A Review of Smart Grid Anomaly Detection Approaches Pertaining to Artificial Intelligence
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Definition of Research Questions
- What is currently known about anomaly detection?
- What are the most common AI methods?
- What is the trend in this field?
2.2. Planning and Definition of the Search Strategy
2.3. Selection and Quality Criteria
3. Results and Analysis
3.1. Data Integrity Attacks
3.2. Unusual Consumption Behaviors and Measurements
- (a)
- Indirect load control (ILC) cyber-attacks performed by manipulating the price curve;
- (b)
- Direct load control mechanism (DLC) cyber-attacks, where the attacker compromises the energy management System (EMS) to send a false on or off signal;
- (c)
- Open charge point protocol (OCPP) cyber-attacks: an attacker can damage energy security if communication channels are intercepted, and security credentials are known.
3.3. Network Intrusions
3.4. Network Infrastructure Anomalies
- (a)
- Implants of consumption devices;
- (b)
- Energy meter implants;
- (c)
- Black hole attacks;
- (d)
- Installation of malicious software;
- (e)
- Topology attacks;
- (f)
- Tampering with the resources of electronic devices: CPU, memory, operating systems, data, files, and configurations;
- (g)
- Exploitation of intrinsic weaknesses in communications protocols.
3.5. Electrical Data Anomalies
3.6. Cyber-Attack Detection
3.7. Devices for Detecting Anomalies
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
ADS | Anomaly detection system | IWSN | Industrial wireless sensors |
AENN | Auto-encoder neural network | k-NN | K-nearest neighbor |
AI | Artificial intelligence | LoOP | Local outlier probability |
AMI | Advanced metering infrastructure | LP | Linear programming |
ANN | Artificial neural networks | LSTM | Long short-term memory |
CNN | Convolutional neural network | LWS | Ledoit–Wolf Shrinkage |
CUSUM | Cumulative sum | NAN | Neighborhood area networks |
DL | Deep learning | NTL | Non-technical losses |
DLC | Direct load control mechanism | OCPP | Open charge point protocol |
DNN | Distributed neural network | PMU | Phasor measurement units |
DRL | Deep reinforcement learning | PTP | Precision time protocol |
DT | Decision tree | ReTAD | Real-time anomaly detection |
DWT | Discrete wavelet transform | RF | Random forest |
FDI | False data injection | RNN | Recurrent neural networks |
Fed-SCR | Federated semi-supervised class-rebalanced | SBC | Single board computer |
FL | Federated learning | SG | Smart grid |
GAIN | Generative adversarial imputation nets | SGI | Smart grid infrastructure |
GAN | Generative adversarial network | SM | Smart meters |
GN | Graph neuron | SNMP | Simple network management protocol |
GPS | Global positioning system | SPN | Stochastic petri net |
GRU | Gated recurrent unit | SSA-ICPS | Severity of smart attacks in industrial cyber physical systems |
GTP | Ground-truth profile | STDGL | Spatiotemporal graph deep learning |
HAN | Home area networks | SVM | Support vector machine |
HTM | Hierarchical temporary memory | TSA | Time synchronization attack |
ICPS | Industrial cyber physical systems | WADC | Wide area damping control |
IED | Intelligent electronic device | WAN | Wide area networks |
ILC | Indirect load control | WOA | Whale optimization algorithm |
References
- Palensky, P.; Kupzog, F. Smart Grids. Annu. Rev. Environ. Resour. 2013, 38, 201–226. [Google Scholar] [CrossRef]
- Mocanu, E. Machine Learning Applied to Smart Grids; Technische Universiteit Eindhoven: Eindhoven, The Netherlands, 2017; Volume 143, p. 2017. Available online: https://research.tue.nl/en/publications/machine-learning-applied-to-smart-grids (accessed on 1 September 2023).
