded a better value than the k–ε model, which underestimated
it by 33%. This finding aligns with the comparative evaluation of the models’ spreading
parameter performance. Moreover, TKE profiles are predicted to be within 3% deviation
close to the centre of the wake, up to the point of 1.2 yh. Conversely, throughout the
interval of 0–1.2 yh, shear stress profiles are underestimated by approximately 15–30 percent,
yielding a reduced level of concurrence in comparison to the other models considered in
this research. When compared to experimental behavior, both turbulence energy profiles
and shear stress appear to cease instantly near the outer edge.
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4.4. Turbulence Viscosity Relation

Since there are now two distinct time scales, there are two ways to quantify eddy
viscosity: µt = Cµρk2/ε or µt = Cµρz−1

0 kτ, or more generally:

µt = Cµρ
k2

ε

[
f +

z
z0
(1 − f )

]
(29)

where the weighting factor, f, can be chosen to give optimum agreement. Alternatively,
partial replacement of time scale k/ε with τ/z1 yields another expression for turbulent
viscosity:

µt = Cµρz−1/2
0 k3/2

(τ

ε

)1/2
(30)

which can also be interpreted as the geometric average of two length scales: k3/2/ε and
k1/2τ.

In Figure 9a, the normalized turbulence viscosities and, in Figure 9b, two of its
components arising from the length scales “k3/2/ε” and “k1/2τ” (symbols in the figure),
according to Equation (29), are presented for f = 0.9, f = 0.6, and f = 0.3. Inclusion of
the time scale τ into the definition of turbulence viscosity as described in Equation (29)
introduces a more abrupt variation in dependent variables towards the edge of the jet, as
seen in Figure 9a for normalized υt, and a slight increase in the spreading rate from 0.111
for f = 0.9 to 0.114 for f = 0.3, getting less stable for the latter. In Figure 9a, the turbulence
viscosity distribution calculated from Equation (30) is also presented. However, this form
also produces an abrupt change similar to f = 0.5 towards the edge and similar to f = 0.9 in
the core region of the jet; nevertheless, it yields a spreading rate of 0.11 for plane jets.
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5. Conclusions

In this study, a novel three-equation turbulence model was developed based on the
limitations of the WFC model for predicting the behavior of shear flows, and its performance
was then presented for plane and axisymmetric jets, and plane asymptotic wake.

The findings indicate that the k–ε–τ model outperforms the k–ε model by a significant
margin. The first benefit is that the “plane jet/round jet” anomaly is better resolved by
avoiding additional difficulties of second moment closures. The second benefit is that the
flow behavior is better predicted than with the two-equation models in the wake, which is
characterized by its weak shear form. Furthermore, it was discovered that:

• Consistent with the measurements, the three-equation model (utilizing identical pa-
rameters across all three cases) estimates a spread rate of 0.109 for the plane jet;
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• The model estimates the round jet spreading rate of 0.089, which is over 23% better
than the k–ε and SST k–ω models and consistent with the experimental data;

• The parameter for the spreading of the plane wake is estimated to be 0.081, which is
approximately 6% more accurate than the k–ε model and 4% more accurate than the
SST k–ω model;

• Time scales τ and k/ε behave quite similar to each other in most parts of the jet, as
expected (in non-equilibrium situations, as in the compression stroke of an IC engine,
these two will differ considerably);

• For the turbulence viscosity, several options, such as the geometric and arithmetic
averages with a weighting factor, were investigated and shown to have no significant
advantage over the traditional one for the types of flows tested.
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