- Kaitovic, I.; Lukovic, S.; Malek, M. Proactive Failure Management in Smart Grids for Improved Resilience: A Methodology for Failure Prediction and Mitigation. In Proceedings of the 2015 IEEE Globecom Workshops (GC Wkshps), San Diego, CA, USA, 6–10 December 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Chertkov, M.; Pan, F.; Stepanov, M.G. Predicting Failures in Power Grids: The Case of Static Overloads. IEEE Trans. Smart Grid 2011, 2, 162–172. [Google Scholar] [CrossRef]
- Passerini, F.; Tonello, A.M. Smart Grid Monitoring Using Power Line Modems: Anomaly Detection and Localization. IEEE Trans. Smart Grid 2019, 10, 6178–6186. [Google Scholar] [CrossRef]
- Fenza, G.; Gallo, M.; Loia, V. Drift-Aware Methodology for Anomaly Detection in Smart Grid. IEEE Access 2019, 7, 9645–9657. [Google Scholar] [CrossRef]
- Rossi, B.; Chren, S.; Buhnova, B.; Pitner, T. Anomaly detection in Smart Grid data: An experience report. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 002313–002318. [Google Scholar] [CrossRef]
- Khaled, A.; Ouchani, S.; Tari, Z.; Drira, K. Assessing the Severity of Smart Attacks in Industrial Cyber-Physical Systems. ACM Trans. Cyber Phys. Syst. 2021, 5, 10. [Google Scholar] [CrossRef]
- De Santis, E.; Livi, L.; Mascioli, F.M.F.; Sadeghian, A.; Rizzi, A. Fault recognition in smart grids by a one-class classification approach. In Proceedings of the 2014 International Joint Conference on Neural Networks (IJCNN), Beijing, China, 6–11 July 2014; pp. 1949–1956. [Google Scholar] [CrossRef]
- da Silva, F.Q.; Santos, A.L.; Soares, S.; França, A.C.C.; Monteiro, C.V.; Maciel, F.F. Six years of systematic literature reviews in software engineering: An updated tertiary study. Inf. Softw. Technol. 2011, 53, 899–913. [Google Scholar] [CrossRef]
- Unterkalmsteiner, M.; Gorschek, T.; Islam, A.M.; Cheng, C.K.; Permadi, R.B.; Feldt, R. Evaluation and Measurement of Software Process Improvement—A Systematic Literature Review. IEEE Trans. Softw. Eng. 2012, 38, 398–424. [Google Scholar] [CrossRef]
- IEA. World Energy Outlook 2022; IEA: Paris, France, 2022; Available online: https://www.iea.org/reports/world-energy-outlook-2022 (accessed on 1 May 2023).
- Liu, Y.; Ning, P.; Reiter, M.K. False data injection attacks against state estimation in electric power grids. ACM Trans. Inf. Syst. Secur. 2011, 14, 13. [Google Scholar] [CrossRef]
- Ten, C.-W.; Hong, J.; Liu, C.-C. Anomaly Detection for Cybersecurity of the Substations. IEEE Trans. Smart Grid 2011, 2, 865–873. [Google Scholar] [CrossRef]
- Baig, Z.A. On the use of pattern matching for rapid anomaly detection in smart grid infrastructures. In Proceedings of the 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm), Brussels, Belgium, 17–20 October 2011; pp. 214–219. [Google Scholar] [CrossRef]
- Kher, S.; Nutt, V.; Dasgupta, D.; Ali, H.; Mixon, P. A detection model for anomalies in smart grid with sensor network. In Proceedings of the 2012 Future of Instrumentation International Workshop (FIIW) Proceedings, Gatlinburg, TN, USA, 8–9 October 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Subramanian, V.; Gilberti, M.; Doboli, A.; Pescaru, D. A goal-oriented programming framework for grid sensor networks with reconfigurable embedded nodes. ACM Trans. Embed. Comput. Syst. 2013, 11, 79. [Google Scholar] [CrossRef]
- Mitchell, R.; Chen, I.-R. Behavior-Rule Based Intrusion Detection Systems for Safety Critical Smart Grid Applications. IEEE Trans. Smart Grid 2013, 4, 1254–1263. [Google Scholar] [CrossRef]
- Hong, J.; Liu, C.-C.; Govindarasu, M. Integrated Anomaly Detection for Cyber Security of the Substations. IEEE Trans. Smart Grid 2014, 5, 1643–1653. [Google Scholar] [CrossRef]
- Wu, J.; Xiong, J.; Shil, P.; Shi, Y. Real time anomaly detection in wide area monitoring of smart grids. In Proceedings of the 2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 2–6 November 2014; pp. 197–204. [Google Scholar] [CrossRef]
- Tan, R.; Krishna, V.B.; Yau, D.K.Y.; Kalbarczyk, Z. Integrity Attacks on Real-Time Pricing in Electric Power Grids. ACM Trans. Inf. Syst. Secur. 2015, 18, 5. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Yang, S.; McCann, J.A. Distributed Real-Time Anomaly Detection in Networked Industrial Sensing Systems. IEEE Trans. Ind. Electron. 2015, 62, 3832–3842. [Google Scholar] [CrossRef]
- Yalcin, T.; Ozdemir, M. Pattern recognition method for identifying smart grid power quality disturbance. In Proceedings of the 2016 17th International Conference on Harmonics and Quality of Power (ICHQP), Belo Horizonte, Brazil, 16–19 October 2016; pp. 903–907. [Google Scholar] [CrossRef]
- Ghanbari, M.; Kinsner, W.; Ferens, K. Anomaly detection in a smart grid using wavelet transform, variance fractal dimension and an artificial neural network. In Proceedings of the 2016 IEEE Electrical Power and Energy Conference (EPEC), Ottawa, ON, Canada, 12–14 October 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Anwar, A.; Mahmood, A.N. Anomaly detection in electric network database of smart grid: Graph matching approach. Electr. Power Syst. Res. 2016, 33, 51–62. [Google Scholar] [CrossRef]
- Wallace, S.; Zhao, X.; Nguyen, D.; Lu, K.-T. Chapter 17—Big Data Analytics on a Smart Grid: Mining PMU Data for Event and Anomaly Detection. In Big Data; Buyya, R., Calheiros, R.N., Dastjerdi, A.V., Eds.; Morgan Kaufmann: Cambridge, MA, USA, 2016; pp. 417–429. ISBN 9780128053942. [Google Scholar] [CrossRef]
- Liu, X.; Nielsen, P.S. Regression-based Online Anomaly Detection for Smart Grid Data. arXiv 2016, arXiv:1606.05781. [Google Scholar] [CrossRef]
- Matthews, S.J.; Leger, A.S. Leveraging single board computers for anomaly detection in the smart grid. In Proceedings of the 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), New York, NY, USA, 19–21 October 2017; pp. 437–443. [Google Scholar] [CrossRef]
- Giraldo, J.; Cárdenas, A.; Quijano, N. Integrity Attacks on Real-Time Pricing in Smart Grids: Impact and Countermeasures. IEEE Trans. Smart Grid 2017, 8, 2249–2257. [Google Scholar] [CrossRef]
- Moghaddass, R.; Wang, J. A Hierarchical Framework for Smart Grid Anomaly Detection Using Large-Scale Smart Meter Data. IEEE Trans. Smart Grid 2018, 9, 5820–5830. [Google Scholar] [CrossRef]
- Drakontaidis, S.; Stanchi, M.; Glazer, G.; Hussey, J.; Leger, A.S.; Matthews, S.J. Towards Energy-Proportional Anomaly Detection in the Smart Grid. In Proceedings of the 2018 IEEE High Performance extreme Computing Conference (HPEC), Waltham, MA, USA, 25–27 September 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Yip, S.-C.; Tan, W.-N.; Tan, C.; Gan, M.-T.; Wong, K. Electrical Power and Energy Systems An anomaly detection framework for identifying energy theft and defective meters in smart grids. Electr. Power Energy Syst. 2018, 101, 189–203. [Google Scholar] [CrossRef]
- Li, B.; Lu, R.; Choo, K.-K.R.; Wang, W.; Luo, S. On Reliability Analysis of Smart Grids under Topology Attacks: A Stochastic Petri Net Approach. ACM Trans. Cyber-Phys. Syst. 2018, 3, 10. [Google Scholar] [CrossRef]
- Huang, H.; Xu, H.; Cai, Y.; Khalid, R.S.; Yu, H. Distributed Machine Learning on Smart-Gateway Network toward Real-Time Smart-Grid Energy Management with Behavior Cognition. ACM Trans. Des. Autom. Electron. Syst. 2018, 23, 1–26. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, F. Multi-feature Fusion Based Anomaly Electro-Data Detection in Smart Grid. In Proceedings of the 2018 15th International Symposium on Pervasive Systems, Algorithms and Networks (I-SPAN), Yichang, China, 16–18 October 2018; pp. 54–59. [Google Scholar] [CrossRef]
- Noureen, S.S.; Bayne, S.B.; Shaffer, E.; Porschet, D.; Berman, M. Anomaly Detection in Cyber-Physical System using Logistic Regression Analysis. In Proceedings of the 2019 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 7–8 February 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Karimipour, H.; Geris, S.; Dehghantanha, A.; Leung, H. Intelligent Anomaly Detection for Large-scale Smart Grids. In Proceedings of the 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), Edmonton, AB, Canada, 5–8 May 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Lipcàk, P.; Macak, M.; Rossi, B. Big Data Platform for Smart Grids Power Consumption Anomaly Detection. In Proceedings of the 2019 Federated Conference on Computer Science and Information Systems (FedCSIS), Leipzig, Germany, 1–4 September 2019; pp. 771–780. [Google Scholar] [CrossRef]
- Babun, L.; Aksu, H.; Uluagac, A.S. A System-level Behavioral Detection Framework for Compromised CPS Devices: Smart-Grid Case. ACM Trans. Cyber-Phys. Syst. 2019, 4, 16. [Google Scholar] [CrossRef]
- Yue, M.; Hong, T.; Wang, J. Descriptive Analytics Based Anomaly Detection for Cybersecure Load Forecasting. In Proceedings of the 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 20 January 2019; p. 1. [Google Scholar] [CrossRef]
- Cui, M.; Wang, J.; Yue, M. Machine Learning-Based Anomaly Detection for Load Forecasting Under Cyberattacks. IEEE Trans. Smart Grid 2019, 10, 5724–5734. [Google Scholar] [CrossRef]
- Yen, S.W.; Morris, S.; Ezra, M.A.; Huat, T.J. Effect of smart meter data collection frequency in an early detection of shorter-duration voltage anomalies in smart grids. Int. J. Electr. Power Energy Syst. 2019, 109, 1–8. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, Y.; Srivastava, A.K.; Wu, Y.; Banerjee, P. Ensemble-Based Algorithm for Synchrophasor Data Anomaly Detection. IEEE Trans. Smart Grid 2019, 10, 2979–2988. [Google Scholar] [CrossRef]
- Ling, Z.; Qiu, R.C.; He, X.; Chu, L. A New Approach of Exploiting Self-Adjoint Matrix Polynomials of Large Random Matrices for Anomaly Detection and Fault Location. IEEE Trans. Big Data 2021, 7, 548–558. [Google Scholar] [CrossRef]
- Matthews, S.J.; Leger, A.S. Leveraging MapReduce and Synchrophasors for Real-Time Anomaly Detection in the Smart Grid. IEEE Trans. Emerg. Top. Comput. 2019, 7, 392–403. [Google Scholar] [CrossRef]
- Tao, J.; Michailidis, G. A Statistical Framework for Detecting Electricity Theft Activities in Smart Grid Distribution Networks. IEEE J. Sel. Areas Commun. 2020, 38, 205–216. [Google Scholar] [CrossRef]
- Shereen, E.; Dan, G. Model-Based and Data-Driven Detectors for Time Synchronization Attacks Against PMUs. IEEE J. Sel. Areas Commun. 2020, 38, 169–179. [Google Scholar] [CrossRef]
- Abbaspour, A.; Sargolzaei, A.; Forouzannezhad, P.; Yen, K.K.; Sarwat, A.I. Resilient Control Design for Load Frequency Control System Under False Data Injection Attacks. IEEE Trans. Ind. Electron. 2020, 67, 7951–7962. [Google Scholar] [CrossRef]
- Zhang, Z.; Deng, R.; Yau, D.K.Y.; Cheng, P.; Chen, J. On Hiddenness of Moving Target Defense against False Data Injection Attacks on Power Grid. ACM Trans. Cyber-Phys. Syst. 2020, 4, 25. [Google Scholar] [CrossRef]
- Barua, A.; Muthirayan, D.; Khargonekar, P.P.; Al Faruque, M.A. Hierarchical Temporal Memory-Based One-Pass Learning for Real-Time Anomaly Detection and Simultaneous Data Prediction in Smart Grids. IEEE Trans. Dependable Secur. Comput. 2022, 19, 1770–1782. [Google Scholar] [CrossRef]
- Li, M.; Zhang, K.; Liu, J.; Gong, H.; Zhang, Z. Blockchain-based anomaly detection of electricity consumption in smart grids. Pattern Recognit. Lett. 2020, 138, 476–482. [Google Scholar] [CrossRef]
- Korba, A.A.; Tamani, N.; Ghamri-Doudane, Y.; Karabadji, N.E.I. Anomaly-based framework for detecting power overloading cyberattacks in smart grid AMI. Comput. Secur. 2020, 96, 101896. [Google Scholar] [CrossRef]
- Ravikumar, G.; Govindarasu, M. Anomaly Detection and Mitigation for Wide-Area Damping Control using Machine Learning. IEEE Trans. Smart Grid 2020, 1. [Google Scholar] [CrossRef]
- Shi, X.; Qiu, R.; Ling, Z.; Yang, F.; Yang, H.; He, X. Spatio-Temporal Correlation Analysis of Online Monitoring Data for Anomaly Detection and Location in Distribution Networks. IEEE Trans. Smart Grid 2020, 11, 995–1006. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Chen, B. Detecting False Data Injection Attacks in Smart Grids: A Semi-Supervised Deep Learning Approach. IEEE Trans. Smart Grid 2021, 12, 623–634. [Google Scholar] [CrossRef]
- Haghnegahdar, L.; Wang, Y. A whale optimization algorithm-trained artificial neural network for smart grid cyber intrusion detection. Neural Comput. Appl. 2020, 32, 9427–9441. [Google Scholar] [CrossRef]
- Hasnat, A.; Rahnamay-Naeini, M. Detecting and locating cyber and physical stresses in smart grids using the k-nearest neighbour analysis of instantaneous correlation of states. IET Smart Grid 2021, 4, 307–320. [Google Scholar] [CrossRef]
- Siniosoglou, I.; Radoglou-Grammatikis, P.; Efstathopoulos, G.; Fouliras, P.; Sarigiannidis, P. A Unified Deep Learning Anomaly Detection and Classification Approach for Smart Grid Environments. IEEE Trans. Netw. Serv. Manag. 2021, 18, 1137–1151. [Google Scholar] [CrossRef]
- Singh, V.K.; Govindarasu, M. A Cyber-Physical Anomaly Detection for Wide-Area Protection Using Machine Learning. IEEE Trans. Smart Grid 2021, 12, 3514–3526. [Google Scholar] [CrossRef]
- Ahmed, A.; Sajan, K.S.; Srivastava, A.; Wu, Y. Anomaly Detection, Localization and Classification Using Drifting Synchrophasor Data Streams. IEEE Trans. Smart Grid 2021, 12, 3570–3580. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Das, S.K. Detection and Forensics against Stealthy Data Falsification in Smart Metering Infrastructure. IEEE Trans. Dependable Secur. Comput. 2021, 18, 356–371. [Google Scholar] [CrossRef]
- Qi, R.; Rasband, C.; Zheng, J.; Longoria, R. Detecting Cyber Attacks in Smart Grids Using Semi-Supervised Anomaly Detection and Deep Representation Learning. Information 2021, 12, 328. [Google Scholar] [CrossRef]
- Wang, J.; Wu, L.; Zeadally, S.; Khan, M.K.; He, D. Privacy-preserving Data Aggregation against Malicious Data Mining Attack for IoT-enabled Smart Grid. ACM Trans. Sen. Netw. 2021, 17, 25. [Google Scholar] [CrossRef]
- Itria, M.L.; Schiavone, E.; Nostro, N. Towards anomaly detection in smart grids by combining Complex Events Processing and SNMP objects. In Proceedings of the 2021 IEEE International Conference on Cyber Security and Resilience (CSR), Rhodes, Greece, 26–28 July 2021; pp. 212–217. [Google Scholar] [CrossRef]
- Khaledian, E.; Pandey, S.; Kundu, P.; Srivastava, A.K. Real-Time Synchrophasor Data Anomaly Detection and Classification Using Isolation Forest, KMeans, and LoOP. IEEE Trans. Smart Grid 2021, 12, 2378–2388. [Google Scholar] [CrossRef]
- Wang, X.; Flores, R.; Brouwer, J.; Papaefthymiou, M. Real-time detection of electrical load anomalies through hyperdimensional computing. Energy 2022, 261, 125042. [Google Scholar] [CrossRef]
- Gao, H.-X.; Kuenzel, S.; Zhang, X.-Y. A Hybrid ConvLSTM-Based Anomaly Detection Approach for Combating Energy Theft. IEEE Trans. Instrum. Meas. 2022, 71, 2517110. [Google Scholar] [CrossRef]
- Shaaban, M.; Tariq, U.; Ismail, M.; Almadani, N.A.; Ahmed, M. Data-Driven Detection of Electricity Theft Cyberattacks in PV Generation. IEEE Syst. J. 2022, 16, 3349–3359. [Google Scholar] [CrossRef]
- Kisielewicz, T.; Stanek, S.; Zytniewski, M. A Multi-Agent Adaptive Architecture for Smart-Grid-Intrusion Detection and Prevention. Energies 2022, 15, 4726. [Google Scholar] [CrossRef]
- Mahi-Al-Rashid, A.; Hossain, F.; Anwar, A.; Azam, S. False Data Injection Attack Detection in Smart Grid Using Energy Consumption Forecasting. Energies 2022, 15, 4877. [Google Scholar] [CrossRef]
- Sun, S.; Liu, C.; Zhu, Y.; He, H.; Xiao, S.; Wen, J. Deep Reinforcement Learning for the Detection of Abnormal Data in Smart Meters. Sensors 2022, 22, 8543. [Google Scholar] [CrossRef] [PubMed]
- Khattak, A.; Bukhsh, R.; Aslam, S.; Yafoz, A.; Alghushairy, O.; Alsini, R. A Hybrid Deep Learning-Based Model for Detection of Electricity Losses Using Big Data in Power Systems. Sustainability 2022, 14, 13627. [Google Scholar] [CrossRef]
- Jithish, J.; Alangot, B.; Mahalingam, N.; Yeo, K.S. Distributed Anomaly Detection in Smart Grids: A Federated Learning-Based Approach. IEEE Access 2023, 11, 7157–7179. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Moustafa, N.; Hawash, H. Privacy-Preserved Generative Network for Trustworthy Anomaly Detection in Smart Grids: A Federated Semisupervised Approach. IEEE Trans. Ind. Inform. 2023, 19, 995–1005. [Google Scholar] [CrossRef]
- Chawla, A.; Agrawal, P.; Panigrahi, B.K.; Paul, K. Deep-learning-based data-manipulation attack resilient supervisory backup protection of transmission lines. Neural Comput. Appl. 2023, 35, 4835–4854. [Google Scholar] [CrossRef]
- Ruan, J.; Fan, G.; Zhu, Y.; Liang, G.; Zhao, J.; Wen, F.; Dong, Z.Y. Super-Resolution Perception Assisted Spatiotemporal Graph Deep Learning Against False Data Injection Attacks in Smart Grid. IEEE Trans. Smart Grid 2023, 14, 4035–4046. [Google Scholar] [CrossRef]
N. | Criteria |
---|---|
1 | Study addresses anomaly detection in relation to smart grids |
2 | The study presents empirical results |
3 | The study presents methods and their applications |
4 | The study presents future lines of research |
N. | Criteria |
---|---|
1 | Knowledge of existing related literature is evident |
2 | Provides answers to research questions |
3 | The work enables practical applications or explores new design options |
4 | The solution to a real problem is being addressed |
5 | The work presents evidence of the validity of the findings |
6 | The work contrasts alternative solutions |
7 | The experiments are explained and reproducible |
Year | Paper |
---|---|
2011 | [13,14,15] |
2012 | [16,17] |
2013 | [18] |
2014 | [19] |
2015 | [20,21,22] |
2016 | [23,24,25,26,27] |
2017 | [7,28,29] |
2018 | [30,31,32,33,34,35] |
2019 | [5,6,36,37,38,39,40,41,42,43,44,45] |
2020 | [8,46,47,48,49,50,51,52,53,54,55,56] |
2021 | [57,58,59,60,61,62,63,64,65] |
2022 | [66,67,68,69,70,71,72] |
2023 | [73,74,75,76] |
Study Object | Paper |
---|---|
Data integrity attacks | [13,21,25,29,40,41,48,49,53,55,59,60,61,62,70,75,76] |
Unusual consumption behaviors and measurements | [6,24,27,32,34,35,38,46,52,67,68,71,72,73] |
Network intrusions | [16,18,19,56,63,69] |
Network infrastructure anomalies | [14,15,17,20,22,33,39,47,58,64] |
Electrical data anomalies | [7,23,26,36,43,44,45,50,54,65,66,74] |
Cyberattack detection | [8,30,37,57] |
Devices for detecting anomalies | [5,28,31,42,51] |
Scenario | Method/Technique | Objective |
---|---|---|
Affecting the load frequency | ANN Luenberger Observer | Identify anomalies |
Attacks on EMS systems | Graphical comparisons | |
FDI attacks in general | Semi-supervised learning GAN, CUSUM, CNN-LSTM, GAIN-LSTM, STDGL, Multi-tier detection schema | Detect anomalies/Mitigate attacks |
Attacks on load forecasting | Supervised learning Unsupervised learning SVM, k-NN |
Scenario | Method/Technique | Objective |
---|---|---|
Unusual consumption behavior | DWT, VFD, ANN, DNN, DRL | Identify anomalies in HAN environment |
LP, REPTree, M5P, Random Forest, ANN, SVM | Identify anomalies in NAN + HAN environment | |
Semi-supervised learning GAN | Distinguish unusual non-fraudulent consumption behavior from anomalies with fraudulent intent | |
Machine Learning, K-means, LSTM, ConvLSTM, regression tree model, CNN+GRU, FL |
Scenario | Method/Technique | Objective |
---|---|---|
Smart Grid Intrusions | Machine learning, Decision Tree Classifier (J48), Algorithm C4.5, Decisions Tree | Intrusion detection |
Behavioral rules specification system | Detect affected or malicious devices | |
ADS host-based, ADS network-based | Detect anomalies in IED substation devices and circuit breakers | |
WOA, ANN, Multi-agent architecture | Identify multiple intrusion scenarios | |
PDAM | Prevent anomalies from data mining attacks |
Scenario | Method/Technique | Objective |
---|---|---|
Network infrastructure anomalies | Construction of temporal events, Machine learning, GTP | Avoid device compromise |
Machine learning, AENN, RF | Detect time synchronization attack | |
GN | Detect meter implant and network topology attacks | |
SPN | Detect network topology attacks | |
Pattern-based correlation capabilities, GAN | Identify anomalies in the communication protocols | |
Spatiotemporal correlation, LWS, ReTAD | Detection of anomalies that are not cyber-attacks |
Scenario | Method/Technique | Objective |
---|---|---|
Voltage drops in the electrical network | SVM, Decision Tree (C4.5) | Detect anomalies |
Voltage/power anomalies | Comparison of values with established ranges, Fed-SCR | |
Anomalies from PMU | Unsupervised learning, HTM, MapReduce, Random matrix, isolation forest, K-Means, LoOP | |
Electrical load anomalies | Hyperdimensional Computing |
Scenario | Method/Technique | Objective |
---|---|---|
The SG is the target of diverse types of cyber-attacks. | Real-time anomaly detection framework, unsupervised machine learning, Boltzmann machine, Dynamic Bayesian Networks, PRISM, Markov chains, and decision tree. | Identify and detect anomalies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guato Burgos, M.F.; Morato, J.; Vizcaino Imacaña, F.P. A Review of Smart Grid Anomaly Detection Approaches Pertaining to Artificial Intelligence. Appl. Sci. 2024, 14, 1194. https://doi.org/10.3390/app14031194
Guato Burgos MF, Morato J, Vizcaino Imacaña FP. A Review of Smart Grid Anomaly Detection Approaches Pertaining to Artificial Intelligence. Applied Sciences. 2024; 14(3):1194. https://doi.org/10.3390/app14031194
Chicago/Turabian StyleGuato Burgos, Marcelo Fabian, Jorge Morato, and Fernanda Paulina Vizcaino Imacaña. 2024. "A Review of Smart Grid Anomaly Detection Approaches Pertaining to Artificial Intelligence" Applied Sciences 14, no. 3: 1194. https://doi.org/10.3390/app14031194
APA StyleGuato Burgos, M. F., Morato, J., & Vizcaino Imacaña, F. P. (2024). A Review of Smart Grid Anomaly Detection Approaches Pertaining to Artificial Intelligence. Applied Sciences, 14(3), 1194. https://doi.org/10.3390/app14031194